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Sleep staging is one of the important methods to diagnosis and treatment of sleep
diseases. However, it is laborious and time-consuming, therefore, computer assisted
sleep staging is necessary. Most of the existing sleep staging researches using hand-
engineered features rely on prior knowledges of sleep analysis, and usually single
channel electroencephalogram (EEG) is used for sleep staging task. Prior knowledge
is not always available, and single channel EEG signal cannot fully represent the
patient’s sleeping physiological states. To tackle the above two problems, we propose
an automatic sleep staging network model based on data adaptation and multimodal
feature fusion using EEG and electrooculogram (EOG) signals. 3D-CNN is used to
extract the time-frequency features of EEG at different time scales, and LSTM is used
to learn the frequency evolution of EOG. The nonlinear relationship between the High-
layer features of EEG and EOG is fitted by deep probabilistic network. Experiments on
SLEEP-EDF and a private dataset show that the proposed model achieves state-of-
the-art performance. Moreover, the prediction result is in accordance with that from the
expert diagnosis.

Keywords: deep learning, HHT, sleep stage classification, multimodal physiological signals, fusion networks

INTRODUCTION

SLEEP is an important physiological requirement of human beings, which is essential for human
health. Sufficient high-quality sleep guarantees the efficiency of people’s work and study, also
it helps people to maintain mental health and revival of physical strength. Conversely, sleep
disorders such as sleep deprivation (Bixler, 2009), sleep disordered breathing (Bédard et al.,
1991; Aloia et al., 2004) and other related sleep disease (Ivanenko and Gururaj, 2009), including
aggression or impulsive behavior, executive dysfunction, memory and attention problems, anxiety
and depression, etc., are all associated with neuropsychological deficits (Redline et al., 1997; El-
Ad and Lavie, 2005). Nowadays, sleep diseases have become one of the main factors endangering
human health. Therefore, sleep detection, analysis and evaluation research has been paid intensive
attention in the field of healthcare. The sleep stage classification is one of the key steps to effectively
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analyze the structure of sleep, diagnose and treat sleep-related
diseases (Memar and Faradji, 2018). For example, the division
of sleep stages is the first step to diagnose patients with sleep
disorders. By observing the changes and patterns of physiological
signals during individual sleep, doctors divide adult sleep into
different states according to the patterns. A set of sensors are
connected to different parts of the patient’s body to collect
sleep data and record information such as sleep patterns,
breathing, heart activity, and limb movements during sleep. The
acquired data is called polysomnography (PSG), and it consists
of the patient’s electroencephalogram (EEG), electrocardiogram
(ECG), electrooculogram (EOG), electromyogram (EMG) and
other physiological signals (Supratak et al., 2017). Generally, by
observing the patient’s whole-night PSG sleep recording, sleep
experts divide the sleep signal segmented into 30-s epochs into
a sleep stage. It is no doubt that it is a huge and laborious
job. Therefore, computer-aided sleep stage classification schemes
are essential for the diagnosis of sleep-related diseases and sleep
monitoring.

As people pay more and more attention to sleep problems,
researchers have carried out a lot of studies on sleep staging.
In 1924, Hans Berger recorded EEG activity from human brain
and scalp for the first time and named it electroencephalogram
(Grasser et al., 2011). In 1953, Nathaniel Kleitman and Aserinsky
discovered the characteristics of eye movement during sleep,
divide them to rapid eye movement (REM) sleep and non-rapid
eye movement (NREM) sleep (Jean-Baptiste et al., 2014). In 1968,
Allan Rechtschaffen and Anthony Kales divided NREM into four
stages using the known R&K rules (Rodenbeck et al., 2010). In
2007, American Academy of Sleep Medicine reformulated a new
classification manual for sleep classification called AASM rules,
combining the NREM sleep stage 3 (N3) and NREM sleep stage 4
(N4) in the R&K standard (Choi et al., 2010).

The traditional sleep stage classification methods extract
features manually from the physiological signals, and then
distinguish the sleep stages according to the extracted features.
Many hand-made features are designed based on sleep experts’
professional knowledges, including time domain features (Karlen
et al., 2009), frequency domain features (Koley and Dey, 2012;
Zhao et al., 2019), and time-frequency features (Chouvarda
et al., 2011; Hassan and Bhuiyan, 2016; Yucelbas et al., 2018).
Peker et al. (2015) studied 41 features that have a significant
effect on sleep stages recognition. Anderson et al. (1998)
used the autoregressive model to extract EEG signal features,
and then used shallow forward neural networks to perform
a 10-fold cross-validation experiment on the subjects. The
experiment reached an average classification accuracy of 38–
71%. Sharma et al. (2017) proposed a sleep staging method
based on iterative filtering, and the average accuracy finally
reached 86.20%. In terms of classification methods, many
traditional classifiers are used in EEG signal detection research
and recognition techniques, such as Support Vector Machine
(SVM), Linear Discriminant Analysis (LDA) (Subasi and Gursoy,
2010), K-Nearest Neighbor (KNN) (Yazdani et al., 2009), etc. In
addition, algorithms such as Independent Component Analysis
(ICA) and Principal Component Analysis (PCA) are usually used
to improve classification accuracy.

Recently deep learning network are used widely in sleep
staging, and the biggest difference between deep learning and
traditional pattern recognition methods is that the features
are automatically learned from big data, rather than based on
manual design. Tsinalis et al. (2016) used CNN to automatically
distinguish sleep stages based on single-channel EEG data
without using prior knowledge, and the overall accuracy is 74%.
Supratak et al. (2017) used CNN to extract the characteristics
of EEG, and then they used bidirectional LSTM to learn the
transition laws of each stage of sleep, and the overall accuracy
is 82%. In another study conducted by Phan et al. (2019) a
hierarchical SeqSleepNet was proposed, which took sequences of
multiple periods as input and classified them at the same time.
Humayun et al. (2019) used a 34-layer deep residual CNN for
classification tasks and obtained higher accuracy.

In recent years, Multimodal Fusion has been widely
introduced in many fields such as computer vision and Emotion
Recognition. In order to comprehensively reflect the sleeping
situation, Estrada et al. analyzed the potential characteristics of
EOG and EMG at different stages during sleep and verified that
EOG and EMG are two important indicators of sleep staging
(Estrada et al., 2006). Shimada et al. introduced EEG, EOG,
and EMG as inputs into the neural network, and they used the
sleep stage features for automatic classification (Boulanger, 1988).
Chambon et al. (2018) proposed an end-to-end deep learning
approach to perform temporal sleep stage classification using
multivariate time series from multiple modalities (EEG, EOG,
and EMG). Their proposed approach is particularly good at
detecting W (high sensitivity 0.85 and specificity close to 1).

We present a deep learning fusion network framework
denoted as Multi Sensor Deep Fusion Network (MSDFN)
for feature extraction, multimodal fusion and sleep stage
classification. The main contribution can be summarized as
follows: On the one hand, the research eliminates the dependence
on prior knowledge in feature extraction stage by introducing
efficient adaptive signal analysis; On the other hand, the work
reflects the differences between sleep stages comprehensively
by using multimodal sleep data. In order to improve the
traditional fusion methods such as sum and splicing, we
use depth probability model to fit the high-order nonlinear
correlation between different modal features, and integrates the
representation of multimodal sleep data.

The rest of the paper is organized as follows: in section
“Sleep Stage Classification Model,” we introduce the proposed
model of sleep staging. Section “Dataset and Assessment” depicts
the datasets and evaluation indicators used in this paper. In
Section “Experiment and Analysis,” the related experiments of the
proposed method are described. Finally, in section “Discussion
and Conclusion,” the discussion and conclusions are given.

SLEEP STAGE CLASSIFICATION MODEL

In this section, we introduce MSDFN in detail. To collect more
discriminative information, Hilbert–Huang transform is used to
extract the time-frequency characteristics of the original signal.
To learn heterogeneous features, two parts of the architecture
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are designed for EEG and EOG signal, respectively. Then the
Multimodal Fusion Networks are established to explore the
intermodal interactions between multimodal data. The structure
of proposed method is shown in Figure 1.

Hilbert–Huang Transform
Hilbert–Huang transform (HHT) is an effective and adaptive
time-frequency analysis method, which is suitable for nonlinear
and nonstationary time series. The signal is decomposed
to components denoted as Intrinsic Mode Functions (IMFs)
through using the algorithm proposed by Huang (Huang et al.,
1998). After that, we can utilize the Hilbert transform (HT) for
each IMF to obtain the distribution of the amplitude or energy in
time-frequency field.

The EMD algorithm directly decomposes the original signal
according to the characteristics of the signal, thereby adaptively
decomposing the signal into several IMF components. It is
different from Fourier transform and wavelet-based transform as
HHT has the feature of locally defining nonstationary data and
has become a more popular method in recent years. In this study,
both EEG and EOG perform time-frequency transformation. The
difference is that the 30 s EEG signal will be divided into 5 s sub-
segments to extract six time-frequency information matrices as
an EEG sample, but the 30 s EOG is transformed as a whole.

Heterogeneous Feature Learning
Network
The part of Heterogeneous feature learning of MSDFN contains
EEG Tensor Network (ETN) and EOG Tensor Network (OTN).

Electroencephalogram Tensor Network takes HHT time-
frequency features based on EEG signals as input and generates
the corresponding EEG signal tensor. It is derived from 3DCNN,
which is widely used in the field of video classification and action
recognition. In this paper, the 30 s original EEG signal is further
divided into six sub-segments of 5 s, which are converted into
image-like data through the above-mentioned time-frequency
feature processing and stacked as input for 3D CNN, to extract

the deep representation while respecting the locality within the
feature map in three dimensions. The sub-network contains four
convolutional layers and three pooling layers. The convolutional
layer is used to learn high-level representation of EEG features.
It contains three sizes of 3D convolution kernels, the size is
2 × 5 × 5, 2 × 3 × 3, 2 × 1 × 1, and Conv3D_1, Conv3D_4,
Conv3D_5 are used to increase the number of feature maps. All
layers extract a more abstracted representation of the feature.

Electrooculogram Tensor Network is used to process the EOG
signal data, taking the time-frequency characteristics generated
by the 30 s EOG signal as input. Setting the input size to 30,
timesteps to 30, the number of hidden units in the network to
200, and cyclically entering the values that change with time at
different frequencies. While evaluating sleep stages, sleep experts
refer to the data of other modalities at the same time to obtain
a more accurate assessment. We use the OTN output based on
LSTM to characterize the progressive relationship of the EOG,
and use the output as a heterogeneous feature to fuse with the
output of the ETN.

Sleep data has sample imbalance, because the length of time in
each stage is different during sleep. In order to solve this problem,
Focal Loss is used for the above network to reduce the proportion
imbalance between sample categories. And the loss function is
given as follows:

Lossfl = −αlabel(1− ppre ∗ plabel)
γ log(ppre) (1)

where αlabel is a balance factor, which is used as an equilibrium
between samples of different classes, and γ is used to adjust the
rate of weight reduction of simple samples, which solves the
problems of simple samples and difficult samples.

Multimodal Fusion Network
Many deep learning networks based on shallow fusion or
decision fusion are applied to multimodal fusion technology.
However, these methods cannot effectively simulate the complex
nonlinear joint distribution and are difficult to capture the

FIGURE 1 | Architecture of MSDFN.
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intrinsic correlation among different modalities, because these
modes are considered independent. To construct a network that
learns complex joint feature representations, we use multimodal
fusion network based on Deep belief network (DBN) to learn the
nonlinear relationship between EEG and EOG.

A set of restricted Boltzmann machines (RBMS) is the main
component of DBN. The structure of RBM is shown in Figure 2.
It contains input units v ∈ {vi}

R and hidden units h ∈ {hj }
R .

With a given set of values (v, h), we can define the model with
an energy function as follow:

E(v, h) = −
∑

i∈input

(vi − ai)
2

2σ2
i

vi −
∑

j∈hidden

bjhj −
∑

i,j

vi

σi
hjwij (2)

where vi and hjare the value of input unit i and hidden unit
j;ai and bjare the biases of viand hj; and wij is the weight between
viand hj;σi is the standard deviation of Gaussian noise for a real
valued input unit. We can calculate the conditional distribution:

p(vi = 1|h) = N(bi + σi
∑

j

Wijhj, σ
2
i ) (3)

p(hj = 1|v) = N(bj +
∑

i

Wijvi) (4)

Hidden layer vectors of each RBM in DBN are used to train
another RBM, thus we can use DBN to capture the high-order
nonlinear correlation of the input data. Finally, back propagation
is adopted to train the entire DBN with Cross Entropy loss
function:

Lossce = −

k∑
i=1

yi log(pi) (5)

where k is the number of classes, yi and pi are the label and
probability of class i.

DATASET AND ASSESSMENT

Datasets
SLEEP-EDF
The multimodal PSG dataset used in this research comes from
the Sleep-EDF Expanded databases (Kemp et al., 2000) provided
by PhysioNet (Goldberger et al., 2000). The Sleep-EDF Expanded
database contains 197 whole-night PolySomnoGraphic sleep
recordings, including EEG signals with electrodes located
on Fpz-Cz and Pz-Oz, respectively, horizontal EOG signals,
other sleep physiological signals, and manually labeled events.
In most cases, the PSGs of each subject is recorded for
approximately 20 h in two nights. The EOG and EEG
signals were each sampled at the frequency of 100 Hz,
and manually annotated by experts into different stages,
which are converted to five stages according to the AASM
standard in this work. In order to avoid the influence of
other additional factors on this research, this paper only
uses the data of 20 subjects obtained by monitoring of
the healthy people.

Private Data
The experiment was approved by the Ethics Committee
of Xuanwu Hospital, Capital Medical University. All the
participants signed consent forms for participation and were fully
informed of the experimental and data acquisition procedures.
This experiment uses the multimodal PSG data provided by
Xuanwu Hospital, Capital Medical University. This data set
includes whole-night PSG recordings of 20 subjects. By using
Compumedics Grael, PSG of each subject was collected about
10 h of sleep recording for one night. The electrode placement
method recommended by AASM for data collection includes
seven EEG channels, two EOG channels, EMG, ECG and other
sleep signals. Among them, EEG and EOG use a sampling
frequency of 1,000 Hz, and the data is also artificially marked as
five sleep stages.

Data Preprocessing
According to the AASM sleep staging rules, well-trained
professional sleep physicians classify the patients’ sleep stages by
the following steps:

FIGURE 2 | The structure of DBN constructed in MSDFN. (A) The structure of RBM; (B) The structure of DBN.
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(1) The PSG data of the whole night is divided into 30 s PSG
segments without overlap, which is used consistently with
the sleep staging process following the AASM guidelines;

(2) Sleep physicians use professional software to visually
display these 30 s PSG segments, then determining the
sleep stages according to relevant criteria by observing
these segments.

In this study, the sleep data of each 30 s is also used
as an independent sleep staging sample. For the purpose of
preprocessing of raw data, EEG and EOG signals are filtered
with 3th order butter-worth bandpass filter with the cut-off
frequencies of 0.5–32 Hz and 0.5–10 Hz, respectively. In addition,
the sampling frequency of private data is 100 Hz after down-
sampling, and the bad segments caused by electrode falling off
are removed. Finally, we extract 49,853 samples from the SLEEP-
EDF data and 22,014 samples from the private sleep data. Each
sample is indicated by its own sleep staging label. Table 1 shows
the information of the constructed sample sets. From Table 1, it
can be seen that the proportion of each sleep stage in two data sets
conforms to the sleep structure of healthy people.

Evaluation
In order to evaluate the effectiveness of the proposed method, we
calculate confusion matrix to show difference between the results
given by the proposed method and the expert’s mark, which are
given as

CM =


S11 S12 S13 S14 S15
S21 S22 S23 S24 S25
S31 S32 S33 S34 S35
S41 S42 S43 S44 S45
S51 S52 S53 S54 S55

 (6)

where Sij represents the number of fragments marked as sleep
stage i and classified as sleep stage j. The value of i or j. indicates
that the period is equal to 1, 2, 3, 4, and 5, respectively, indicating
sleep stages of W, REM, N1, N2, and N3.

Cohen’s Kappa coefficient is also used to measure the
consistency between the classification result and the expert’s
mark. The calculation formula is as follows:

Kappa =
P0 − Pe

1− Pe
(7)

P0 =

∑5
i =1 Sii∑5

i =1
∑5

j =1 Sij
(8)

Pe =

∑5
i =1(

∑5
j=1 Sij

∑5
j=1 Sji)

(
∑5

i=1
∑5

j=1 Sij)2
(9)

TABLE 1 | The distribution of samples in data sets.

Sleep stages W N1 N2 N3 REM Total

SLEEP-EDF 15,257 4,339 19,014 4,009 7,234 49,853

Private data 4,831 1,997 10,440 1,239 3,507 22,014

In this paper, we will also calculate accuracy (AC) and F1 score
(F1) to show the performance of the proposed method as shown
in Equation (17) to (18).

AC =
TP+TN

TP+TN+FP+FN
(10)

F1 = 2 ·
P · R
P+R

(11)

AC is also used to represent the percentage of the correct
classification period to all test periods. In this paper, AC and F1
scores are used as indicators to evaluate the classification effect
of each sleep stage. The AC and Kappa coefficients are used to
evaluate the overall performance of all stages and measure the
consistency between the algorithm prediction results and the
expert score results.

EXPERIMENT AND ANALYSIS

In this section, we introduce a series of comparative experimental
results of sleep stage classification. These experiments focus on
multi-class classification problems:

(1) Classification experiments based on multi-modal data with
single channel;

(2) Classification experiments based on multi-modal data with
multi-channels;

(3) Multi-Classification experiments.

The process of the experiment details are given in the
following subsections.

First, we visualize the time-frequency features extracted by
HHT, as shown in Figure 3. As a common time-frequency
analysis method, the biggest advantage of HHT lies in its
strong adaptability, which is suitable for the input of end-to-
end feature network learning. It overcomes the shortcomings
of traditional time-frequency methods that require manual
parameter adjustment, and it can adaptively process non-
linear and non-stationary physiological signals with high
characteristics.

As we have seen, the time-frequency characteristics of EEG can
reflect the differences of various sleep stages. The HHT of W and
N1 reflect the low energy value of high-frequency components.
For N2 and N3 sleep stages, relatively low-frequency and high-
amplitude waves with higher energy appear. In the REM, high-
frequency waves appear again, and the signal energy is reduced
relatively. For EOG, it can be found that the high-frequency eye
movement gradually disappears from W to N2, and rapid eye
movement occurs again in the REM period. This information is
basically in line with the focus of professional physicians in the
sleep scoring process. It is worth noting that the extracted EOG
features of N3 reflects continuous low-frequency information,
but there is usually no eye movement in N3 phase. Therefore,
we speculate that it may be due to the stronger brain activity
as of N3 has an impact on the EOG signals during the signal
acquisition process.
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FIGURE 3 | The HHT result for different sleep stages. (A) visualization of EEG HHT results; (B) visualization of EOG HHT results.

TABLE 2 | The parameters of proposed model.

Layer Hyper-parameters Activation function Outputshape

Conv3D 1 (2, 5, 5), (1, 2, 2), 16 ReLU 6 × 15 × 15, 16

Conv3D 2 (2, 5, 5), (1, 2, 2), 16 ReLU 6 × 8 × 8, 16

Max-pooling 1 (1, 2, 2), (1, 2, 2) – 6 × 4 × 4, 16

Conv3D 3 (2, 3, 3), (1, 2, 2), 16 ReLU 6 × 2 × 2, 16

Max-pooling2 (1, 2, 2), (1, 1, 1) – 6 × 2 × 2, 16

Conv3D 4 (2, 3, 3), (1, 2, 2), 32 ReLU 6 × 1 × 1, 32

Max-pooling 3 (2, 1, 1), (1, 1, 1) – 6 × 1 × 1, 32

Conv3D 5 (2, 1, 1), (1, 1, 1), 64 ReLU 6 × 1 × 1, 64

LSTM [(30, 30), 200] – 200

DBN hidden 1 (584, 300) Sigmoid 300

DBN hidden 2 (300, 200) Sigmoid 200

DBN hidden 3 (200, 100) Sigmoid 100

We show the network parameters of MSDFN in Table 2.
Hyper-parameters for 3D convolutional layers are kernel size
in 3D, strides in 3D, and the number of filters. For 3D max-
pooling layers they are pool sizes and strides. For LSTM they are
the length of sequence, the dimensionality of the feature vector
at each time step, and the number of hidden units. For fully-
connected layers they are numbers of input and hidden units.
In addition, we use Focal Loss as the loss function of ETN and
OTN. In this function, we set alpha weight to (0.6, 0.9, 0.6, 0.9,
and 0.8) for SLEEP-EDF and (0.8, 0.9, 0.5, 0.9, and 0.8) for private
data, and gamma to 2. The Adam optimization approach is used
to train the sub-network model with learning rate of 1e-3, and
categorical cross-entropy is used to train the fusion network.
Learning rate in fusion networks is set to 1e-3. Finally, softmax
activation is used for the output layer. L2 regularization is applied
to weights of all convolutional and fully-connected layers. All
weights are initialized randomly from He Normal initializer (He
et al., 2015) which is more suitable for ReLU activation. Batch

FIGURE 4 | The accuracy of classification experiments based on SLEEP-EDF.

normalization is performed after every convolutional layer and
before their activation. The size of minibatch is 128 and the
number of epochs is set to 50.

Classification Experiments Based on
Multimodal Data of Single-Channel
In this subsection, the influence of a single modal network on
the classification of combined sleep stages is given. In our work,
15 subjects in the SLEEP-EDF dataset are adopted, and 10-
fold cross-validation of the leave-one-out rule is used to verify
performance. We carry out the experiment research following the
AASM rule which sets the number of categories to 5. Each subject
is independent for the testing, and the remaining 14 subjects are
merged into a training set. During this process, the test results
of 10 subjects are randomly selected for the evaluation. We also
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FIGURE 5 | The confusion matrix of classification experiments result based on
single channel multimodal data.

TABLE 3 | The performance of MSDFN using HHT and CWT.

Input Accuracy (%) Kappa Fl

HHT 85.9 0.81 0.86

CWT 80.3 0.77 0.79

FIGURE 6 | The accuracy of classification experiments based on Private Data.

compare the results of the proposed method with the latest results
on the same data set.

In order to verify the fusion effect of the proposed model,
we compared the results of single-modal data classification and
multi-modal data fusion classification. The results are shown in
Figure 4. We use ETN to classify EEG signals and OTN to classify
EOG, respectively. Obviously, the classification result of MSDFN
is significantly better than the result of the separate classification
of the two modalities. Among them, the average accuracy of the
fusion method is 4.03% higher than that of the classification using
only ETN, and the average accuracy of the results of classification
using only OTN is 14.53% lower.

TABLE 4 | The performance of MSDFN using multi-channel data.

Data set Accuracy (%) Kappa F1

SLEEP-EDF 87.5 0.83 0.86

Private data 83.8 0.81 0.83

TABLE 5 | The details of categories in multi-classification experiments.

Class num Categories

3 W, NREM (N1, N2, and N3) and REM

4 Wake, light sleep (N1, N2), deep sleep (N3), and REM

5 Wake, N1, N2, N3, and REM

FIGURE 7 | The accuracy of multi-class classification experiments based on
SLEEP-EDF.

TABLE 6 | The performance of multi-class classification task
based on SLEEP-EDF.

Class num Accuracy (%) Kappa F1

3 90.5 0.85 0.90

4 88.7 0.84 0.89

5 85.9 0.81 0.86

The confusion matrix of MSDFN is drawn to analyze the
classification accuracy between different categories. The result
is shown in Figure 5. Our model achieves good classification
results in the four categories of W, N2, N3, and REM. Among
them, the category with the best classification performance is
W, with an accuracy rate of 94.34%, and the category with the
worst classification performance is REM, with an accuracy rate of
82.6%. However, the classification accuracy of N1 is 28.9%. It can
be seen that the accuracy of N1 is low because the discriminative
characteristics of N1 are similar to those features of W and REM.
This is also one of the difficult problems to be solved in sleep
multi-classification tasks.

Besides, HHT and CWT features are used as inputs of the
network to verify the effectiveness of the model. Table 3 shows
the results. The results show that our model is more suitable for
HHT. It is obviously that the analysis results of wavelet transform
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TABLE 7 | Comparison of different methods in classification of sleep stages.

Method Input data Feature type Subjects Overall accuracy(%)

Rodriguez-Sotelo et al., 2014 k-NN Fpz-Cz + Pz-Oz Hand-crafted 20 SC 80.0

Andreotti et al., 2018 ResNet Fpz-Cz + hor. EOG Learned 20 SC 76.8

Mikkelsen and De Vos, 2018 Deep CNN Fpz-Cz + hor. EOG Learned 20 SC 84.0

Phan et al., 2018 Multitask 1-max CNN Fpz-Cz + hor. EOG Learned 20 SC 82.3

This work Deep Fusion framework Fpz-Cz + hor. EOG Learned 20SC 85.9

This work Deep Fusion framework Fpz-Cz + Pz-Oz + hor. EOG Learned 20SC 87.5

State-of-the-art results are marked in bold.

FIGURE 8 | The comparison of sleep stage classification.

are very dependent on the selection of wavelet bases and related
parameters. HHT is obtained by frequency domain component
decomposition based on the characteristics of data.

Classification Experiments Based on
Multimodal Data With Multi-Channel
In this section, multi-modal and multi-channel data are used to
verify the effect of the fusion network. Further, we use a private
data set to test the robustness of the model. For the experiment,
we use dual-channel EEG and horizontal EOG of 15 subjects in
the SLEEP-EDF data set. In another private data set, we used
7-channel EEG data located in F3-M2, F4-M1, M1-M2, C3-M2,
C4-M1, O1-M2, O2-M1, and dual-channel EOG contains LEOG
and REOG. The training set and test set are divided in the
same way as before.

The results are shown in Figure 6 and Table 4, respectively.
The results show that our model has an average accuracy rate of
87.5% on the SLEEP-EDF data set, and an average accuracy rate
of 83.8% on the private data set. As it is seen, compared with the
experiments based on single channel multi-modal data, the effect
of the model using multi-channel data is slightly improved. And

the proposed structure has good robustness, and its performance
is also stable on real data.

Multi-Classification Experiments
In this subsection, we use the proposed MSDFN to conduct a
comparative experiment with different categories. The results
of the categories in this experiment are recorded in the
Table 5. Finally, the results can be checked in Figure 7 and
Table 6.

The performance of the model is verified on tasks with
different numbers of categories. It can be seen that with
the refinement of the sleep stages, the capability of the
model gradually decreases. Among them, the accuracy of three
classification is 1.8% higher than that of four classification and
4.6% higher than that of five classification. Therefore, our model
has a better classification for most sleep stages, but it does not
perform well on distinction for N1 and N2 sleep stages.

In addition, Table 7 compares the effectiveness of some
existing sleep stage classification models. In these models, some
manual features are extracted for decision to obtain the highest
classification results. These manual feature combinations rely
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heavily on prior knowledge, and it is often difficult to find
effective features for end-to-end systems. Our method is based
on adaptive time-frequency features and deep fusion network.
Compared with the end-to-end deep learning model using single-
channel and multi-channel sleep data, it still achieves good
classification results. On two different data sets, our model
can achieve better overall performance at all stages, and the
prediction results are in good agreement with the expert score
results. Therefore, MSDFN is a better supplementary model to
the existing sleep stages classification model. And Figure 8 shows
the comparison between sleep structure analyzed by our model
and the label marked by doctors.

DISCUSSION AND CONCLUSION

This paper proposes an automatic sleep stage classification
framework based on HHT and deep multimodal feature fusion
network, with the function of data adaptation and multimodal
feature fusion. For the work, sleep stages are classified into
wakefulness, N1, N2, N3 of non-Rapid Eye Movement (NREM),
and REM. By developing a deep learning fusion model based
on 3D Convolutional Neural Network (3DCNN), LSTM, and
Deep Brief Network (DBN), we accurately and efficiently
classify sleep stages with polysomnographic (PSG) data including
electroencephalogram (EEG), electrooculogram (EOG). The
proposed model is employed to characterize the high-order
correlation of the multimodal PSG data, which utilize the Deep
Brief Network (DBN) for its strengths of dealing with Non-
linear relationship of heterogeneous data. Overall classification
accuracy, Cohen’s kappa coefficient and F1 score in SLEEP-
EDF are 87.5, 0.83, and 86.3%, respectively. The experimental
results show that our method has poor classification result for
N1 and REM. The reason is from the similarity of the significant
characteristics of the two sleep stages, which is also the challenge
we will solve in the next work. In general, MSDFN can achieve
good results on both two data sets. The performance of the fusion
network compared to the single modal subnetwork has been
greatly improved.
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