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Thermodynamics of structure-forming systems
Jan Korbel 1,2, Simon David Lindner1,2, Rudolf Hanel1,2 & Stefan Thurner 1,2,3✉

Structure-forming systems are ubiquitous in nature, ranging from atoms building molecules

to self-assembly of colloidal amphibolic particles. The understanding of the underlying

thermodynamics of such systems remains an important problem. Here, we derive the entropy

for structure-forming systems that differs from Boltzmann-Gibbs entropy by a term that

explicitly captures clustered states. For large systems and low concentrations the approach is

equivalent to the grand-canonical ensemble; for small systems we find significant deviations.

We derive the detailed fluctuation theorem and Crooks’ work fluctuation theorem for

structure-forming systems. The connection to the theory of particle self-assembly is dis-

cussed. We apply the results to several physical systems. We present the phase diagram for

patchy particles described by the Kern-Frenkel potential. We show that the Curie-Weiss

model with molecule structures exhibits a first-order phase transition.
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Ludwig Boltzmann defined entropy as the logarithm of state
multiplicity. The multiplicity of independent (but possibly
interacting) systems is typically given by multinomial factors

that lead to the Boltzmann–Gibbs entropy and the exponential
growth of phase space volume as a function of the degrees of
freedom. In recent decades, much attention was given to systems
with long-range and coevolving interactions that are sometimes
referred to as complex systems1. Many complex systems do not
exhibit an exponential growth of phase space2–5. For correlated
systems, it typically grows subexponentially6–14, systems with
superexponential phase space growth were recently identified as
those capable of forming structures from its components5,15. A
typical example of this kind are complex networks16, where com-
plex behavior may lead to ensemble inequivalence17. The most
prominent example of structure-forming systems are chemical
reaction networks18–20. The usual approach to chemical reactions—
where free particles may compose molecules—is via the grand-
canonical ensemble, where particle reservoirs make sure that the
number of particles is conserved on average. Much attention has
been given to finite-size corrections of the chemical potential21,22

and nonequilibrium thermodynamics of small chemical net-
works23–26. However, for small closed systems, fluctuations in
particle reservoirs might become nonnegligible and predictions
from the grand-canonical ensemble become inaccurate. In the
context of nanotechnology and colloidal physics, the theory of self-
assembly27 gained recent interest. Examples of self-assembly
include lipid bilayers and vesicles28, microtubules, molecular
motors29, amphibolic particles30, or RNA31. The thermodynamics
of self-assembly systems has been studied, both experimentally and
theoretically, often dealing with particular systems, such as Janus
particles32. Theoretical and computational work have explored self-
assembly under nonequilibrium conditions33,34. A review can be
found in Arango-Restrepo et al.35.

Here, we present a canonical approach for closed systems where
particles interact and form structures. The main idea is to start not
with a grand-canonical approach to structure-forming systems but
to see within a canonical description which terms in the entropy
emerge that play the role of the chemical potential in large systems.
A simple example for a structure-forming system, the magnetic coin
model, was recently introduced in Jensen et al.15. There n coins are
in two possible states (head and tail), and in addition, since coins
are magnetic, they can form a third state, i.e., any two coins might
create a bond state. The phase space of this model, W(n), grows
superexponentially, WðnÞ � nn=2e2

ffiffi
n

p
� enlog n. We first generalize

this model to arbitrary cluster sizes and to an arbitrary number
of states. We then derive the entropy of the system from the cor-
responding log multiplicity and use it to compute thermodynamic
quantities, such as the Helmholtz free energy. With respect
to Boltzmann–Gibbs entropy, there appears an additional term
that captures the molecule states. By using stochastic thermo-
dynamics, we obtain the appropriate second law for structure-
forming systems and derive the detailed fluctuation theorem. Under
the assumption that external driving preserves microreversibility,
i.e., detailed balance of transition rates in quasi-stationary states, we
derive the nonequilibrium Crooks’ fluctuation theorem for
structure-forming systems. It relates the probability distribution of
the stochastic work done on a nonequilibrium system to thermo-
dynamic variables, such as the partial Helmholtz free energy,
temperature, and size of the initial and final cluster states. Finally,
we apply our results to several physical systems: we first calculate
the phase diagram for the case of patchy particles described by the
Kern–Frenkel potential. Second, we discuss the fully connected
Ising model where molecule formation is allowed. We show that the
usual second-order transition in the fully connected Ising model
changes to first-order.

Results
Entropy of structure-forming systems. To calculate the entropy
of structure-forming systems, we first define a set of possible
microstates and mesostates. Let us consider a system of n parti-
cles. Each single particle can attain states from the set

Xð1Þ ¼ fxð1Þ1 ; ¼ ; xð1Þm1
g. The superscript number (1) indicates that

the states correspond to a single-particle state, and m1 denotes the
number of these states. A typical set of states could be the spin of
the particle {↑,↓}, or a set of energy levels. Having only single-
particle states, the microstate of the system consisting of n par-
ticles is a vector (X1, X2,…, Xn), where Xk 2 Xð1Þ is the state of
kth particle. Let us now assume that any two particles can create a
two-particle state. This two-particle state can be a molecule
composed of two atoms, a cluster of two colloidal particles, etc.
We call this state as a cluster. This two-particle cluster can attain

states Xð2Þ ¼ fxð2Þ1 ; ¼ ; xð2Þm2
g. A microstate of a system of n

particles is again a vector (X1, X2,…, Xn), but now either Xk 2
Xð1Þ or Xk 2 Xð2Þ ´Z2

n. For instance, a state of particle k
belonging to a two-particle cluster can be written as

Xk ¼ xð2Þ1 ðk1; k2Þ. The indices in the brackets tell us that the

particle k belongs to the cluster of size two in the state xð2Þ1 and the
cluster is formed by particles k1 and k2 (k1 < k2). Indeed, either k1
= k or k2= k.

Now assume that particles can also form larger clusters up to a
maximal size, m. Consider m as a fixed number, m ≤ n. Generally,

clusters of size j have states XðjÞ ¼ fxðjÞ1 ; ¼ ; xðjÞmj
g. The corre-

sponding states of the particle are always elements from sets
XðjÞ ´Zj

n with the restriction that if the kth particle is in a state

xðjÞi ðk1; ¼ ; kjÞ then kl < kl+1, for all l and one kl= k. Consider an
example of four particles. Particles are either in a free state or they
form a cluster of size two. A state of each particle is either s(1)—a
free particle, or x(2)(i, j)—a cluster compound from particles i and
j. As an example, a typical microstate is Ψ= (x(1), x(2)(2,3), x(2)

(2,3), x(1)), which means that particles 1 and 4 are free and
particles 2 and 3 form a cluster.

Now consider a mesoscopic scale, where the mesostate of the

system is given only by the number of clusters in each state xðjÞi .

Let us denote nðjÞi as the number of clusters in state xðjÞi . The

mesostate is therefore characterized by a vector N ¼ nðjÞi
� �

,

which corresponds to a frequency (histogram) of microstates. The
normalization condition is given by the fact that the total number

of particles is n, i.e.,
P

ijjn
ðjÞ
i ¼ n. For example, a mesostate, NΨ,

corresponding to a microstate Ψ is Nψ ¼ nð1Þ ¼ 2; nð2Þ ¼ 1
� �

,
denoting that there are two free particles and one two-particle
cluster.

The Boltzmann entropy36 of this mesostate is given by

S Nð Þ ¼ logW Nð Þ; ð1Þ
where W is the multiplicity of the mesostate, which is the number
of all distinct microstates corresponding to the same mesostate.
To determine the number of all distinct microstates correspond-
ing to a given mesostate, let us order the particles and number
them from 1 to n. By permutation of the particles we obtain the
different possible microstates. The number of all permutations is
simply n!. However, some permutations correspond to the same
microstate and we are overcounting. In our example with one
cluster and two free particles, the permutations (4, 2, 3, 1) and (1,
3, 2, 4) correspond to the same microstate Ψ= (x(1), x(2)(2, 3), x(2)

(2, 3), x(1)). However, permutation (2, 1, 3, 4) corresponds to the
microstate Ψ0 ¼ ðxð2Þð1; 3Þ; xð1Þ; xð2Þð1; 3Þ; xð1ÞÞ. This microstate
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is a distinct microstate corresponding to the same mesostate,
NΨ � NΨ0 ¼ nð1Þ ¼ 2; nð2Þ ¼ 1

� �
.

The number of microstates giving the same mesostate can be
expressed as the product of configurations with the same state for

each xðjÞi . Let us begin with the particles that do not form clusters.
The number of equivalent representations for one distinct state is

nð1Þi

� �
!, which corresponds to the number of permutations of all

particles in the same state. For the cluster states, one can think
about equivalent representations of one microstate in two steps:

first permute all clusters, which gives nðjÞi
� �

! possibilities. Then,

permute the particles in the cluster, which gives j! possibilities for

every cluster, so that we end up with ðj!ÞnðjÞi combinations.
As an example, consider the case of four particles. First, we

look at free particles that attain states xð1Þ1 or xð1Þ2 . Let us consider

a mesostate N1 ¼ nð1Þ1 ¼ 2; nð1Þ2 ¼ 2
� �

, i.e., two particles in the

first state and two particles in the second. The number of distinct
microstates corresponding to the mesostate N1 is given by
WðN1Þ ¼ 4!=ð2!2!Þ ¼ 6. All microstates that belong to the
mesostate N1 are

ðxð1Þ1 ; xð1Þ1 ; xð1Þ2 ; xð1Þ2 Þ ðxð1Þ1 ; xð1Þ2 ; xð1Þ1 ; xð1Þ2 Þ
ðxð1Þ1 ; xð1Þ2 ; xð1Þ2 ; xð1Þ1 Þ ðxð1Þ2 ; xð1Þ2 ; xð1Þ1 ; xð1Þ1 Þ
ðxð1Þ2 ; xð1Þ1 ; xð1Þ2 ; xð1Þ1 Þ ðxð1Þ2 ; xð1Þ1 ; xð1Þ1 ; xð1Þ2 Þ

Now imagine that the four particles are either free or form two-
particle clusters. The microstate of a particle is either x(1) or x(2)(i, j).
Let us consider a mesostate N2 ¼ nð1Þ ¼ 0; nð2Þ ¼ 2

� �
, i.e., two

clusters of size two. The number of distinct microstates is just
WðN2Þ ¼ 4!=ð2!ð2!Þ2Þ ¼ 3. The microstates corresponding to the
mesostate N2 are

ðxð2Þð1; 2Þ; xð2Þð1; 2Þ; xð2Þð3; 4Þ; xð2Þð3; 4ÞÞ
ðxð2Þð1; 3Þ; xð2Þð2; 4Þ; xð2Þð1; 3Þ; xð2Þð2; 4ÞÞ
ðxð2Þð1; 4Þ; xð2Þð2; 3Þ; xð2Þð2; 3Þ; xð2Þð1; 4ÞÞ

For example, a microstate (x(2)(2, 1), x(2)(2, 1), x(2)(4, 3), x(2)

(4,3)) is the same as the first microstate because we just relabel

1↔2 and 3↔4. In summary, the multiplicity corresponding to xðjÞi
is ðnðjÞi Þ!ðj!ÞnðjÞi , and we can express the total multiplicity as

WðNÞ ¼ n!Q
ij ðnðjÞi Þ!ðj!ÞnðjÞi
� � : ð2Þ

Using Stirling’s formula log n! � nlog n� n, we get for the entropy

SðNÞ � nlog n� n

�
X
ij

nðjÞi log nðjÞi � nðjÞi þ nðjÞi log j!
� �

: ð3Þ

Using the normalization condition, n ¼Pijjn
ðjÞ
i , and combining

the first term with the remaining ones, we get the entropy per

particle in terms of ratios }ðjÞ
i ¼ nðjÞi =n

SðNÞ ¼ SðfnðjÞi gÞ
n

¼ �
X
ij

nðjÞi
n

log
nðjÞi
n

 !"

�nðjÞi
n

log
j!

n j�1

� �
� nðjÞi

n
þ jnðjÞi

n

#
:

ð4Þ

Normalization is given by
P

ij j}
ðjÞ
i ¼ 1. Therefore, pðjÞi ¼ j}ðjÞ

i can
be interpreted as the probability that a particle is a part of a cluster

in state xðjÞi . On the other hand, the quantity }
ðjÞ
i is the relative

number of clusters. Since
P

ij
jnðjÞi
n ¼ 1, we neglect the constant

without changing the thermodynamic relations.
In the remainder, we denote thermodynamic quantities per

particle by calligraphic script and total quantities by normal
script. We express the entropy per particle as

Sð}Þ ¼ �
X
ij

}
ðjÞ
i log}ðjÞ

i � 1
� �

�
X
ij

}
ðjÞ
i log

j!
nj�1

� �
;

ð5Þ

or equivalently in terms of the probability distribution, pðjÞi , as

SðPÞ ¼ �
X
ij

pðjÞi
j

log
pðjÞi
j
� 1

 !

�
X
ij

pðjÞi
j
log

j!
nj�1

� �
:

ð6Þ

Finite interaction range. Up to now, we assumed an infinite range
of interaction between particles, which is unrealistic for chemical
reactions, where only atoms within a short range form clusters. A
simple correction is obtained by dividing the system into a fixed
number of boxes: particles within the same box can form clusters,
particles in different boxes cannot. We begin by calculating the
multiplicity for two boxes. For simplicity, assume that they both
contain n/2 particles. The multiplicity of a system with two boxes,
~W nðjÞi
� �

, is given by the sum of all possible partitions of nðjÞi

clusters with state xðjÞi into the first box (containing 1nðjÞi clusters)

and the second box (containing 2nðjÞi clusters), such that

nðjÞi ¼ 1nðjÞi þ 2nðjÞi . The multiplicity is therefore

~W nðjÞi
� �

¼
X

1nðjÞi þ 2nðjÞi ¼nðjÞi

W 1nðjÞi
� �

W 2nðjÞi
� �

; ð7Þ

where W is the multiplicity in Eq. (2). The dominant contribution

to the sum comes from the term, where 1nðjÞi ¼ 2nðjÞi ¼ nðjÞi =2, so

that we can approximate the multiplicity by ~WðnðjÞi Þ � WðnðjÞi =2Þ2.
Similarly, for b boxes we obtain the multiplicity

~WðnðjÞi Þ ¼ WðnðjÞi =bÞb ¼ ½ðn=bÞ!�bQ
ij ½ðnðjÞi =bÞ!�bðj!ÞnðjÞi
� � : ð8Þ

By defining the concentration of particles as c ¼ n=b, the entropy
per particle becomes

Sð}Þ ¼ �
X
ij

}
ðjÞ
i log}ðjÞ

i � 1
� �

�
X
ij

}
ðjÞ
i log

j!
cj�1

� �
;

ð9Þ

or, respectively,

SðPÞ ¼ �
X
ij

pðjÞi
j

log
pðjÞi
j
� 1

 !

�
X
ij

pðjÞi
j
log

j!
cj�1

� �
:

ð10Þ

Note that the entropy of structure-forming systems is both
additive and extensive in the sense of Lieb and Yngvason37. It is
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also concave, ensuring the uniqueness of the maximum entropy
principle. For more details and connections to axiomatic
frameworks, see Supplementary Discussion.

Equilibrium thermodynamics of structure-forming systems.
We now focus on the equilibrium thermodynamics obtained, for
example, by considering the maximum entropy principle. Con-
sider the internal energy

UðnðjÞi Þ ¼
X
ij

nðjÞi ϵðjÞi ¼ n
X
ij

}
ðjÞ
i ϵðjÞi ¼ n Uð}ðjÞ

i Þ: ð11Þ

Using Lagrange multipliers to maximize the functional

Sð}Þ � α
X
ij

j}ðjÞ
i � 1

 !
� β

X
ij

}
ðjÞ
i ϵðjÞi � U

 !
; ð12Þ

leads to the following:

�log }̂ðjÞ
i � log

j!
cj�1

� �
� αj� βϵðjÞi ¼ 0; ð13Þ

and the resulting distribution is

}̂
ðjÞ
i ¼ cj�1

j!
exp �jα� βϵðjÞi
� �

: ð14Þ

Here, we introduce the partial partition functions,

Zj ¼ cj�1

j!

P
i e

�βϵðjÞi , and the quantity Λ= e−α. Λ is obtained fromX
ij

j}̂ðjÞ
i ¼

Xm
j¼1

j Zj Λ
j ¼ 1; ð15Þ

which is a polynomial equation of order m in Λ. The connection
with thermodynamics follows through Eq. (13). By multiplying with

}̂
ðjÞ
i and summing over i,j, we get Sð}Þ �Pij }̂

ðjÞ
i � α� β U ¼ 0.

Note that
P

ij }̂
ðjÞ
i ¼Pij n̂

ðjÞ
i =n ¼ M=n ¼ M is the number of

clusters, divided by the number of particles in the system. The
number of clusters per particle is

M ¼
X
ij

}̂
ðjÞ
i ¼

X
j

Z j Λ
j: ð16Þ

The Helmholz free energy is thus obtained as

F ¼ U � 1
β
S ¼ � α

β
� 1
β
M: ð17Þ

Finally, we can write the total partition function as

Z ¼ expð�βFÞ ¼ 1
Λ

Ym
j¼1

expðΛjZ jÞ: ð18Þ

Comparison with the grand-canonical ensemble. To compare the
presented exact approach with the grand-canonical ensemble,
consider the simple chemical reaction, 2X⇌X2. Without loss of
generality, assume that free particles carry some energy, ϵ. We
calculate the Helmholtz free energy for both approaches in
Supplementary Information. In Fig. 1, we show the corresponding
specific heat, cðTÞ ¼ �T ∂2F

∂T2 . For large systems, the usual grand-
canonical ensemble approach and the exact calculation with a
strictly conserved number of particles converge. For small sys-
tems, however, there appear notable differences. This is visible in
Fig. 1, where only for large n and low concentrations, c, the
specific heat for the exact approach (squares) and the grand-
canonical ensemble (triangles) become identical. The inset shows
the ratio of the specific heat, cC/cGC− 1, vanishing for large n. For
large systems, the exact approach and the the grand-canonical
ensemble are equivalent.

Relation to the theory of self-assembly. In many applications,
the number of energetic configurations for each cluster size is so
large that one is only interested in the distribution of cluster sizes.
For this case, it is possible to formulate an effective theory con-
sidering contributions from all configurations that is known as
the theory of self-assembly. For an overview, see Likos et al.27.

To compute the free energy in terms of the cluster-size
distribution, we define the latter as

}̂ðjÞ ¼
X
i

}̂
ðjÞ
i ¼ ΛjZ j: ð19Þ

This is the distribution obtained from a free energy of the ideal
gas of clusters, as discussed in Fantoni et al.32 for the case of Janus
particles and in Vissersa et al.38 for the more general case of one-
patch colloids. The entropy of the relative cluster size can be
introduced as

Scð}Þ ¼ �
Xm
j¼1

}ðjÞ log}ðjÞ � 1
� �

: ð20Þ

By introducing the partial free energy as

Φj ¼ � 1
β
logZj; ð21Þ

the energy constraint takes the form of the expected free energy,
averaged over cluster size, Φ ¼Pm

j¼1 }
ðjÞΦj. The cluster-size

distribution is obtained by maximization of the functional

Scð}Þ � αc
Xm
j¼1

j}ðjÞ � 1

 !
� β

Xm
j¼1

}ðjÞΦj �Φ

 !
: ð22Þ

It is clear that Eq. (19) is the solution of the maximization. The
free energy can be now expressed as

F c ¼ Φ� 1
β
Sc ¼ � αc

β
�M

β
; ð23Þ

which has the same structure as when calculated in terms of }ðjÞ
i .

Fig. 1 Specific heat, c(T), for the reaction 2X⇌X2 for the presented
canonical approach with an exact number of particles in comparison to
the grand-canonical ensemble. The specific heat for the canonical
ensemble (C) is drawn by squares, and the specific heat for the grand-
canonical ensemble (GC) is drawn by triangles. n denotes the number of
particles. For small systems the difference of the approaches becomes
apparent. The inset shows the ratio of the specific heat calculated from the
exact approach to the one obtained from the grand-canonical ensemble,
cC/cGC− 1. For large n the quantity decays to zero for any temperature.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21272-7

4 NATURE COMMUNICATIONS |         (2021) 12:1127 | https://doi.org/10.1038/s41467-021-21272-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Examples for thermodynamics of structure-forming systems.
We now apply the results obtained in the previous section to
several examples of structure-forming systems. We particularly
focus on how the presence of mescoscopic structures of clustered
states leads to the macroscopic physical properties. In the pre-
sence of structure formation, there exists a phase transition
between a free particle fluid phase and a condensed phase, con-
taining clusters of particles. This phase transition is demonstrated
in two examples.

The first example on soft-matter self-assembly describes the
process of condensation of one-patch colloidal amphibolic
particles. This condensation is relevant in applications in
nanomaterials and biophysics. The second example covers the
phase transition of the Curie–Weiss spin model for the situation
where particles form molecules. In Supplementary Information,
we discuss the additional examples of a magnetic gas and a size-
dependent chemical potential.

Kern–Frenkel model of patchy particles. Recently, the theory of
soft-matter self-assembly has successfully predicted the creation
of various structures of colloidal particles, including clusters of
Janus particles32, polymerization of colloids38, and the crystal-
lization of multipatch colloidal particles39. Kern and Frenkel40

introduced a simple model to describe the self-assembly of
amphibolic particles with two-particle interactions. rij denotes a
unit vector connecting the centers of particles i and j, rij is the
corresponding distance, and ni and nj are unit vectors encoding
the directions of patchy spheres. The Kern–Frenkel potential was
defined as

UKF
ij ¼ uðrijÞΩðrij;ni;njÞ; ð24Þ

where

uðrijÞ ¼
1; rij ≤ σ

�ϵ; σ < rij<σ þ Δ

0; rij > σ þ Δ:

8><>:
and

Ωðrij;ni;njÞ ¼
1 if

rij � ni> cos θ and

rij � nj> cos θ

(
0; otherwise:

8><>:
The characteristic quantity, χ ¼ sin2ðθ=2Þ, is the particle cover-
age. In the theory of self-assembly, the cluster-size distribution is
determined by the partial partition functions Eq. (19). Due to the
enormous number of possible configurations, it is impossible to
calculate Zj analytically and simulation methods were intro-
duced, including a grand-canonical Monte Carlo method and
successive umbrella sampling; for a review, see Rovigatti et al.41.
Instead of calculating the exact value of Zj, we use a stylized
model based on Fantoni et al.32. There the partial partition

function is parameterized as
logZj

jϵ ¼ b tanhðajÞ, where b < 0 and a
> 0 are the model parameters. While for small cluster sizes, the
free energy per particle decreases linearly with the size, for larger
clusters, it saturates at b. To calculate the average cluster size, Eq.
(16), one has to solve the equation for Λ, Eq. (15). In Fig. 2, we
show the phase diagram of the patchy particles for b=− 3 and a
= 25 and n= 100. The average number of clusters, M, plays the
role of the order parameter. In the phase diagram, one can clearly
distinguish three phases. At high temperature, we observe the
liquid phase, where most particles are not bound to others. At low
temperatures, we have a condensed phase with macroscopic
clusters. The two phases are separated by a coexistence phase,
where both large clusters and unbounded particles are present.

The coexistence phase (gray region) is characterized by a bimodal
distribution that can be recognized by calculating the bimodality
coefficient42. Results presented in Fig. 2 qualitatively correspond
to results obatined in Fantoni et al.32 for the case of Janus par-
ticles with χ= 0.5.

Curie–Weiss model with molecule formation. To discuss an
example of a spin system with molecule states, consider the fully
connected Ising model43–46 with a Hamiltonian that allows for
possible molecule states

Hðσ iÞ ¼ � J
n� 1

X
i≠j; free

σ iσ j � h
X
j; free

σ j : ð25Þ

Molecule states neither feel the spin–spin interaction nor the
external magnetic field, h. Therefore, the sum only extends over
free particles. In a mean-field approximation, we use the
magnetization, m ¼ 1

n�1

P
i≠jσ i, and express the Hamiltonian as

HMF(σi)=−(Jm+ h)∑j,freeσj. The self-consistency equation
m ¼ � ∂F

∂h jh¼0 leads to an equation for m that is calculated
numerically (Supplementary Information) and that is shown in
Fig. 3. Contrary to the mean-field approximation of the usual
fully connected Ising model (without molecule states), the
phase transition is no longer second-order but becomes first-
order. There exists a bifurcation where solutions for m= 0 and
m > 0 are stable. The second-order transition is recovered for
small systems, n→0. The critical temperature is shifted toward
zero for increasing n. We performed Monte Carlo simulations
to check the result of the mean-field approximation; see Sup-
plementary Information.

Stochastic thermodynamics of structure-forming systems. Con-

sider an arbitrary nonequilibrium state given by }ðjÞ
i � }

ðjÞ
i ðtÞ, and

imagine that the evolution of the probability distribution is defined
by a first-order Markovian linear master equation, as is usually

Fig. 2 Phase diagram for the self-assembly of patchy particles for n=
100 particles. The average cluster size (M) as a function of temperature
(T) and concentration (c) is seen. The cluster size is given by the color and
ranges from M= 0 (purple) to M= 100 (red). We observe three phases:
the liquid and condensed phase are divided by a coexistence phase (gray
area). Coexistence is characterized by a bimodal distribution that can be
detected with a shift in the bimodality coefficient.
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assumed in stochastic thermodynamics47,48

_}
ðjÞ
i ¼

X
kl

wjl
ik}

ðlÞ
k ¼

X
kl

wjl
ik}

ðlÞ
k � wlj

ki}
ðjÞ
i

� �
: ð26Þ

wjl
ik are the transition rates. Note that probability normalization

leads to
P

ijj _}
ðjÞ
i ¼ 0. Given that detailed balance holds,

wjl
ik}̂

ðlÞ
k ¼ wlj

ki}̂
ðjÞ
i , the underlying stationary distribution, obtained

from _}
ðjÞ
i ¼ 0, coincides with the equilibrium distribution Eq. (14).

From this we get

wjl
ik

wlj
ki

¼ j!
l!
cl�j exp αðl � jÞ þ β ϵðlÞk � ϵðjÞi

� �h i
: ð27Þ

The time derivative of the entropy per particle is

dS
dt

¼ �
X
ij

_}
ðjÞ
i log}ðjÞ

i �
X
ij

_}
ðjÞ
i log

j!
cj�1

� �
: ð28Þ

Using the master Eq. (26) and some straightforward calculations,
we end up with the usual second law of thermodynamics

dS
dt

¼ _Si þ β _Q; ð29Þ

where _Q is the heat flow per particle and _Si is the nonnegative
entropy production per particle, see Supplementary Information.

Let us now consider a stochastic trajectory, x(τ)= (i(τ),j(τ)),

denoting that at time τ, the particle is in state xðjðτÞÞiðτÞ . We introduce
the time-dependent protocol, l(τ), that controls the energy
spectrum of the system. The stochastic energy for trajectory x

(τ) and protocol l(τ) can be expressed as ϵðτÞ � ϵðjðτÞÞiðτÞ ðlðτÞÞ. We
assume microreversibility from which follows that detailed
balance is valid even when the energy spectrum is time-
dependent (due to protocol l(τ)). We define the stochastic

entropy as

sðxðτÞÞ ¼ � log}ðjðτÞÞ
iðτÞ ðτÞ � 1

� �
� log

jðτÞ!
cjðτÞ�1

� �
: ð30Þ

We show that _sðxðτÞÞ ¼ _siðxðτÞÞ þ _seðxðτÞÞ, where _si is the
stochastic entropy production rate and _se is the entropy flow
equal to _q=T , where _q is the heat flow in Supplementary
Information.

The time-reversed trajectory is ~xðτÞ ¼ ðiðT � τÞ; jðT � τÞÞ,
and the time-reversed protocol is ~lðτÞ ¼ lðT � τÞ. The log-ratio
of the probability, P, of a forward trajectory and the probability,
~P, of the time-reversed trajectory under the time-reversed
protocol is equal to Δσ ¼ Δsi þ log j0

~j0
, where j0= j(τ= 0) andej0 ¼ejðτ ¼ 0Þ, see Supplementary Information. Hence,

log PðxðτÞÞ
~Pð~xðτÞÞ ¼ Δσ, which leads to the fluctuation theorem49

log
PðΔσÞ
~Pð�ΔσÞ ¼ Δσ: ð31Þ

Assuming that the initial state is an equilibrium state, introducing
the stochastic free energy, f(τ)= ϵ(τ)− Ts(τ), and combining the
first and the second law of thermodynamics, we get Δsi= β(w−
Δf). The stochastic free energy of an equilibrium state is

f ð}̂ðjÞ
i Þ ¼ �j αβ � 1

β, see Supplementary Information.
If we start in an equilibrium distribution with j(τ= 0)= j0 and

the reverse experiment also starts in an equilibrium distribution
with ~jðτ ¼ 0Þ ¼ ~j0, by plugging this into Eq. (31) and a simple
manipulation, we have

PðxðτÞjj0Þ
~Pð~xðτÞj~j0Þ

¼ exp βw� β Φ~j0
ð~lð0ÞÞ �Φj0

ðlð0ÞÞ
h i� �

; ð32Þ

where Φj is the partial free energy Eq. (21). Finally, by a
straightforward calculation, we obtain Crooks’ fluctuation
theorem49,50

Pðwjj0Þ
~Pð�wj~j0Þ

¼ expðβðw� ΔΦjÞÞ ð33Þ

where ΔΦj ¼ Φ~j0
ð~lð0ÞÞ �Φj0

ðlð0ÞÞ. For technical details,
see Supplementary Information.

Discussion
We presented a straightforward way to establish the thermo-
dynamics of structure-forming systems (e.g., molecules made
from atoms or clusters of colloidal particles) based on the cano-
nical ensemble with a modified entropy that is obtained by the
proper counting of the system’s configurations. The approach is
an alternative to the grand-canonical ensemble that yields iden-
tical results for large systems. However, there are significant
deviations that might have important consequences for small
systems, where the interaction range becomes comparable with
system size. Note that our results are valid for large systems (in
the thermodynamic limit) as well as small systems at nanoscales.
We showed that fundamental relations such as the second law of
thermodynamics and fluctuation theorems remain valid for
structure-forming systems. In addition, we demonstrated that the
choice of a proper entropic functional has profound physical
consequences. It determines, for example, the order of phase
transitions in spin models.

We mention that we follow a similar reasoning as has been
used in the case of Shannon’s entropy: originally, Shannon’s
entropy was derived by Gibbs in the thermodynamic limit using a
frequentist approach to statistics (probability is given by a
large number of repetitions). However, once the formula for
entropy had been derived, its validity was extended beyond the

Fig. 3 Magnetization of the fully connected Ising model with molecule
states for n= 50 and n= 200 particles, for a spin–spin coupling
constant, J= 1. Results of the mean-field approximation (solid lines) are in
good agreement with Monte Carlo simulations (symbols). Errorbars show
the standard deviation of the average value obtained from 1000
independent runs of the simulations (see Supplementary Information for
more details). The inset shows the well-known result for the fully
connected Ising model without molecule states. Without molecule
formation, we observe the usual second-order transition. With molecules,
the critical temperature decreases with the number of particles and the
phase transition becomes first-order.
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thermodynamic limit, which corresponds to the Bayesian
approach. It has been shown, e.g., by methods of stochastic
thermodynamics, that the formula for the Shannon’s entropy and
the laws of thermodynamics remain valid for systems of arbitrary
size (with the exception of systems with quantum corrections)
and arbitrarily far from equilibrium47. In this paper, we follow the
same type of reasoning for the case of structure-forming systems.

Typical examples where our results apply are chemical reactions
at small scales, the self-assembly of colloidal particles, active matter,
and nanoparticles. The presented results might also be of direct use
for chemical nanomotors51 and nonequilibrium self-assembly35. A
natural question is how the framework can be extended to the well-
known statistical physics of chemical reactions23–26 where systems
are composed of more than one type of atom.

Data availability
Source Data are provided with this paper. All relevant data are available at: https://github.
com/complexity-science-hub/Thermodynamics-of-structure-forming-systems.
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