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SUMMARY

Innate immune recognition of bacterial pathogens is a key determinant of the ensuing systemic 

response, and host or pathogen heterogeneity in this early interaction can impact the course 

of infection. To gain insight into host response heterogeneity, we investigate macrophage 

inflammatory dynamics using primary human macrophages infected with Group B Streptococcus. 

Transcriptomic analysis reveals discrete cellular states within responding macrophages, one 

of which consists of four sub-states, reflecting inflammatory activation. Infection with six 

additional bacterial species—Staphylococcus aureus, Listeria monocytogenes, Enterococcus 
faecalis, Yersinia pseudotuberculosis, Shigella flexneri, and Salmonella enterica—recapitulates 

these states, though at different frequencies. We show that modulating the duration of infection 

and the presence of a toxin impacts inflammatory trajectory dynamics. We provide evidence for 

this trajectory in infected macrophages in an in vivo model of Staphylococcus aureus infection. 

Our cell-state analysis defines a framework for understanding inflammatory activation dynamics in 

response to bacterial infection.
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Graphical Abstract

In brief

Avital et al. show that bacterial infection induces discrete transcriptomic states in macrophages 

that correspond to different response functions. One of these states captures inflammatory 

activation characterized by four gene modules. The dynamics of this inflammatory trajectory can 

be impacted by modulation of bacterial stimulus, infection duration, and presence of toxins.

INTRODUCTION

The early interaction between a pathogen and host immune cell is a key determinant of 

the subsequent immune response with implications for infection outcome. As such, it is 

critically important to understand different functional macrophage properties at the outset of 

infection (Akira et al., 2006; Iwasaki and Medzhitov, 2015; Janeway and Medzhitov, 2002; 

Parihar et al., 2010). Different inputs to this interaction include a host cell’s disposition prior 

to introduction of antigen, as well as the state of the infecting pathogen (Avital et al., 2017; 

Avraham et al., 2015; Saliba et al., 2016; Shalek et al., 2014; Villani et al., 2017). A host 

cell’s state may be resistant to the pathogen or permissive, allowing intracellular replication 

or resulting in host cell death (Bumann, 2015; Shin, 2012). Uninfected neighboring cells, 

bystanders, can detect infection in adjacent cells through cytokine signals, and they, in 

turn, amplify the host immune response by recruiting additional immune cells to the site of 

infection (Holmgren et al., 2017).
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The group of bacterial pathogens that infect human host cells is characterized by diverse 

attributes. These species all differ within their morphological characteristics, the ability 

to replicate within a host cell, and host sites of infection. The innate immune system 

has evolved a conserved response to these phenotypically diverse bacterial pathogens in 

order to respond quickly to microbial threat while an antigen-specific response develops 

(Blecher-Gonen et al., 2019; Medzhitov and Janeway, 1997). This response is initiated 

by macrophage recognition and binding of a pathogen, and pathogen absorption into the 

phagosome. Subsequent production of reactive oxygen species (ROS), pH modification, 

and fusion with the lysosome, leads to degradation of the bacteria (Hirayama et al., 2017). 

Macrophages also present antigen and secrete cytokines and chemokines to initiate, amplify, 

and specify the ensuing adaptive response (Medzhitov and Janeway, 1997; Murray and 

Wynn, 2011; Sica et al., 2015). The tissue-level response to a pathogen is orchestrated by 

the coordinated activity of a population of immune cells, and the response of an individual 

cell in that setting is likely dictated by the rest of that population. While the components 

of the macrophage response to pathogenic challenge are well characterized, the relationship 

between these functions in a population of responding cells and the dynamics of these 

functions over time following infection has not been described.

Previous work has demonstrated the value of a single-cell approach in addressing host 

response heterogeneity (Gomes et al., 2019; Peters et al., 2020; Picelli, 2017; Rosenberg 

et al., 2021; Svensson et al., 2018; Wen et al., 2020). Many of these studies focus on 

the way that different sources of either bacterial heterogeneity or host cell type or state 

can impact the fate of an individual macrophage with implications for the course and 

outcome of an infection. Works analyzing bacterial heterogeneity have shown how virulence 

factor expression can impact infected host cells, as well as how bacterial growth rate can 

affect macrophage polarization (Avraham et al., 2015; Saliba et al., 2016). Our group 

has previously identified different host response states corresponding to different stages of 

infection based on both host and pathogen factors heterogeneity (Avital et al., 2017).

Here, we investigated cell population-level dynamics within a group of macrophages 

responding to bacterial infection. A systematic comparison of infected ex vivo human 

macrophages allowed us to define discrete cellular states of infection, including an 

inflammatory response program, which, in turn, comprises temporally regulated gene 

module expression. We found that the presence of these response components and their 

relationship is reproducible across infection by a range of bacterial pathogens, although the 

population dynamics differ depending on the stimulus. We found that the time of infection or 

the presence of toxin shifted these dynamics.

Our work defines the set of conserved states expressed by macrophages in response to 

bacterial infection, whose composition within a population of cells can serve as a measure of 

innate activation with implications for the course and outcome of infection.
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RESULTS

An ex vivo system for capturing heterogeneity in a macrophage population responding to 
infection

To capture the host transcriptomic response that accompanies the early stages of bacterial 

infection in a population of responding cells, we analyzed human monocyte-derived 

macrophages (hMDM) infected with Group B Streptococcus (Streptococcus Agalactiae, 

[GBS]). Macrophages have been implicated in the response to GBS (Flaherty et al., 2019, 

2021; Randis et al., 2014), so we used it as a model to interrogate the macrophage response 

to GBS ex vivo. We isolated peripheral blood mononuclear cells (PBMCs) from blood 

from four healthy human donors, selected adherent monocytes, and differentiated these 

into hMDM with the growth factor GM-CSF (see STAR Methods). We infected these 

macrophages with GBS (lab strain, COH1) for 4 h and processed them for scRNA-seq 

analysis, together with control hMDMs that were not exposed to GBS (Figure 1A). A 

parallel fluorescent activated cell sorting (FACS) analysis indicated that our experimental 

design yields ~50% GBS-infected cells (Figures 1B and S1A).

Principal component analysis (PCA) on the scRNA-seq data revealed two groups of cells, 

captured by PC1, which do not segregate according to GBS exposure or donor (Figures 

1C and 1D). PC1-high cells expressed higher levels of MHC class II (HLA-DRA, HLA-
DRB1), iron storage (FTL, FTH1), and chemokine (CXCL8) genes (Figure 1D), and based 

on this expression pattern, we inferred that the two groups correspond to differentiated 

macrophages and other cell types captured by the isolation process. The PC1-high cells had 

high expression of canonical macrophage marker genes (see STAR Methods) (Figure 1D). 

We selected the differentiated macrophages for further analysis (Figure S1B and see STAR 

Methods).

PC2 distinguished unexposed from GBS-exposed cells, and infected cells formed a gradient 

along PC2 (Figures 1C and 1F). Unexposed cells were captured by the low end of 

PC2, and the high end of PC2 was characterized by high expression of TNF and a set 

of cytokines previously characterized as part of an inflammatory response to bacterial 

infection, suggesting that PC2 captures the progression of infection (Avital et al., 2017; 

Avraham et al., 2015) (Figures 1E and 1F; R = 0.73 between PC2 and TNF expression). 

Because we did not synchronize the start of infection in each cell, we have representation 

of cells from a range of infection stages, given that each cell may have been infected at 

a different point during exposure to bacteria. To validate that cells along this continuum 

are indeed infected by GBS, we used flow cytometry to show that cells with intracellular 

fluorescently labeled GBS also stained positive for TNF (Figures 1G, S1C, and S1D; R 

= 0.56 between TNF protein expression and GBS-based RFP expression). Hundreds of 

genes vary in their expression along PC2 revealing a dynamic response of macrophages to 

infection (Figures 1H and S1E). In particular, we found that genes that are expressed early 

in infection are exosome-, vesicle-, and granule-related (such as CD63, CD9, CTSZ), and 

toward the end of this trajectory, we found the expression of inflammatory genes (such as 

SOD2, TNF, IL1B) (Figures 1H and S1F).
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Infection-specific macrophage states

We next asked if the heterogeneity captured by PC2 captures a single and continuous 

response program, or if it reflects the presence of multiple and discrete responses, and we 

tested this using single-cell trajectory analysis on these macrophages with the Monocle 

algorithm (Qiu et al., 2017a, 2017b). As Figure 2A shows, analysis of both the GBS-

exposed and unexposed cells reveals a branched configuration, composed of five clusters, or 

states (Figures S2A and S2B and Table S4). Cells that were not exposed to GBS mapped 

almost exclusively to two of the five states, at one end of the trajectory, while the other three 

states mostly captured GBS-exposed cells (Figure 2B). tSNE visualization also revealed two 

large groups in the data, and the unexposed control cells were restricted to one of these 

groups (Figures S2C and S2D), providing support for the trajectory analysis findings. Based 

on their uniquely expressed genes, we inferred that the two unexposed states correspond to 

a non-activated macrophage state and a state with elevated mitochondrial activity (Figure 

2C). The former expresses macrophage markers such as CD68 and CXCR4, while the latter 

expresses genes such as NDUFC1, known to be downregulated during bacterial infection to 

increase ROS by decoupling the respiratory chain (Ramond et al., 2019; Viola et al., 2019).

We wanted to address whether the baseline state of an unexposed macrophage could impact 

its progress in infection independent of the bacterial stimulation. To do so, we measured the 

ratio of unexposed macrophages in states 1 and 2 per donor, under the assumption that the 

same baseline heterogeneity in macrophages from a given donor was present at the start of 

infection from samples from that same donor. We reasoned that if baseline heterogeneity in 

each donor captured in unexposed cells would impact a cell’s position along the infection 

trajectory rather than the infection itself, any difference between donors would be mirrored 

in the degree of activation of cells from the same donor. Instead we found that the pattern 

of heterogeneity, approximated by the ratio of unexposed cells in state 1 relative to state 2 

between donors, was not consistent with the pattern of activation between donors, measured 

by PC2 scores of infected cells (Figure S2F).

States 3, 4, and 5 all correspond to different functions in cells that were exposed to 

bacteria (Figure 2B). Cells in state 3 are enriched in genes involved in T cell activation 

at the immune synapse, including TCR-MHC class II recognition, co-stimulatory molecule 

(CD80), and cytokine secretion (EBI3) (Medzhitov and Janeway, 1997). This suggests 

that cells in state 3 are poised to present antigen through MHC class II to initiate an 

appropriate adaptive immune response. Cells in state 4 are enriched in genes that are related 

to pathogen sensing and oxidative stress including ICAM1, IRF8, NFKB1, TNFAIP3, 

CD40, and HIF1A, suggesting that these cells may be involved in intracellular pathogen 

killing. State 5 expression is indicative of a cell’s role in initiating and amplifying the 

inflammatory response with high expression of inflammatory genes such as IL1B, CXCL8, 

TNF, IL7R, which are part of characteristic inflammatory response to bacterial infection 

(Ren and Torres, 2009; Russo et al., 2014; Sedger and McDermott, 2014; Zhou et al., 2015). 

Mapping states back to the inflammatory trajectory captured by PCA revealed that cells 

with low PC2 scores were mostly states 1 and 2, and high PC2 scores were mostly state 

5, further supporting that PC2 captures an inflammatory activation trajectory (Figure S2E). 

Given the functional annotations inferred from genes in states 3 and 5, we investigated 
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whether cells in these states are infected by GBS or active bystander cells. To test this, we 

infected hMDMs with fluorescently labeled GBS, indicating the presence of intracellular 

bacteria in those cells, and we stained them for representative markers from states 1, 3, 

and 5 (Figures 2D and S2G). We found that state 5 is composed almost exclusively of 

GBS-infected cells (Figure 2D). In state 1 and state 3 cells, we found 35% and 24% 

bystander cells, respectively. We also found evidence for the discrete nature of states 1 and 

5 by comparing the staining of markers in individual cells: state 1 and state 5 are largely 

mutually exclusive in GBS-exposed cells (Figures 2E, 2F, S2H, and S2I). These data suggest 

that cells with intracellular bacteria are enriched in expression of inflammatory cytokines, 

while both infected and bystander cells participate in antigen presentation and signaling to 

the adaptive immune system. We found support for the temporal relationship between some 

of the observed states using CellRank (Lange et al., 2022), which indicated that states 4 and 

5 follow state 1, and that state 3 is an independent and distinct cell state (Figures 2G and 

2H).

Gene modules of the inflammatory response and the mid-infection transition

While single-cell trajectory analysis defined state 5 as a discrete cluster, inflammatory 

gene expression analysis of cells within the cluster suggested a high degree of internal 

expression heterogeneity. To further resolve the expression patterns within this state, 

we analyzed the GBS-exposed state 5 cells using PCA. PC1 captured an inflammatory 

trajectory characterized by an increase in inflammatory gene expression along this axis 

(Figure S3A). Using K-means clustering, we identified four gene modules that are expressed 

at distinct stages throughout this trajectory (Figures 3A and 3B; Figure S3A, see STAR 

Methods). Module 1, expressed first, is enriched for genes with functions characteristic of 

resting macrophages, including CD14, LYZ, and FTH1. Module 2 is enriched for genes 

characteristic of activated macrophages that are responding to bacterial infection, including 

genes such as FCGR2B and C1QC. Module 3 includes genes with functions for antigen 

processing and presentation, such as CD74 and HLA-DRA. Finally, module 4 is enriched 

with genes for T cell activation, such as IL12B and IL18.

Mapping expression of the module genes to PCA space, we recapitulated the order of 

expression: the first and last modules are restricted to low and high PC1, respectively, 

and modules 2 and 3 span the middle of PC1, and the directionality of this trajectory is 

supported by CellRank (Figures 3C and 3D). Silhouette analysis provided further support 

for the coherence of the four modules (Figure S3C). The presence of these modules was 

robust to the number of genes included in the analysis (Figure S3D), and the functional 

characterization of these modules was robust across databases (Figure S3E). CellRank 

pseudotime supported our trajectory inference based on PC1 + PC2 scores (Figure S3F). 

Repeating the analysis using non-negative matrix factorization (NMF) to cluster the genes, 

we also found that the gene modules are reproducible using both methods of clustering 

(Figures S3G and S3H and see STAR Methods). We also measured the overlap of the genes 

in these modules as well as the defined cell states with previously described macrophage 

gene clusters induced in response to stimulation and found that module 4 has a high overlap 

with previously described clusters (Figures S3I and S3J) (Cheng et al., 2017, 2019).
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To analyze the expression dynamics of these four modules, we scored each cell for its 

relative expression of each module (see STAR Methods). Figure 3E indicates the module 

scores across the cells, ordered according to their location in the trajectory map (PC1 + 

PC2). This map recovers the relationship among the modules: 1 and 2 are expressed before 

3 and 4, and CellRank pseudotime recovers this order. This visualization also revealed 

a punctuated, rather than gradual, transition between early and late module expression. 

Correlating the cells according to their module scores further supported this dynamic pattern 

of expression, which we refer to as the ‘‘mid-infection transition’’ (Figures 3E and 3F). 

The punctuated nature of the transition was also evidenced by an increase in the rate 

of change in the middle of the process compared with the beginning and end (Figure 

3G). Collectively, these analyses suggest a discrete transition during infection between two 

phases in a macrophage inflammatory program: an early phase of sensing and phagocytosis 

of the bacteria and a late phase of amplification including signaling and T cell response 

activation.

Conservation of the infection-response gene expression program

The conserved macrophage response to diverse pathogens is well-defined, but we asked if 

the set of cell states defined in a population of GBS-infected macrophages was pathogen 

specific. To test this, we repeated our analysis on six additional species: three additional 

Gram-positive bacteria (Staphylococcus aureus, Listeria monocytogenes, and Enterococcus 
faecalis) and three Gram-negative bacteria (Yersinia pseudotuberculosis, Shigella flexneri, 
and Salmonella enterica). These diverse pathogens are distinct in their cell wall composition, 

mechanism of host cell entry, and their host sites of colonization (Figure 4A). We exposed 

hMDMs from four human donors to each bacteria species for 4 h of infection and 

multiplexed samples from each donor for processing with scRNA-seq (Figures S4A and 

S4B; see STAR Methods). In order to control for variation in the bacterial inoculum and 

uptake, we grew all bacteria to the stationary phase and infected cells at MOIs that yielded 

approximately 50% infected cells in each sample at 4 h post infection (Figures 4B and 

S4A). Despite variation in bacterial growth conditions, we aimed to control for macrophage 

response rather than focusing on bacteria-specific virulence mechanisms. This strategy 

allowed us to control the overall response dynamics per sample as well as an individual 

cell’s response, which will be influenced by the extent of the response of other cells around 

it.

Once again, we found that the cluster of fully differentiated macrophages explained the 

most variation in both the exposed and unexposed cells (Figures 4C and S4C). Restricting 

our analysis to this cluster of differentiated macrophages, we found that PC2 accounted 

for the trajectory of infection as before (Figure 4C). While we might have expected that 

the macrophages would have clustered according to the infecting species, we found instead 

that macrophages infected by different species are well integrated within the PC2 infection 

trajectory (Figures 4C–4E). Along this axis, cells infected by certain species (Salmonella, 

Shigella, GBS, and Listeria) were biased toward the later stages of infection (high PC2), 

while other species (Yersinia, Enterococcus, and Staphylococcus) showed the opposite 

distribution (low PC2), suggesting different dynamics of infection that do not correspond 

to the distinguishing attributes between these species (Figure 4E).
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Monocle analysis on the cells infected by all seven species revealed a similar pattern 

in the data to that of the GBS-specific analysis (Figure 4F): two states of non-activated 

macrophages (states 1 and 2, to which the unexposed cells are restricted), an antigen-

presentation state (state 3), a pathogen response state (state 4), and a highly inflammatory 

response state (state 5) (Figures 4F, S4D, and S4E). Thus, despite the range of attributes in 

these infecting species, the observed macrophage states in response to bacterial infection are 

robust and conserved. The relative frequencies of the states across the bacterial infections, 

however, do vary (Figure 4G).

We next asked whether the inflammatory modules defined in cells with intracellular bacteria 

are also conserved among the different bacteria. We used K-means clustering on the state 

5 cells infected by any one of the seven pathogens, and we found four gene modules with 

similar profiles to those found in the GBS-specific analysis (Figures 4H and S4F and Table 

S5). To measure the similarity between the GBS-specific modules and these, we measured 

the significance of the overlap between the two sets using the hypergeometric distribution 

and found a high enrichment (p value < 10−50, Figure S4G). We computed the mean 

expression of each gene module for each cell and assigned that cell to the module with the 

highest expression (see STAR Methods) in order to measure the expression of these modules 

in response to the different bacteria. We found that all modules are represented in state 5 

infected macrophages across the bacteria (Figure 4I). The ‘‘resting macrophage’’ module 

shows the highest frequency among the state 5 cells, suggesting that bacterial detection is 

the state with the longest duration during the infection process. Since the gene modules 

are detected across the range of infections, we conclude that they constitute part of the 

conserved infection response.

Dynamics of infection states

Our data suggest that the composition of states underlying the conserved macrophage 

response is reproducible, but shifted, in response to different stimuli. We therefore asked 

if we can manipulate population structure by modulating clinically relevant factors like 

infection duration and the presence of toxin. To test whether infection duration impacts 

the composition of population states, we repeated the ex vivo experiment comparing two 

time points of infection by exposing hMDMs differentiated from three donors to all seven 

species and collecting samples at 2 and 4 h after exposure (Figure 5A). We found that the 

differentiated macrophages from the 2 and 4 h of infection distributed differently along PC2 

(Figures 5B and S5A): cells stimulated for 4 h are shifted to higher PC2 scores relative to 

the cells stimulated for 2 h, indicating a more advanced inflammatory response after 4 h of 

infection.

We analyzed the dynamics of the states by comparing their frequencies between the times 

of infection for each species of infection. For this, we mapped cells from both time points 

to our five Monocle-defined states and confirmed the observed temporal shift with CellRank 

pseudotime (Figures 5C and S5B–S5E and STAR Methods). We found that all five states are 

also present in the 2 h time point. Moreover, for all seven infecting species, we found greater 

representation of state 5 from the cells stimulated for 4 h (p < 0.02, paired t test). Consistent 

with the previous results (Figure 4), infection by different species is distinguished by unique 
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patterns of states’ frequencies, providing further evidence that while the overall processes 

are conserved, the dynamics for individual bacterial species differ. The only consistent shift 

between time points and across conditions was the greater representation of state 5 cells at 

4 h post infection, suggesting that the state 5 activation trajectory reflects time or extent of 

infection. Comparing the frequencies of gene modules across the two timepoints (see STAR 

Methods), we found that modules 1 and 2 were present at higher levels in the 2 h time point 

cells than modules 3 and 4 (Figure 5D), supporting our inference that gene modules are 

induced serially as infection progresses.

Having established the temporal dependence of the state 5 inflammatory activation 

trajectory, we asked whether bacterial factors could modulate the extent of population-level 

activation, and therefore if it reflects a feature of clinically relevant infection. In our 

multi-species comparison, we normalized all strains to conditions that would stimulate 

macrophages to the same extent in order to compare host population dynamics while 

limiting bacterial variability. In order to test for the effect of bacterial virulence factors 

on the host response, we instead compared the response to infection with clinically 

isolated Staphylococcus strains, comparing infection between a wild-type S. aureus strain 

(WT USA300, Lac) and an isogenic strain missing multiple phagocyte lytic toxins (∆tox 

USA300; ∆lukAB, hlg::tet, lukED::kan, pvl::spec, hla::erm), ‘‘toxin-less’’ (Bhattacharya et 

al., 2018) at a higher MOI in order to increase toxin impact. We selected CD14+ cells from 

PBMCs, which produced a purer population of macrophages, and as before, differentiated 

them into hMDM with GM-CSF (see STAR Methods). We infected day 4 macrophages with 

the toxin-less and WT strains along with uninfected controls for 4 h (Figure 5E). Because 

of the macrophage selection method used, PC1 does not capture a mix of macrophages and 

other cells, but rather an infection trajectory, illustrated by high expression of TNF (Figure 

5F). Comparing PC1 scores between conditions reveals that infection with the toxin-less 

strain yielded significantly lower (p < 10−3) scores than with WT Staphylococcus (Figure 

5G). Cells equivalent to state 5 were selected based on their expression of TNF (Figure S5F) 

and the ratio of modules between them was measured revealing greater representation of 

later modules in the WT compared with the ‘‘toxin-less’’ USA300 strain (Figure 5H). We 

also infected cells with seven other strains (Table S2; Lacey et al., 2022; Rose et al., 2015) 

to control for the effect of these toxins rather than other strain-specific differences and found 

no significant difference in trajectory analysis, suggesting that this shift in trajectory was 

indeed toxin-mediated (Table S2 and Figures S5G–S5I).

In vivo analysis of macrophage inflammatory programs

Having established that the state 5 inflammatory activation trajectory reflects the extent of 

infection, we wanted to see if there was any evidence for the presence of this trajectory in 

a complex infection setting. We thus tested for the presence of the infection modules and 

relationship between them in an in vivo setting. For this we analyzed macrophages from a 

mouse model of S. aureus infection. Mice were injected intraperitoneally with bacteria or 

PBS control, and after 1 h, cells were collected by peritoneal lavage. Infected macrophages 

were identified by expression of fluorescently labeled intracellular bacteria and were sorted 

by flow cytometry for scRNA-seq analysis (Figures 6A and S6A; see STAR Methods). 
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On the basis of marker gene expression, macrophages were identified for further analysis 

(Figure S6B).

PCA of the infected macrophages reveals a trajectory characterized by heterogeneous 

expression of inflammatory markers between cells (Figure 6B). We defined an inflammatory 

trajectory that ordered the cells by the sum of their PC1 and PC2 scores based on the 

pattern of Il6 expression (Figure 6C). In order to test for the presence of our previously 

defined infection modules in this in vivo setting, we examined expression of selected module 

genes and Gene Ontology (GO) terms across the trajectory, which broadly matched the 

expression pattern in the ex vivo system (Figure 6D). Cells from the PBS-infected control 

samples were analyzed in parallel and showed no dynamic expression of these genes 

(Figure S6C). We also computed expression levels of the mouse orthologs corresponding 

to the human modules, which recapitulated the expression pattern of these modules in 

our mouse data (Figure 6E). Correlation analysis between infected macrophages along the 

inflammatory trajectory also recapitulated the mid-infection transition observed between the 

two inflammatory program phases in the human ex vivo infected macrophages (Figure 6F). 

These data provide a robust in vivo support for the human ex vivo results.

DISCUSSION

In this work we have analyzed the macrophage response to diverse bacterial pathogens. We 

found that a population of responding macrophages includes cells in different transcriptomic 

states that together constitute the full spectrum of gene expression during this process. Our 

results led us to define a model for the mode and tempo of macrophage state expression 

during infection, shown in Figure 6G. Upon encountering bacteria, a subpopulation of cells 

remains inactive, resembling unexposed cells (states 1–2), while others are activated and 

respond to the invading pathogen (state 3–5). Cells in state 4 express genes related to 

oxidative killing of intracellular bacteria. Most of the activated cells are highly inflammatory 

(state 5), expressing TNF, IL1B and SOD2. Some cells, including the activated bystander 

cells, are poised to present antigen (state 3), expressing MHC-II complex genes for 

TCR recognition, co-stimulatory genes, and cytokine genes. We expect that state 3 cells 

are upregulating expression of antigen presentation-related genes in response either to 

inflammatory cytokine secretion by neighboring infected cells in state 5 or in response 

to bacteria or bacterial components sensed directly by these cells. The fact that there is more 

complexity to the composition of states within a population of cells raises the possibility 

that some cells are inherently resistant to activation or limit their activation in response to 

inflammatory cells as a means of inflammatory regulation.

Considerable efforts have been devoted to classification of innate immune responses 

during infection in order to understand how the initial response to pathogen impacts the 

downstream adaptive response and ultimately outcome. Works focusing on the impact of 

pathogenic attributes on infection response include analysis of the response to Gram-positive 

versus Gram-negative bacteria (Björk et al., 1992; Feezor et al., 2003) as well as stimulus-

specific responses (Blecher-Gonen et al., 2019; Cheng et al., 2019; Nau et al., 2002; Sheu et 

al., 2019). Numerous studies focus on heterogeneity of host cell responses with implications 

for infection outcome in the host including one work predicting outcome based on cell-type-
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specific signatures in PBMCs (Bossel Ben-Moshe et al., 2019) as well as analysis of the 

temporal patterns and regulatory control of the macrophage response to pathogenic stimuli 

(Cheng et al., 2017; Hao and Baltimore, 2009; Tong et al., 2016) (Figures S3I and S3J). The 

dataset we present here of macrophage gene expression throughout bacterial infection will 

add to the growing body of work that aims to define in precise terms the specific strategies 

that confer successful immunity. Further classification of cell-type-specific responses and 

the integration of these cell-type-specific responses with in vivo infection models will help 

refine our collective understanding of this complex multi-component process.

We build on the stratification of the components of the innate response by addressing the 

composition of states within a population of responding cells. We found that the same 

states that reflect elements of the well-characterized conserved innate response to bacterial 

pathogens were present across different infection conditions. Some of these states together 

constitute an activation trajectory, which can be modulated depending on the presence of 

toxin and time of infection. The analytic framework we present demonstrates not just the 

way a cell’s response to infection may change over time, but how responses are expressed in 

parallel in a population of cells, with important implications for the extent and course of the 

ensuing host response in different infection settings.

Limitations of the study

Our study contains several limitations that are important to consider in interpreting our 

results. First, our conclusions are based on the heterogeneous transcriptomic responses 

captured in a population of macrophages. We recognize that the variation we observed 

at the transcriptomic level can stem from a number of sources in addition to bacterial 

stimulation. Variation in cell type, the extent of macrophage differentiation, or the time of 

bacterial uptake could impact the extent to which a cell can be activated following bacterial 

recognition. We conclude that these confounding factors do not account for the main source 

of variation in a population of responding cells, but it will be important to address exactly 

how the baseline state of a macrophage dictates the extent to which it can be activated.

While this study focuses on the host response to bacteria, it is of course important to 

consider whether the presence of bacteria and even its activity intracellularly impacts 

the host cell’s response. Our study design did not include labeling for the presence of 

intracellularly bacteria in the ex vivo data. While we attempted to address this in Figure 

2D by showing the relative shift in bystanders between states 3 and 5, and the difference 

in PC2 scores between states (Figure S2E), the baseline state that prevents a cell from 

taking up bacteria, as well as the role of by-standers in the progression of inflammation 

is a very important question that requires further study. Finally, work into the mechanism 

underlying the relationship between these states and modules, through perturbation studies 

that impact module composition or trajectory activation, would shed more light on the role 

and significance of the response framework we define with important implications for the 

systemic response to infection.
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STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be 

directed to and will be fulfilled by the lead contact, Itai Yanai (itai.yanai@nyulangone.org).

Materials availability—This study did not generate new, unique reagents.

Data and code availability

• Single-cell RNA-seq data have been deposited at GEO (GSE145862) and are 

publicly available as of the date of publication. Accession numbers are listed in 

the key resources table.

• All original code has been deposited at GitHub and Zenodo (https://doi.org/

10.5281/zenodo.7011311) and is publicly available as of the date of publication. 

DOIs are listed in the key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

hMDM preparation from human blood by density gradient—Blood from human 

donors was recovered from leukopacks (NYC Blood bank) and diluted with PBS to up to 

50mL. Multiple human donors were used as biological replicates. Ficoll density gradient 

centrifugation was used to isolate the PBMCs layer. PBMCs were washed with complete 

media (RPMI, 10% FBS, 10 mM HEPES), and red blood cells (RBCs) were removed 

with an ACK lysis buffer. Cells were washed with complete media, and plated on tissue 

culture-treated plates. To select for monocytes, the non-adherent cells were washed off the 

plate after 1.5h. PenStrep (1:100) and GM-CSF 50 ng/mL were added to the plate, and the 

cells were incubated at 37°C with 5% CO2 for 4 days. On Day 2, GM-CSF was added again 

to the plates.

hMDM preparation from human blood by CD14+ selection—Primary human 

peripheral blood mononuclear cells (PBMCs) from anonymous, healthy donors (New York 

Blood Center) were isolated by Ficoll gradient separation as previously described (Reyes-

Robles et al., 2016) CD14+ monocytes were then isolated from the PBMC fraction by 

positive selection using the EasySep™ Human CD14 Positive Selection Kit II (STEMCELL 

Technologies) according to the manufacturer’s protocol. Cells were plated at 1×106/mL in 

RPMI supplemented with 10% FBS, 10 mM HEPES, 100 U/mL penicillin, 100 μg/mL 

streptomycin and 50 ng/mL GM-CSF. The cells were incubated at 37°C with 5% CO2. 

Media was replenished with GM-CSF on day 2. Cells were harvested and plated for 

infection on day 4.

Bacterial strains—Fluorescently-labeled bacteria were cultured overnight (16h) as 

indicated in the table below (Table S1). Bacteria were spun down for 10 min at 4000 

RPM, resuspended in infection media (RPMI, 0.05% HSA - 10 mM HEPES) and OD600 
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was measured. OD was adjusted for each bacteria according to the MOI indicated in the 

Table S1. Bacteria were incubated for 30 min with 20% human serum or infection media 

for Gram-positive and Gram-negative bacteria, respectively. Bacteria were washed twice 

with infection media and passed through an insulin syringe to prevent clumping. The 

bacteria were diluted to the MOI indicated in the table below (Table S1). Clinical isolate 

Staphylococcus strains used in Figures 5 and S5 were grown overnight at 180 RPM and 

diluted to MOI 5 for infection.

Ex-vivo hMDM infection—Day 4 macrophages were lifted from their plate by vigorously 

washing the cells off the plate with the media. Cold PBS with EDTA (10 mM) was added 

to the wells, and the plates were incubated at 4C for 10min, followed by a second vigorous 

wash, and resuspended in infection media (RPMI, 0.05% HSA - 10 mM HEPES). Cells 

were manually counted with trypan blue, resuspended to 1–2X106 cells/ml, and plated in 12-

well plates. hMDMs were infected at the indicated MOI per bacteria so that approximately 

50% of the cells would be infected after 4 h of infection, or infection media as control 

(Figures S4A). For Enterococcus, stimulating cells with the MOI that would yield 50% 

infected cells resulted in significant cell death, so we reduced the MOI for that condition. 

The Staphylococcus strains used in Figures 5 and S5 were infected at MOI 5 for 4 h. 

Infected cells were spun down for 5 min at 1200 RPM for infection synchronization, and 

incubated at 37°C with 5% CO2 for 2 or 4 h.

Peritoneal infection of mice with USA300 strain—C57BL/6 mice were purchased 

from Jackson Laboratory and bred onsite to generate animals for experimentation. Age and 

gender-matched 8–10 week old mice were used. The USA300 MRSA strain was grown 

overnight in TS broth (37°C, 180 RPM). Bacteria was then subcultured in TSB for 3h at 

37°, 180 RPM. Bacteria was washed with PBS and adjusted to 1×10^7 CFU/mL. Three 

mice were injected intraperitoneally with 300μL. After 1h, cells were collected by peritoneal 

lavage. Red blood cells were lysed with BD Pharm Lyse Lysis Buffer and cells were 

stained with antibodies to identify macrophages. Infected macrophages were sorted (SY3200 

cell sorter, HAPS1 (100um)) and samples were pooled from the three mice for scRNA-

Seq analysis (Figure S6A). Cells were captured using the 10X Chromium platform and 

processed according to manufacturer recommendations. All animal studies were performed 

as per an NYU Grossman School of Medicine Institutional Animal Care and Use Committee 

(IACUC) approved protocol to the Torres Lab.

METHOD DETAILS

Single cell and library preparation for scRNA-Seq—hMDMs were lifted from the 

12-well plate by vigorously washing the cells off the plate with the media. Cold PBS with 

EDTA (10 mM) was added, and plates were incubated at 4C for 10min, followed by a 

second vigorous wash, and a PBS wash. The different infection conditions were tagged 

based on expression of cell surface markers B2M and CD298 using the Cell Hashing method 

(Stoeckius et al., 2018) following their protocol (Table S2). Eight samples (7 bacteria and an 

unexposed control) or ten samples (9 Staphylococcus strains and unexposed) from the same 

donor were pooled into a single cell suspension in equal amounts (Figure S4B), and ran on 

the 10X Genomics Chromium Controller with Single Cell 3′ v3 system. The remaining cells 
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were analyzed on a FACS- SONY SH800 to quantify the proportion of infected cells using 

the fluorescent label of the bacteria inside the cells (Figure S4A). cDNA amplification and 

library preparation of the mRNA was processed according to 10X Genomics Single Cell 

3′ v3 manufacturer’s instructions. For the hashtag oligos, 1ul of HTO PCR additive primer 

was added to the 10X cDNA amplification step, and the supernatant from the 0.6X cDNA 

cleanup was kept and processed according to the Cell Hashing protocol, with 14 PCR cycles 

and a 1.2X cleanup after the PCR.

Sequencing—Paired-end sequencing was performed on a Next-Seq or Nova-Seq (Table 

S3), with read format as indicated in the table. Hashtag libraries were sequenced on the same 

flow-cells at 1/10 proportion of the mRNA.

Validating infection trajectory and states using FACS—hMDMs were prepared as 

indicated above and infected with GBS or unexposed to bacteria as a control. The hMDMs 

cell suspension was stained with Pe/Cy7 TNF anti-human antibody (BioLegend 502,929) 

or with antibodies for representative genes for the states: state 1- Brilliant Violet CXCR4 

anti-human (BioLegend 306,517), state 3- Pe/Cy7 CD80 (BioLegend 305,217) and for state 

5- APC IL7R anti-human (BioLegend 351,315) according to the BioLegend intracellular 

staining protocol. The bacterial fluorescence together with the marker staining was recorded 

on a FACS- SONY SH800 sorter and analyzed using FlowJo software v10.6.1. PE positive 

cells were considered infected with GBS. This experiment was done 3 times. Figures 2D–2F 

shows a representative experiment.

QUANTIFICATION AND STATISTICAL ANALYSIS

hMDMs single cell processing and filtering—Cell Ranger pipeline (V.3.0.0) was 

used for demultiplexing, mapping to the human genome (GRCh38) and counting umis for 

individual cells. CITE-seq-Count pipeline was used for demultiplexing and counting the 

hashtag barcodes. The Seurat package multi-modal data was used to assign each hashtag 

barcode to a cell barcode, and only cells that had a single hashtag were further processed. 

Cells were filtered out if they had less than 1000 unique molecular identifiers (UMIs), 

and if more than 30% or 15% of their transcripts were ribosomal or mitochondrial genes, 

respectively. Expression was normalized to transcripts per median (TPM) and transformed 

using Freeman-Tukey transform (FTT). For the Figure 5 Staphylococcus data, filtering 

thresholds were 700 UMIs, 20% ribosomal genes and 15% mitochondrial genes and analysis 

was performed on TPM-normalized, log-transformed data.

hMDM single cell data analysis—PCA on transformed (FTT) filtered cells was 

calculated using informative genes which were defined as highly expressed and variable 

genes (fano-factor and mean expression above mean-dependent thresholds). The thresholds 

for each analysis are noted in the figure captions. To select for the fully differentiated 

macrophage cluster, hierarchical clustering on transformed filtered cells was computed 

using the same informative genes. We calculated for each cluster the mean expression 

level and filtered out the cluster with the lower total number of UMIs (non-differentiated 

macrophages).
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Macrophage score—For each cell, the sum expression of macrophage-specific genes was 

calculated using: HLA-DRA, HLA-DRB1, HLA-DR, CD4, APOE, CD68, CD64, CD86.

States assignment using monocle—Monocle (Qiu et al., 2017a, 2017b) was used to 

order the single-cells along a trajectory and define clusters using their informative genes. 

It assigned cells to these clusters, which we annotated as infection states. For each state 

we identified differentially expressed genes by performing the Wilcoxon rank-sum test for 

each state comparing the genes expression level (TPM) between each state and all other 

states, and selected the top 100 genes with p-value lower than 0.005. For each gene set 

we calculated the enrichment for Gene Ontology (GO) terms using the hypergeometric test 

to characterize the state. GO enrichment characterization of states was robust to a p-value 

threshold of 0.0001 and selection of 75 genes per state. States that had few cells (fewer 

than 20) and therefore few differentially expressed genes compared to the other states were 

merged with a neighboring state along the trajectory close state on the trajectory.

Inferring single cell states—States of single cells collected from 2 to 4 h infection 

timepoints (Figure 5), were inferred based on their gene expression similarity to the single-

cells in the original trajectory. Using a KNN classifier (k = 1) we have predicted for each 

cell in the new dataset, its state based on the expression profiles of its nearest neighbor in the 

original dataset- Figures 2A and 3E, respectively.

Trajectory analysis with CellRank—To confirm the temporal progression of observed 

single cell states, we applied CellRank v1.5.1 (Lange et al., 2022). Expression was 

size-normalized and log-transformed, then 30 principal components and moments were 

calculated for the informative genes defined above. Next, cell trajectories were computed 

using the CytoTRACE kernel (Gulati et al., 2020; Lange et al., 2022) and the transition 

matrix was computed with threshold_scheme set to ‘‘soft’’ and nu of 0.5. Projections shown 

are based on PCA as determined within CellRank.

Gene modules clustering using k-means—PCA was performed on macrophages 

annotated as state 5, using 421 informative genes specific to state 5 selected with mean 

threshold = 3 and fano threshold = 2. Individual cells were binned to ten bins according 

to their location along PC1, with at least ten cells per bin. A binned expression profile 

was calculated based on the average expression of each gene per bin. We used k-means 
clustering to cluster the informative genes based on their normalized binned expression 

profile to four clusters. Gene-gene correlation was calculated on the normalized binned 

expression profile of the informative genes (Z score normalization).

Gene modules clustering using NMF—Non-negative matrix factorization (NMF) was 

used – as an additional unsupervised clustering approach – to cluster the informative genes 

based on their normalized gene expression into four clusters. We computed the overlap 

between the gene modules found using k-means and NMF, using the hypergeometric test.

Gene modules score—To assign a gene module score to each cell, we calculated the 

mean normalized expression of the genes in each cluster to generate a mean module 

expression for each gene module. In each cell we reduced the lowest module expression 
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value from all modules, normalized it to the sum expression of all the modules and assigned 

the highest scoring module as the dominant one of that cell. We ordered the cells based 

on their PC1 and PC2 coordinates. To assess the mid-infection transition, we computed 

the pairwise distance between cells along their PCA coordinates using the super module 

expression. The pairwise distance was calculated as a moving average using a running 

window (window size 10, step size 5), and binned into 5 groups according to their PCA 

coordinates.

In-vivo single cell data analysis—Cell Ranger pipeline (V.3.0.0) was used for 

demultiplexing, mapping to the mouse genome (mm10) and counting umis for individual 

cells. Cells were filtered out if they had less than 1000 unique molecular identifiers (UMIs), 

and if more than 30% or 15% of their transcripts were ribosomal or mitochondrial genes, 

respectively. Expression was normalized to transcripts per median (TPM) and transformed 

using Freeman-Tukey transform (FTT). Cells from the infected sample were filtered by 

sequentially removing: 1. a cluster of cells inferred to be red blood cells according to 

their expression of hemoglobin genes, 2. a cluster of cells inferred to be lymphocytes 

according to their expression of marker genes such as Cd2, and 3. dying cells according to 

their expression of mitochondrial genes (Figure S6B). PCA was carried out on informative 

genes as in the analysis of the ex vivo experiments. Human and mouse orthologs were 

delineated using the Ensembl database (Howe et al., 2021). The mid-infection transition was 

assessed by computing the transcriptomic distance as unity minus the Pearson’s correlation 

coefficient among the cells binned into 5 categories along the infection trajectory. Analyzing 

the PBS-infected cells (control, Figure S6C) we filtered a cluster of inferred lymphocytes 

and again computed a trajectory based upon the first two principal components. Gene, GO, 

and module expression profiles were smoothed using a moving average with a window size 

of twenty cells.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• The macrophage response to infection includes discrete cellular states

• The highly inflammatory state is composed of sequentially expressed gene 

modules

• Module dynamics depend on the stimulus, infection length, and presence of 

toxins
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Figure 1. Immune response trajectory of macrophages during GBS infection
(A) Schematic of our approach. PBMCs from human blood were isolated, and monocytes 

were differentiated into macrophages (hMDM) using GM-CSF. hMDM were infected for 4 h 

with GBS, analyzed using flow cytometry and processed using scRNA-seq.

(B) Flow cytometry analysis of hMDM assessed the fraction of infected cells.

(C) PCA on single-cell transcriptomes reveals two groups. Colors indicate cells that were 

exposed to GBS (pink) and unexposed cells (gray). PCA was performed on 355 informative 

genes selected with mean threshold = 3 and fano threshold = 2 (see STAR Methods).

(D) Heatmap of expression of genes with high absolute PC1 loadings. Cells (columns) 

are sorted based on their PC1 score. The bars indicate PC1 score, GBS exposure, (exposed/

unexposed, pink/gray, respectively), donor, and sum macrophage marker gene expression 

(low/high, cyan/yellow).

(E) Macrophage cells displayed by PC2 and PC3. Color indicates TNF expression levels.

(F) Histogram of the GBS-exposed cells (pink) and unexposed cells (gray) across PC2.
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(G) Flow cytometry analysis of GBS-exposed hMDMs measuring TNF levels and GBS 

fluorescence. Singlets were gated from all cells based on side scatter area by height. 

Unexposed and unstained cells were used to define GBS+ and TNF+ gates. Q1–4 consist of 

444, 845, 9, and 75 cells respectively.

(H) Heatmap indicating gene expression across PC2. Binned expression profile of PC2 

scores (see STAR Methods).
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Figure 2. States of infection
(A) Trajectory analysis of GBS-exposed and unexposed macrophages using Monocle. 

Colors indicate transcriptional states. Monocle was performed on 458 informative genes 

selected with mean threshold = 2 and fano threshold = 2 (see STAR Methods).

(B) Bar plot indicating the distribution of the cells in each infection state for macrophages 

that were unexposed or exposed to GBS.

(C) Heatmap indicating the expression levels of the top 100 differentially expressed genes of 

each state compared with the other states. On the left are representative gene names, and on 

the right are representative Gene Ontology (GO) terms that are enriched for each state (p < 

0.05). The bar below indicates the state.

(D) Bar plot representing the distribution of bystanders and unexposed cells in cells that are 

positive to the state staining. Cells were stained with fluorescently labeled CXCR4 antibody, 

CD80 antibody, and IL7R antibody as proxies for states 1, 3, and 5, respectively.

(E) Flow cytometry analysis of GBS-exposed hMDMs. Cells were stained with fluorescently 

labeled IL7R antibody and CXCR4 antibody, as proxies for states 5 and 1, respectively. 

Singlets were gated from all cells based on side scatter area by height. Unexposed and 
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unstained cells were used to define IL7R+ and CXCR4+ gates. Color indicates infected 

(gray) or bystanders (black).

(F) Bar plot representing the distribution of the cells in each quadrant of the FACS plot for 

infected cells, bystanders, and unexposed cells. Color indicates the quadrant in (E).

(G) CellRank embeddings of macrophages colored by state. Arrows indicate the 

directionality of the cell-cell transition matrix computed by CellRank.

(H) Boxplot of CellRank pseudotime of macrophages by state.
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Figure 3. Gene expression modules of the inflammatory response
(A) Plots indicate the four gene modules (see STAR Methods); in gray are the expression 

profiles of the individual genes, and the mean expression of the module is indicated in color. 

Representative genes for each gene module are indicated below (see STAR Methods).

(B) A list of representative GO terms enriched in each gene module (p < 0.05). Color 

indicates the gene modules as in (A).

(C) PCA on single cells from state 5 colored by the mean expression of each gene module 

corresponding to the modules in (A). PCA was performed on 421 informative genes selected 

with mean threshold = 3 and fano threshold = 2 (see STAR Methods).

(D) CellRank embeddings of state 5 macrophages colored by normalized expression of IL6. 

Arrows indicate the directionality of the cell-cell transition matrix as computed by CellRank.

(E) Bar plots indicating the distribution of module expression levels in individual cells in 

state 5 (see STAR Methods). The colors indicate the gene modules as in (A) (top). CellRank 

pseudotime scores per cell (bottom). The cells are sorted by PC1 and PC2 coordinates.

(F) Heatmap representing the Pearson’s correlation coefficient computed on the mean 

expression level of the gene modules in individual cells. The cells are sorted as in (E). 

Binned correlation used to calculate pairwise distance (in G) is indicated in black.

(G) Boxplots indicating the pairwise distance of the module scores between cells (*p < 

10−10).
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Figure 4. Conservation of infection states across diverse bacterial species
(A) Phylogenetic relationships between seven bacterial species. Gram staining, intracellular 

mode, and site of infection are indicated to the right.

(B) Flow cytometry analysis of hMDM assessed the fraction of infected cells (on the right). 

The colors indicate exposure to bacteria or unexposed (bacteria name on the left).

(C) PCA on hMDMs exposed to seven species for 4 h. Color indicates the bacterial 

exposure. Dashed box indicates the fully differentiated macrophage cluster. The bars below 

the plot indicate macrophage marker gene expression (see STAR Methods) and donor of 

origin of the PC1-sorted cells. PCA was performed on 320 informative genes selected with 

mean threshold = 2 and fano threshold = 2 (see STAR Methods).

(D) PC2 accounts for the trajectory of infection. Color indicates expression levels of TNF in 

the macrophages from (C).

(F) Histograms of the PC2 scores for macrophages exposed to each of the seven species or 

unexposed.

(G) Single-cell trajectory analysis using Monocle on macrophages exposed or unexposed to 

bacteria. Colors indicate states. Monocle was performed on 302 informative genes selected 

with mean threshold = 2 and fano threshold = 2 (see STAR Methods).

(H) Bar plots indicating the distribution of the cells in each infection state for hMDM that 

were exposed to different bacteria and unexposed cells. Error bars indicate the standard error 

among the four donor replicates.
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(I) Plot of gene module average expression profile across all infection conditions. Color 

indicates gene module as in Figure 3A.

(J) Bar plot indicating the distribution of the cells in each gene module of state 5 (see STAR 

Methods). Color indicates gene modules as in (G). Error bars are for standard error between 

the four donor replicates.
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Figure 5. Dynamics of infection states across species
(A) hMDM were exposed and unexposed to bacteria for 2 and 4 h and processed using 

scRNA-seq.

(B) PCA on macrophages exposed and unexposed to seven species for 2 and 4 h. Color 

indicates unexposed cells and time of exposure to bacteria. PCA was performed on 325 

informative genes selected with mean threshold = 2 and fano threshold = 2 (see STAR 

Methods). The bar below indicates the fraction of exposed cells from the 2- and 4-h 

infections across PC1 in (A).

(C) Barplots indicate the frequencies of the infection states after 2 h and 4 h of infection.

(D) Bar plot indicating the fraction of the cells from 2 to 4 h of infection in each gene 

module of state 5 (see STAR Methods). Color indicates 2 and 4 h of infection. Error bars 

indicate the standard error among the donor replicates.
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(E) Schematic of our approach. PBMCs from human blood were isolated, and CD14+ 

monocytes were selected and differentiated into macrophages (hMDM) using GM-CSF. 

hMDMs were then infected for 4 h with Staphylococcus and processed using scRNA-seq.

(F) PCA on macrophages colored by normalized expression of TNF. PCA was performed on 

317 informative genes selected with mean threshold = 2, fano threshold = 2.

(G) PCA on macrophages colored by infection condition. Boxplots of PC1 scores between 

conditions (bottom, *p < 10−3).

(H) Relative composition of state 5 modules within macrophages selected above a threshold 

of TNF expression.
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Figure 6. In vivo analysis of macrophage response modules in a model of peritoneal 
Staphylococcus aureus infection
(A) Mice were injected intraperitoneally with S. aureus or PBS. After 1 h, cells were 

collected by peritoneal lavage, and infected macrophages were sorted by FACS for 

downstream scRNA-seq analysis.

(B) PCA computed on 662 informative genes selected with mean threshold = 2 and fano 

threshold = 2 of infected macrophages colored according to Il6 expression.

(C) Cells are colored according to their trajectory score, which is calculated as the sum of 

PC1 + PC2 scores.

(D) Differentially expressed and upregulated genes selected from human modules expressed 

across the infection trajectory (top). Selected GO enrichment of human modules along the 

infection trajectory.

(E) Expression of human modules along the infection trajectory.

(F) Boxplots indicating the pairwise distance of the module scores between cells (*p < 

10−10).

(G) A model of the host response to bacterial infection. Colors indicate the states as in 

Figure 2A.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Human cell hashing antibody mix (HTO 1–10) Peter Smibert N/A

Pe/Cy7 TNF anti-human antibody BioLegend Cat# 502929; RRID: AB_2204080

Brilliant Violet CXCR4 anti-human antibody BioLegend Cat# 306517; RRID: AB_10901163

Pe/Cy7 CD80 antibody BioLegend Cat# 305217; RRID: AB_1877254

APC IL7R anti-human antibody BioLegend Cat# 351315; RRID: AB_10900814

Bacterial and virus strains

Salmonella typhimurium SL1344 Igor Brodsky N/A

Yersinia pseudotuberculosis IP32953 Igor Brodsky N/A

Shigella flexneri 2a2457T Hervé Agaisse N/A

Enterococcus faecalis OG1RF Danielle A. Garsin N/A

Staphylococcus aureus USA300 Victor J. Torres N/A

Listeria monocytogenes 10403S Kamal Khanna N/A

Streptococcus agalactiae (GBS) COH1 Adam Ratner N/A

Staphylococcus aureus 4940 Victor J. Torres N/A

Staphylococcus aureus 4875 Victor J. Torres N/A

Staphylococcus aureus 4838 Victor J. Torres N/A

Staphylococcus aureus 4884 Victor J. Torres N/A

Staphylococcus aureus Th16 Victor J. Torres N/A

Staphylococcus aureus LAC Victor J. Torres N/A

Staphylococcus aureus toxinless Victor J. Torres N/A

Staphylococcus aureus 9203 Victor J. Torres N/A

Staphylococcus aureus 4906 Victor J. Torres N/A

Biological samples

Leukopacks NYC Blood bank N/A

Chemicals, peptides, and recombinant proteins

PBS Corning 21–040-CV

Ficoll Sigma-Aldrich 17–1440-02

RPMI Corning 10–040-CV

FBS Fisher Scientific 16–000-044

HEPES Fisher Scientific BP299–100

ACK lysis buffer Fisher Scientific A1049201

PenStrep Corning 30–002-Cl

GM-CSF Sanofi N/A

Penicillin Millipore Sigma 5161–100MU

Streptomycin VWR 0382–50G
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REAGENT or RESOURCE SOURCE IDENTIFIER

HSA SeraCare HS-420–1L

Human serum Fisher Scientific MP092930149

EDTA Sigma-Aldrich E6758–100G

LysE Lysis Buffer BD Pharm 555899

Critical commercial assays

EasySep™ Human CD14 Positive Selection Kit II Stemcell Technologies 17858

10X Genomics Single Cell 3′ v3 10X Genomics 1000075

Deposited data

Raw data This work GEO: GSE145862

Experimental models: Organisms/strains

C57BL/6 mice Jackson Laboratory 000664

Oligonucleotides

PCR additive primer 5′GTGACTGGAGTTCAG
ACGTGTGC*T*C (* Phosphorothioate bond)

IDT N/A

Software and algorithms

Cell Ranger pipeline (V.3.0.0) 10X Genomics https://support.10xgenomics.com/single-cell-gene-
expression/software/overview/welcome

CITE-seq-Count pipeline Stoeckius et al., 2017 Github: https://github.com/Hoohm/CITE-seq-Count

Seurat package multi-modal data Stoeckius et al., 2017 Github: https://github.com/satijalab/seurat/blob/
master/vignettes/multimodal_vignette.Rmd

Monocle Qiu et al. 2017a, 2017b http://cole-trapnell-lab.github.io/monocle-release/

FlowJo software v10.6.1 Tree Star https://www.flowjo.com/

CellRank v1.5.1 Lange et al. 2022 Github: https://github.com/theislab/cellrank

CytoTRACE kernel Gulati et al. 2020; Lange et al. 
2022

https://cytotrace.stanford.edu/

Code for this study This work Github; https://github.com/yanailab/Pathcourse
https://doi.org/10.5281/zenodo.7011311
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