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Abstract: Chemerin is a recently discovered adipokine that participates in the regulation of many
physiological and disorder-related processes in mammals, including metabolism, inflammatory
reactions, obesity, and reproduction. We investigated how chemerin affects the transcriptome
profile of porcine luteal cells. The luteal cells were acquired from mature gilts. After the in vitro
culturing with and without chemerin, the total RNAs were isolated and high-throughput sequencing
was performed. Obtained datasets were processed using bioinformatic tools. The study revealed
509 differentially expressed genes under the chemerin influence. Their products take part in many
processes, important for the functions of the corpus luteum, such as steroids and prostaglandins
synthesis, NF-κB and JAK/STAT signal transducing pathways, and apoptosis. The expression of the
CASP3, HSD3B7, IL1B, and PTGS2 genes, due to their important role in the physiology of the corpus
luteum, was validated using the quantitative real-time polymerase chain reaction (qPCR) method.
The qPCR confirmed the changes of gene expression. Chemerin in physiological concentrations
significantly affects the expression of many genes in luteal cells of pigs, which is likely to result in
modification of physiological processes related to reproduction.
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1. Introduction

Chemerin (CHEM) is an adipokine discovered more than 20 years ago, as a product of TIG2, later
named as RARRES2. This substance was first identified during studies on the pathogenesis of psoriasis
in 1997 as a product undergoing increased production under the influence of tazarotene [1]. To date,
the occurrence of RARRES2 mRNA was found, e.g., in the ovaries of women [2], mice [3], and rats [4].
In accordance to the Du and Leung studies, the swine CHEM amino acid sequence has the highest
level of identity with respect to the human sequence (84%) among all of tested model animals – cattle,
rats, and mice [5].

To date, three CHEM membrane receptors have been identified [6]—CMKLR1 (also named as
ChemR23 or GPCR-DEZ), GPR1 and CCRL2. The first two mentioned receptors—CMKLR1 and
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GPR1—show a high structural similarity and they are ‘classic’ chemokine receptors, associated with
G-proteins, which initiate intracellular signal transduction. The expression of CMKLR1 was reported
in human ovarian cells [2] and the production of GPR1 mRNA was detected in the murine corpus
luteum (CL) [7]. The effect of action of the third membrane receptor of CHEM, CCRL2, is regulation
of ligand molecules availability and creation of chemokine or non-chemokine ligands gradient in
in vivo [8] and in vitro [9] conditions, determining the direction of inflammatory reactions. It has been
found that CCRL2 gene expresses in the human ovaries [2].

Recently, attention of researchers was also paid to contribution of CHEM to the influence on
human and animal reproduction [2,7,10–13]. Yao and his team observed an increased accumulation
of reactive oxygen species and an increase in granulosa cells (GC) apoptosis in the ovaries of mice
in which upregulation of the expression of CHEM and CMKLR1-encoding genes was induced by
a high-fat diet [14]. In human, mouse, and bovine GC, the influence of CHEM on the inhibition of
steroidogenesis was found [2,7,12]. In addition, CHEM in rats triggers follicular growth arrest [15].
To date, the influence of CHEM on luteal cells (LC) has not been studied. Moreover, most studies
analyzing the impact of CHEM on various physiological processes are carried out in humans or rodents,
and often do not consider farm animals, including pigs—model organism of major importance to the
human farming economy.

Our recent studies have shown the presence of all three CHEM-associated receptors in selected
structures of the pig hypothalamus [16] and ovary [17] during the estrous cycle and early pregnancy,
which allowed us to conclude that CHEM has a direct effect on the hypothalamic–pituitary–gonadal
regulatory axis (HPG) by modifying the functioning of its upstream structures. We hypothesized that
CHEM may have endocrine effects on downstream structures of the HPG axis, in particular on CL
producing steroid hormones, significantly modifying reproductive processes in mammals. The aim of
this study was to investigate the influence of CHEM on the transcriptomic profile of swine in vitro
cultured luteal cells collected during the mid-luteal phase of the estrous cycle.

2. Materials and Methods

2.1. Experimental Animals and Tissue Collection

Five mature gilts (Large White × Polish Landrace; 7–8 months of age; body weight of 120–130 kg)
obtained from a private breeding farm were used in this study. The gilts were on days 10–12 of the
estrous cycle. Females were observed daily for behavioral estrus in the presence of boar. The day
of onset of the second estrus was designated as day 0 of the estrous cycle. The phase of the estrous
cycle was additionally confirmed based on ovarian morphology [18]. Ovaries collected immediately
after slaughter of gilts were placed in ice-cold PBS supplemented with 100 IU/mL penicillin and
100 µg/mL streptomycin and transported to the laboratory on ice within 1 h for in vitro cell cultures
preparation. The experiments were carried out in accordance with the ethical standards of the Animal
Ethics Committee at the University of Warmia and Mazury in Olsztyn.

2.2. Isolation of the Luteal Cells and in Vitro Cell Cultures

Luteal cells were isolated using the method described by Kaminski et al. [19]. Dissected from
ovaries corpora lutea on days 10–12 of the cycle (the mid-luteal period of fully functional CL) were
minced into small fragments and dispersed in F-12 medium containing BSA (1%) and antibiotics.
Corpora lutea were enzymatically dissociated in 0.125% trypsin solution (4–6 times) at 38 ◦C, centrifuged
(300× g, 10 min, 21 ◦C), and washed three times. Isolated LC were filtered through nylon mesh (75 µm)
and resuspended in fresh F-12 medium. The cells were counted using a hemocytometer, and their
viability (≈90%) was determined by 0.4% trypan blue dye exclusion.

Luteal cells (2 × 106/2 mL medium) were resuspended in F-12 medium enriched with FCS (20%),
BSA (1%), and antibiotics, and pre-incubated for 48 h in a humidified incubator with 95% air and 5%
CO2 atmosphere. The serum-containing medium was discarded, and the cells were washed using
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serum-free F-12 medium. After washing, LC were cultured for 24 h in F-12 medium with BSA (1%)
and antibiotics, with or without recombinant human CHEM in concentration 200 ng/mL of medium.
The concentration of the factor was selected on the basis of its relatively high level in women and
porcine blood plasma [16,20].

2.3. RNA Isolation and High-Throughput Sequencing

Total RNA was extracted from in vitro cell cultures using RNeasy Mini Kit (Qiagen, Germantown,
MD, USA) with DNase (RNase-free DNase Set, Qiagen, Germantown, MD, USA), according to
manufacturer’s recommendations. The RNA quantity (wavelength 260 nm, A260) and purity (A260/A280)
was assessed spectrophotometrically (Infinite M200 Pro, Tecan, Männedorf, Switzerland). Integrity of
the total RNA was validated by electrophoresis on 1% agarose. Isolated RNA was stored at −80 ◦C for
sequencing library preparation.

The sequencing library of template molecules suitable for following cluster generation was
prepared using total RNA (from each sample) according to Shen et al. [21]. Firstly, the RNA solutions
were purified from rRNA with use of Ribo-Zero rRNA Removal Kit (Illumina, San Diego, CA, USA).
rRNA-depleted RNA was used to prepare strand-specific libraries using the TruSeq Stranded mRNA
Library Prep Kit (Illumina, San Diego, CA, USA), following manufacturer’s protocol. Briefly, RNA was
fragmented, ds-cDNA was synthesized replacing dTTPs with dUTPs in the reaction solution used
in second strand cDNA synthesis. The obtained ds-cDNA fragments went through an end repair
and A-tailing processes. Finally, specific adaptors were ligated to the obtained cDNA fragments.
Polymerase chain reaction amplification was performed to enrich cDNA libraries.

The transcriptome high-throughput sequencing (RNA-Seq) of obtained cDNA libraries was
performed on the NovaSeq 6000 platform (Illumina, San Diego, CA, USA) to generate 2 × 150 bp
paired-end reads, with assumed minimal sequencing depth—100 million reads per sample.

2.4. In Silico Analyses

2.4.1. Row Reads Pre-Processing and Differentially Expressed Genes Processing

This stage of analysis was performed accordingly to Pertea et al. [22] with significant modifications
(Figure 1). Row reads obtained from sequencing were subjected to quality control, using FastQC
v0.11.8 software [23]. Adapters and low-quality regions of row reads were trimmed with use of
Trimmomatic v0.38 program [24]. After re-checking the quality and adapter content of processed reads,
they were mapped with the use of STAR mapper v2.6.1d [25] to the Sus scrofa v11.1.91 reference genome
downloaded from Ensembl database [26]. The number of reads mapped to exonic, intronic, untranslated
regions (UTRs), or intergenic regions was quantified using the CollectRnaSeqMetrics tool in the Picard
v2.21.1 software [27]. Principal component analysis (PCA) and Euclidean distances between samples
analysis were performed using ggplot2 library [28] and self-developed R script [29], to assess the
overall similarity between transcriptomic profiles of RNA samples derived from CHEM-treated and
non-CHEM-treated cells. StringTie aligner v1.3.5 [30] was used to enrich annotation of transcripts and
prepare the Ballgown input files, with the fr-firststrand (–rf ) enabled parameter. Counts per gene were
computed on the basis of BAM files (alignments obtained from STAR) and GTF files (annotations from
StringTie) using the prepDE python script with the Ballgown software [31]. Row reads were deposited in
the European Nucleotide Archive database under the common project accession number—PRJEB35892.

Statistical analyses of differentially expressed genes (DEGs) for protein-coding RNA under the
influence of CHEM was performed using Ballgown [31], dedicated Bioconductor v3.8 [32] package
prepared for the R environment v3.5.2 [33], with the following operating parameters: q-value < 0.05
and |log2FC| ≥ 0.5.
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Figure 1. The course of in silico analyses. In the flowchart, blue blocks indicate used bioinformatic
software, grey blocks represent databases (including the source of raw reads). Orange blocks symbolize
input and output files necessary to run subsequent programs or tools. Green rectangles represent the
result files that are the main effect of the entire data pipeline, which contain differentially expressed
genes (DEGs). The red diamond symbolizes the decision-making process. Continuous arrows indicate
the main direction of data flow, while intermittent arrows indicate the indirect influence on the
analysis process.

2.4.2. Functional Annotation of Differentially Expressed Genes

Functional analyses (gene ontology and pathway enrichment) were performed with use of
g:Profiler [34] and KO-Based Annotation System v3.0 (KOBAS) [35] web tools related to Kyoto
Encyclopedia of Genes and Genomes (KEGG) [36], Gene Ontology (GO) [37,38], and The Reactome
Knowledgebase [39] databases.

2.5. Quantitative Real-Time PCR Validations

Quantitative real-time PCR (qPCR) was proceeded by cDNA synthesis using the same RNA as in
the RNA-Seq (all CHEM-treated and control samples). A total of 500 ng of each total RNA sample was
transcribed using the Omniscript RT Kit (Qiagen, Germantown, MD, USA), a mix of dNTPs and 0.5 µg
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oligo(dT) (Roche, Penzberg, Germany) in a total volume of 10 µL. The reaction was conducted at 37 ◦C for 1
h and was terminated by incubation at 93 ◦C for 5 min. qPCR was performed in technical duplicate for each
sample with use of the 7300 PCR System (Applied Biosystems, Foster, CA, USA). The protocol assumed to
use constitutively expressed ACTB and GAPDH as reference genes. Primer sequences for reference and
target genes (CASP3, HSD3B7, IL1B, and PTGS2) were developed using Primer Express Software 3 (Applied
Biosystems, USA). Quantitative real-time PCR mixtures with a final volume of 20 µL consisted of cDNA (40
µg), 400 nM of the primers, 12.5 µL of the Power SYBR Green PCR Master Mix (Applied Biosystems, USA),
and RNase-free water. The primer sequences of all tested genes are listed in Table 1. Quantitative real-time
PCR were performed under the following conditions: preliminary cDNA denaturation and enzymes
activation at 95 ◦C for 10 min, followed by 40 cycles of denaturation at 95 ◦C for 15 s, annealing at 60 ◦C for
1 min, and elongation at 72 ◦C for 1 min. For ACTB and HSD3B7 primers the annealing temperature was
raised to 61 ◦C. Negative controls were prepared by replacing cDNA with water. All the samples were in
duplicate. Calculation of the relative expression levels of validated genes was performed with use of the
comparative cycle threshold method (∆∆CT) and normalized using the geometrical means of the reference
gene expression levels [40]. The results of qPCR were statistically processed in the R environment [33] with
the use of one-factor ANOVA and were presented as mean values ± SEM. The results were regarded as
statistically significant at p-value < 0.05.

Table 1. Primers used for the validation of RNA-Seq results.

Gene Symbol Gene Description Primers Sequences Product Length Reference

IL1B Interleukin 1β F: TTTGAAGAAGAGCCCATCATCC
R: CCAGCCAGCACTAGAGATTTG 119 bp [The present study]

CASP3 Caspase 3 F: GTGCTTCTAAGCCATGGTGAA
R: CGGCAGGCCTGAATTATGAA 143 bp [The present study]

PTGS2 Prostaglandin-endoperoxide
synthase 2

F: ATGGGTGTGAAAGGGAGGAAA
R: AAACTGATGGGTGAAGTGCTG 141 bp [The present study]

HSD3B7
Hydroxy-δ-5-steroid

dehydrogenase, 3 β- and
steroid δ-isomerase 7

F: CTCGAAGCCAACGGAAGGA
R: CCACGTTACCCACGTAGACC 193 bp [The present study]

ACTB β-actin F: ACATCAAGGAGAAGCTCTGCTACG
R: GAGGGGCGATGATCTTGATCTTCA 366 bp [41]

GAPDH Glyceraldehyde-3-
phosphate dehydrogenase

F: CCTTCATTGACCTCCACTACATGG
R: CCACAACATACGTAGCACCAGCATC 183 bp [42]

Abbreviations: F—forward; R—reverse.

3. Results

3.1. Overall Statistics of RNA-Seq Data and Mapping Results

The in vitro cultured LC sampled from five CHEM-treated groups and five control groups were
used to create total cDNA libraries to explore the effect of CHEM treatment on the porcine LC
transcriptome. The transcriptome high-throughput sequencing generated 1,154,494,264 raw paired-end
reads. After pre-processing (minimum 90 bp length, Phred quality score > 30) and the removal of
adapter sequences, 1,024,385,352 clean reads were obtained, of them 1,018,891,762 were mapped to the
reference porcine genome (S. scrofa v11.1.91). On average, 96.52% of trimmed reads were uniquely
mapped, 3.48% were mapped to multiple loci (Table 2).

In all libraries, 56.63% of processed reads were mapped to coding DNA sequence (CDS) regions,
22.08% were aligned to UTRs, 2.59% to introns, and 18.69% to intergenic locations (Figure 2). A total of
16,612 transcriptionally active regions (TARs) were identified in LC in at least half of the samples.

Principal component analysis revealed a high degree of differentiation in gene expression profiles
between research and control samples (Figure 3A). The calculated Euclidean distances showed high
consistency of the expression profiles, both within the control group and the experimental group
(Figure 3B).
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Table 2. Summary of the results of RNA sequencing, preprocessing and mapping of reads to the
porcine reference genome. All numerical values are expressed in millions. CTRL are samples from
control group, and CHEM are samples from chemerin-treated group.

Treatment CTRL CHEM
Samples 1_LC 2_LC 3_LC 4_LC 5_LC 1_LC 2_LC 3_LC 4_LC 5_LC

Row reads 110.458 125.606 121.017 115.746 108.415 109.209 115.928 112.795 122.503 112.816
Processed reads 97.605 111.356 106.973 102.611 96.010 97.413 102.895 99.857 109.165 100.500
Mapped reads 97.057 110.805 106.363 102.009 95.54 96.93 102.244 99.362 108.613 99.97

Uniquely mapped 94.274 106.514 102.766 98.577 92.284 93.337 99.22 95.599 104.365 96.408
% of uniquely

mapped 97.13% 96.13% 96.62% 96.64% 96.59% 96.29% 97.04% 96.21% 96.09% 96.44%

Multi-mapped 2.783 4.291 3.597 3.432 3.256 3.593 3.024 3.763 4.248 3.562
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Figure 3. (A) Principal component analysis (PCA) of all differentially expressed genes. PCA plot was
generated using the ggplot2 R library. (B) Sample-to-sample distance matrix. The color intensity means
the distance, where dark blue is the lowest distance (the diagonal squares have distance 0) and the
light blue (almost white) means high Euclidean distance. Heatmap showing the Euclidean distances
between the samples was generated with use of the DESeq2 package.
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3.2. Differentially Expressed Genes

Ballgown-based analysis revealed that 509 genes (721 transcripts) showed statistically significant
differences in expression between CHEM-treated and control samples (Table S1). The significant
changes in gene expression profiles of in vitro cultured LC treated with CHEM are visualized in Figure 4.
The 98 DEGs involved in metabolic pathways relevant for physiological functions of the corpus luteum
(described below) are presented in a heatmap (Figure 5). Among all DEGs, 301 were upregulated and 208
were downregulated in the CHEM-treated group (Supplementary Table S1), and log2FC values ranged
from 5.45 (IL1B) to −2.17 (PANK1). The 10 most upregulated genes were IL1B, CSF3, CCL3L1, CXCL8,
CCL20, CXCL2, ENSSSCG00000008954, AMCF-II, ACOD1, and IL23A. The 10 most downregulated
genes were PANK1, SLA-DMA, ENSSSCG00000031640, SLA-DMB, ENSSSCG00000016725, PTGFR,
FMNL2, ANKRD1, LYZ, and KCNK3 (Table S1).

3.3. Functional Genes Analysis

The GO enrichment analysis demonstrated that in the group of all DEGs, a total of 457 were
associated with three aspects: biological process (BP), molecular function (MF), and cellular component
(CC) GO terms (Figure 6). The BP aspect encompassed DEGs enriched to 407 statistically significant
GO terms (padj < 0.05), for example: ‘cellular response to stimulus’, ‘regulation of signal transduction’,
‘immune system process’, ‘programmed cell death’, ‘response to cytokine’, ‘cytokine production’,
and ‘I-kappaB kinase/NF-kappaB signaling’. Within the MF aspect, DEGs were enriched to 18 functions,
for example ‘cytokine receptor binding’, ‘receptor regulator activity’, ‘growth factor receptor binding’,
and ‘CCR chemokine receptor binding’. In the CC aspect, there were 15 significant GO terms, for
example ‘extracellular region’, ‘cell surface’, ‘cytoplasm’, and ‘cell-cell junction’.
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Figure 4. (A) MA plot shows the logarithmic values of fold changes (Y axis) and mean of logarithmic
(fragments per kilobase per million reads mapped (FPKM) + 1) values (X axis) for comparing
CHEM-treated and control libraries. (B) Volcano plot presents the logarithmic values of fold changes (X
axis) plotted against negative logarithmic q-values (Y axis). On both plots each point is defaultly colored
black, red dots represent differentially expressed genes (DEGs) upregulated under the CHEM treatment
and green dots show downregulated DEGs with significant q-value < 0.05. Triangles symbolize DEGs
above the visible range, and rhomboids symbolize DEGs to the right of the visible range. Purple dashed
lines symbolize cut-off levels.
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Figure 5. Heatmap of expression data for 98 differentially expressed genes and their participation in
metabolic pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Genes were
ordered according to the dendrogram (not shown) of similarity of their expression profiles calculated
on the basis of the respective Z-scores. Samples marked with CTRL belong to the control group, while
CHEM were treated with chemerin.
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Figure 6. Lollipop chart with 15 best (with lowest p-value) Gene Ontology (GO) terms for every GO
aspect (Biological Process—BP, Cellular Component—CC, Molecular Function—MF), sorted due to
descending negative logarithmic adjusted p-value of enrichment analysis. Numbers in circles represent
the number of differentially expressed genes matched to a specific term.

A subsequent KEGG enrichment classification revealed that 286 DEGs significantly affected by
CHEM, had a statistically significant (padj < 0.05) impact on 51 biological pathways. Among all
selected metabolic pathways, 32 were directly related to pathological processes such as carcinogenesis,
autoimmune diseases, bacterial, viral infections, and those initiated by prions and protists. Due to the
lack of relation with the studied tissue and the aim of understanding the physiological influence of
CHEM on LC, these pathways were not analyzed. We investigated the impact of DEGs on the following
signal pathways: ‘TNF signaling pathway’, ‘Cytokine-cytokine receptor interaction’, ‘NF-kappa B
signaling pathway’, ‘Chemokine signaling pathway’, ‘MAPK signaling pathway’, ‘Cell adhesion
molecules (CAMs)’, and ‘Apoptosis’ (Figures S1–S7). Additionally, following pathways, important
for the CL functioning, that did not reach statistical significance during KEGG enrichment, were
examined: ‘Steroid hormone biosynthesis’, ‘Ovarian steroidogenesis’, ‘Arachidonic acid metabolism’,
and ‘JAK-STAT signaling pathway’ (Figures S8–S11).

The Reactome Knowledgebase enrichment analysis showed a significant contribution of 261 DEGs
from the set obtained during this study in 19 molecular pathways, for example ‘Cytokine signaling in
immune system’, ‘Programmed cell death’, ‘TAK1 activates NFkB by phosphorylation and activation
of IKKs complex’, ‘Interleukin-1 signaling’, and ‘Chemokine receptors bind chemokines’.

3.4. Quantitative Real-Time PCR Validations

To validate the obtained RNA-Seq results, four DEGs were selected for qPCR. The qPCR expression
patterns of HSD3B7, IL1B, PTGS2 were in agreement with RNA-Seq results. Changes in levels of
CASP3 expression between CHEM-treated and control samples did not reach the statistical significance
threshold (p-value = 0.06), but nevertheless indicated the trend that had been previously revealed during
the analysis of RNA-Seq data. Results of qPCR mostly confirmed the veracity of the high-throughput
methods used in the present study (Figure 7).
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Figure 7. Quantitative real-time PCR validations of RNA-Seq results performed for selected
differentially expressed genes—interleukin 1β (IL1B), prostaglandin-endoperoxide synthase 2 (PTGS2),
hydroxy-δ-5-steroid dehydrogenase, 3 β- and steroid δ-isomerase 7 (HSD3B7) and caspase 3 (CASP3).
Above the bars, precise p-values obtained from statistical analysis of the results are written. CTRL is
a control group and CHEM is a chemerin-treated group.

4. Discussion

The transcriptome high-throughput sequencing was applied to identify the global transcriptome
profile of treated and non-treated in vitro-cultured porcine luteal cells, acquired on days 10–12 of the
estrous cycle. During this study, we observed the statistically significant impact of CHEM on changes
of expression levels of 509 genes, whose products are involved in several processes important for
functioning of porcine LC, and thus CL.

Previous studies evidenced a significant impact of CHEM on the ovarian cells of other species,
such as humans [2,43], mice [7], rats [44], and cattle [12]. Nevertheless, the cited studies did not analyze
the effects of CHEM on the LC at the transcriptional level, using deep sequencing techniques that allow
certain relationships to be found with greater probability and sensitivity. The authors would like to
point out that in accordance to the literature data, gene expression affects at least 40% [45,46] of the
variability of protein produced in mammalian cells. However, as stated by Li and co-workers [47],
taking into account experimental errors, changes at the mRNA level explain up to 84% of the variance
at the protein level.

Nuclear factor κB, the subunits’ production of which is strongly modified by CHEM in the porcine
LC, is a protein complex controlling transcription of proteins, which contribute to the inflammatory
response, through triggering synthesis of proinflammatory factors, regulating inflammatory reaction
course, leukocyte recruitment, and apoptosis or cell survival [48]. Signal transduction can be carried
out by ‘canonical’ pathway, activated by TNFα and IL1 or by ‘alternative’ pathway, in which the
signal is activated by, among others, a CD40 membrane receptor [48]. Despite the lack of statistically
significant change in the expression of TNFα-coding genes under the influence of CHEM, the level of
TNFAIP3 mRNA produced by LC increased significantly (FC = 4.6). Furthermore, TNIP1 was 2.1-fold
upregulated. TNF-receptor associated factor proteins are involved in the initial signal transduction in
the ‘alternative’ NF-κB pathway. The expression of TRAF2 (FC = 2.6) was also modified by CHEM.
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Zmijewska and colleagues proved that IL1B in CL is secreted not only by macrophages but also
by LC [49]. In CHEM-treated samples, we observed a 43.6-fold increase in the production of IL1B
transcripts, an 8.1-fold increase in the production of IL1A transcripts, and a 2.0-fold increase in the
production of IL1RAP transcripts, in comparison to control samples. Moreover, IRAK2 mediates
the process of the NF-κB pathway activation by IL1 molecules [50], and its mRNA was produced in
increased quantities under the influence of CHEM (FC = 1.7). Some of the proteins constructing the
NF-κB complex, such as NFKB1 (FC = 1.8), NFKB2 (FC = 2.3), RELB (FC = 2.5), NFKBIA (FC = 4.2),
NFKBIB (FC = 1.6), NFKBIE (FC = 2.0), and NFKBIZ (FC = 2.8) were upregulated. Proteins encoded by
NFKB1 and NFKBIA participates in the ‘canonical’ pathway, whereas RELB and NFKB2 take a part
in the ‘alternative’ NF-κB pathway. Interestingly, Xia and co-workers suggested that the ‘canonical’
pathway of the NF-κB can be inhibited by RELB protein, which is able to regulate the stability of protein
encoded by the NFKBIA gene [51]. The effect of activating the ‘canonical’ pathway is an increase
in the expression of many genes, such as mentioned IL1A, IL1B and IL18, PTGS2, PTGES, BIRC3,
MCL1, and CFLAR, discussed in detail below [52]. As a result of previous studies conducted by Luo
and colleagues [53], and Przygrodzka and colleagues [54], it was found that activation of the NF-κB
pathway occurs in LC at a late luteal stage of the estrous cycle and is associated with the acquisition of
luteolytic sensitivity by CL. This implies the participation of CHEM in the process of early acquisition
of luteolysis capacity by LC. On the other hand, Vince and co-workers showed that TRAF2 must recruit
proteins encoded by CIAP2 (also named as BIRC3 or HIAP1; FC = 1.7) to properly activate the NF-κB
pathway and to create resistance to apoptosis induction [55]. Overexpression of genes encoding both
proteins in LC transcriptomes treated with CHEM allows to assume also anti-apoptotic action of the
described pathway.

The JAK/STAT pathway takes part in the transduction of signals associated with cell differentiation,
proliferation, migration, or apoptosis [56]. It consists of only a few components, such as membrane
receptors with a characteristic domain capable of binding JAK proteins, JAKs capable of phosphorylation
STAT proteins, and a group of STATs, which activated and homodimerized may act as transcription
factors [57]. The results revealed 2.3-fold upregulation of the STAT1 gene. More than 20 years ago,
it was proven that STAT1 is an essential factor for the constitutive expression of, inter alia, CASP3
described below [58]. It was previously stated that homodimerization of STAT1 proteins is induced by
IFNγ [59]. We did not identify any statistically significant increase in IFNγ-coding gene expression,
but we did notice the upregulation of one of its receptors—IFNGR2 (FC = 1.8). Moreover, the expression
of IL18, also known as IFNγ inducing factor-coding gene, and its receptor-coding gene (IL18R1) were,
respectively, 2.1-fold and 1.5-fold upregulated. Tsuji and his colleagues discovered the production of
IL18 and IL18R proteins directly by mouse LC, linking their observations to the paracrine and autocrine
activity of these cells [60]. This may be an argument for probably more effective IFNγ action in the
studied cells, despite the lack of a significant increase in the content of mRNAs. Furthermore, it has been
confirmed that IFNγ may control porcine CL functions, including progesterone (P4) production [61,62].
Gene expression profiles also revealed differences in the content of SOCS3 (1.7-fold upregulation under
CHEM influence) mRNA produced. SOCS3 is a known regulator of JAK/STAT pathway, induced by
this pathway activation [56].

The corpus luteum is the primary endocrine gland that directly regulates the functioning of
the uterus and modulates its transformation during the estrous cycle. Corpora lutea perform their
function mainly by producing P4, a steroid hormone that prepares the endometrium for embryo
implantation and is responsible for maintenance of gestation. The key steroidogenic enzyme involved
in the production of P4 by LC is 3β-HSD. We observed a significant decrease in the content of HSD3B
mRNA produced under the influence of CHEM (FC = 0.60), and we confirmed the expression of HSD3B
by qPCR. Surprisingly, Rytelewska and co-workers [63] observed an induction of P4 secretion by
CHEM-treated in vitro-cultured porcine LC obtained on days 10–12 of the estrous cycle. The difference
between the observed amount of HSD3B mRNA in porcine LC and the level of P4 secretion may result
from the negative feedback loop. The HSD3B feedback regulation by P4 was previously mentioned in rat
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ovaries by de Galarreta and co-workers [64], and Tanaka and colleagues [65]. Similarly, downregulation
of HSD3B was noticed in testicular Leydig cells under the influence of androgens [66,67]. As a result of
this mechanism, a large amount of P4 produced by LC may directly inhibit the expression of HSD3B.
Furthermore, Rytelewska and colleagues [63] conducted analyses using in vitro LC cultures (identical
to those used in this study) of the CHEM effect on basal and luteinizing hormone or follicle-stimulating
hormone and/or insulin-induced secretion of other essential steroid hormones, such as androstenedione
(A4), testosterone (T), estrone (E1), and estradiol (E2). The mentioned study revealed that CHEM
inhibits basal and induced E2 secretion, and exerts both stimulatory and inhibitory effects on basal
and induced secretion of A4, T, and E1 (depending on the phase of the estrous cycle). According to
Rytelewska and co-workers [63], CHEM appears to be an important factor that modulates ovarian
steroidogenesis in pigs, whereas its stimulatory or inhibitory effects on the secretion of steroid hormones
may be due to the heterogeneity of factors regulating ovarian functions, possible interactions between
these factors, and specific processes related to the ovarian physiology during different phases of the
estrous cycle.

We found upregulation of cPLA2 (also named PLA2G4B; 1.9-fold increase), PTGS2 (also named
COX2; 3.2-fold increase), and PTGES (2.3-fold increase). Enzymes encoded by these genes create the
complete metabolic pathway, during which the arachidonic acid substrate is transformed into the
final product, which is luteoprotective PGE2 [68]. In mammals, PGE2 is mainly responsible for the
ovulation process and the subsequent luteinization of the ovarian follicle [69], which is also related to
an increase in the production of HSD3B mRNA [70] and further in P4 secretion [71]. This assumption
coincides with the observations of Zmijewska and co-workers [49] on the influence of IL1B on the
expression of PTGS2 and PTGES genes, and thus PGE2 secretion. It is also probable that such a high
increase in observed IL1B gene expression is the result of positive feedback loop via the NF-κB signal
transduction pathway and upregulation of PTGS2 in swine LC, as was previously observed in human
intervertebral disc cells [72]. Interestingly, it was affirmed that expression of the PTGES gene in
swine CL does not directly correspond with intraluteal level of PGE2 due to its transport to ovary
from conceptuses and the uterus, in order to rescue luteal function during the maternal recognition
of pregnancy [73]. We observed 7.3-fold upregulation of PKIB. The protein encoded by this gene is
an inhibitor of PKA enzymes family involved in the transduction of signals induced among others by
PGE2. This observation may be a direct symptom of a strong influence of CHEM on PGE2 generation
by porcine LC.

Programmed death of LC is one of the integral elements of CL lifespan and is directly related to
the process of structural regression of CL [74]. During this research, we noticed increased expression of
genes encoding apoptosis initiator caspase (CASP10 (FC = 1.6)) and executioner caspases (CASP3 (FC
= 1.4) and CASP7 (FC = 1.6)) in samples treated with CHEM, which usually indicates the beginning of
apoptotic processes in the studied cells. Increased quantity of produced CASP3 protein or mRNA,
a key executioner protease, could indicate an ongoing process of cellular apoptosis by both intrinsic
and extrinsic pathways, which has been observed under the influence of CHEM in the ovarian
cells of other mammals [7,14,15]. Validation of RNA-Seq results by qPCR confirmed a tendency to
increase the quantity of CASP3 mRNA produced in CHEM-treated samples in comparison to control
samples. Due to the fact that obtained p-value was just above the assumed threshold of statistical
significance, such a result cannot be considered as conclusive. Encoded by upregulated BAK1 (FC =

1.7) and PMAIP1 (also named Noxa protein; FC = 2.1) genes pro-apoptotic proteins, belonging to BCL2
family members, may form specific, for intrinsic apoptosis mitochondrial membrane, ‘permeability
transition pores’ [75]. These pores may enable exit from mitochondria to cytosol molecules, that induce
DNA defragmentation, formation of apoptosomes activating CASP9 (which in turn triggers CASP3),
and formation of complexes suppressing the activity of apoptosis inhibitory proteins [74,76].

Nonetheless, cellular mechanisms to counteract programmed cell death are also significantly
strengthened, as can be seen from the increase in the amount of produced CFLAR (also named C-FLIP;
FC = 1.6), MCL1, CIAP2 mRNAs. C-FLIP protein binding FADD and CASP8 and/or CASP10 proteins
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prevents formation and activation of the caspase cascade [77]. Long isoforms of MCL1 protein
are able to bind many proteins from the BCL2 family, preventing the formation of mitochondrial
‘permeability transition pores’. The CIAP2 protein has the ability to regulate apoptosis by binding
caspases, but also to modulate inflammatory signaling by ubiquitination of proteins involved in the
NF-κB signal pathway [78]. Gene encoding PFKFB3 protein was 2.5-fold upregulated in CHEM-treated
samples. This gene acts as a regulator of glucose metabolism within cells and has been associated with
prevention of apoptosis [79]. Modifications of expression of the genes mentioned in this paragraph,
induced by CHEM treatment on the mid-luteal LC, suggest that despite the occurrence of strong
pro-apoptotic signals in cells there are also parallel mechanisms of opposite effect—pro-survival. We
assume that despite the visible preparation of LC for programmed death, a multitude of anti-apoptotic
processes inhibit the action of executive factors. It is possible that this phenomenon is directly related
to the phase of the estrous cycle and the lack of fully developed luteolytic activity by the cells.

5. Conclusions

This study was the first experiment to demonstrate the impact of CHEM on the transcriptome
profile of porcine LC during the mid-luteal phase of the estrous cycle. During this study we showed,
for the first time, the impact of CHEM on NF-κB and JAK/STAT signal transduction pathways in
mammalian LC. We observed changes in expression of apoptosis-associated genes which products may
in a cell-specific manner affect the activation of both pro-survival and pro-apoptotic signaling pathways.

It is highly probable that CHEM at the physiological concentration may influence the sophisticated
metabolic processes associated with gilt reproduction by regulation of P4 generation, increased
production of pro-inflammatory factors, and preparation for luteal regression. As a result, deregulation
of the ovarian–uterine interactions may result in prevention of embryo implantation, loss of pregnancy,
or significant reduction in fertility. This research may be a prelude to further studies of the effect of
CHEM on the swine reproductive system, as an important farm animal and as a model organism with
a physiology like that of humans.
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