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The Siah1 and Siah2 E3 ubiquitin ligases play an important role in diverse signaling pathways and have been shown to be
deregulated in cancer. The human Siah1 and Siah2 isoforms share high sequence similarity but possess contrary roles in
cancer, with Siah1 more often acting as a tumor suppressor while Siah2 functions as a proto-oncogene. The different
function of Siah1 and Siah2 in cancer is likely due to the ubiquitination of distinct substrates. Hence, we decided to
investigate the molecular basis of the substrate specificity, utilizing the well-characterized Siah2 substrate PHD3. Using
chimeric and mutational approaches, we identified critical residues in Siah2 that promote substrate specificity. Thus, we
have found that four residues in the N-terminal region of the Siah2 substrate binding domain (SBD) (Ser132, His150, Pro155,
Tyr163) are critical for substrate specificity. In the C-terminal region of the SBD, a single residue, Leu250, was identified to
promote the specific binding of Siah2 SBD to PHD3. Our study may help to overcome the challenges in the identification of
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Introduction

SIAH (Seven in Absentia Homolog) is a mammalian homolog of
Seven in Absentia (SINA), a Drosophila protein that has a function
in eye development [1]. Two SINA homologs have been identified
in the human genome, Siahl and Siah2 [2], both of which encode
functional proteins. The Siah family of proteins are evolutionarily
conserved E3 ubiquitin ligases that have recently been implicated
in various cancers and show promise as anticancer drug targets.

The Siah family proteins contain an N-terminal RING domain
followed by two Zinc fingers and a C-terminal substrate binding
domain (SBD) [3]. The crystal structure of the Siahl SBD has
been determined [4-7] and contains a fold that has not been
observed in other E3 structures [8,9]. To date the structure of
Siah2 has not been determined. However, these two proteins share
high sequence similarity and presumably high structural homol-
ogy. The high level of sequence conservation between Siahl and
Siah?2 is reflected in similar functional roles by sharing a number of
ubiquitination substrates [10,11]. However, both Siahl and Siah2
also have specific substrates. Moreover, the expression of Siahl
and Siah? is differentially regulated, providing further support for
different functional roles. For instance, Siahl is induced by p53
upon genomic stress due to DNA damage, while Siah?2 is induced
by hypoxia, estrogens, etc. [12-14]. One of the recent studies
reports that estrogen increases the protein and mRNA expression
of Siah2 but not of Siahl [15]. A report investigating the
physiological function of Siah1 and Siah2 by generating knock-out
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mice demonstrated that deletion of Siahl results in sub-viability
and growth retardation. In contrast, Siah2 knock-out mice are
completely viable. Of note, Siah2 Siah1 double knock-out mice die
at birth [16]. This supports the notion that Siahl and Siah2
proteins have both distinct and overlapping functions.

Siahl and Siah2 are known to function as E3 ubiquitiin ligases
that mediate the ubiquitination of diverse cellular substrates. In
mammals, more than 30 substrates of the Siah ubiquitin ligases
have been identified [17-19]. For instance, the Siah proteins
regulate the ubiquitination-dependent degradation of transcrip-
tional repressors such as NcoR/TIEG-1, transcriptional activators,
for instance p-catenin, the netrin receptor, the microtuble-
associated motor protein Kid as well as multiple other proteins.
By controlling the stability of these sustrate proteins, Siahl and
Siah2 regulate an array of cellular functions, such as angiogenesis,
DNA damage response, mitochondrial dynamics and Ras and
estrogen-receptor (ER) dependent signaling.

The role of the Siahl E3 ubiquitin ligase in cancer is currently
poorly understood. However, Siahl is more often described as a
tumour suppressor [20]. For instance, the expression levels of
Siahl have been reported to be downregulated in various cancers.
Also, inhibition or low levels of Siahl have been shown to
negatively regulate apoptosis, thereby promoting cancer progres-
sion [21-24]. In contrast to the role of Siahl, Siah2 has been
described to function as a proto-oncogene. Growing evidence
highlights the functional role of Siah2 in promoting the
progression of multiple types of cancer, including breast [25-27],
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lung [28], pancreatic [29], prostate [30,31], liver [32] cancer and
melanoma [13].

The different roles of Siahl and Siah2 in cancer are likely
mediated through the ubiquitination of distinct substrates. For
instance, Siahl but not Siah2, polyubiquitinates and degrades
ELL2 [33]. Siahl and Siah2 SBD are highly conserved with 86%
sequence similarity and the molecular basis for the specificity in
substrate recognition by Siahl and Siah2 is currently unknown.
One of the Siah2 specific substrates is prolyl hydroxylase 3
(PHD3). PHD3 belongs to a family of oxygen and 2-oxoglutarate
dependent prolyl hydroxylases, which also includes PHD1 and
PHD2 [34]. These prolyl hydroxylases have been shown to
function as cellular oxygen sensors by hydroxylating a number of
substrates, including Hypoxia Inducible Factor 1o (HIF-la).
Hydroxylation of HIF-1la at two conserved proline residues leads
to its rapid degradation. It has been shown that the E3 ligase Siah2
preferentially ubiquitinates PHD3 under hypoxic conditions, thus
leading to PHD3 degradation and consequently to HIF-1a
stabilization. Thus Siah2 plays an important role in hypoxia
dependent signaling, and this is likely to contribute to its tumor
promoting activity [35,36].

Molecular Basis of Siah2 Substrate Specificity

Given the different roles of Siahl and Siah?2 in cancer and their
different cellular functions, it is important to understand the
structural basis of their substrate specificity and to design Siah2
specific inhibitors. Hence, in this study we decided to investigate
the molecular basis underlying the substrate specificity of Siah2 in
comparison with Siahl using the well characterised substrate
PHD3.

Materials and Methods

Plasmid constructs

The pcDNA3.1 FLAG-SBD of human Siah?2 (residues 130-392)
and full-length (1-394) were constructed by PCR amplification of
Siah2 c¢DNA fragments separately from the pCMV-SPORT6
plasmid (Thermo Scientific OpenBiosystems) with a Hind III-
containing forward primer and an Xbal containing reverse
primer. The HindIII-Siah2-Xbal fragments were then subcloned
into the FLAG-pcDNA3.1 plasmid. Similarly, FLAG-SBD of
Siah1 (90-292) and full-length (1-292) were constructed using the
same restriction sites. The HA-PHD3 plasmid, carrying a C-
terminal HA tag, was constructed by PCR amplification of human
PHD3 from HEK293 cell cDNA, including a Kpnl site and an

(@) IP:FLAG Lysates
HA-PHD3 - + ¥+ E— T T
FLAG-Siah2 SBD - - + - - - + -
FLAG-Siah2 - - -+ - - - +
Empty pcDNA3.1 - + - - - + - -

HA-PHD3—>

FLAG-Siah2—>

.

FLAG
HA-PHD3—> ' P E—
Light Chain—> P
FLAG-Siah2 SBD—>

(b)

Input

GST pulldown

GST-Siah2

GST SBD

HA-PHD3

-

S— A

Figure 1. Interaction of Siah2 with PHD3. (a) HEK293 cells were transfected in 60-mm cell culture plates for 2 days with the indicated expression
plasmids. The cells were lysed, and the lysates were subjected to FLAG immunoprecipitation (IP), as described under “Materials and Methods".
Aliquots of the cell lysates and immunoprecipitates were analyzed by western blotting with the anti-HA antibody. Both full length Siah2 and Siah2
SBD bind to PHD3 to the same extent. In the IP, the presence of the faint band in the empty vector lane is due to non-specific binding of PHD3. The
same membrane was reblotted with FLAG antibody to detect FLAG tagged Siah2 proteins. (b) GST-Siah2 SBD pulldown of HA-PHD3. Cell lysate of
HEK293 cells transfected with HA-PHD3 was incubated with GST-Siah2 SBD immobilized on GSH agarose beads and the reaction was performed as
described under “Material and Methods”. The empty expression vector alone was expressed as a GST control for non-specific binding of HA PHD3.
After the incubation, the lysate was removed, the GSH-agarose beads were washed, and bound HA-PHD3 was analyzed by Western blotting using
anti HA antibody. The pull down assay confirmed the interaction of Siah2 SBD with PHD3.

doi:10.1371/journal.pone.0106547.9001
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Figure 2. Siah1 exhibits weak binding compared to Siah2 with PHD3. HEK293T cells were transfected in 60-mm cell culture plates for 2 days
with expression plasmids for the proteins indicated at the top of each panel. (a) Cell lysates were subjected to HA-IP and aliquots of the cell lysates
and immunoprecipitates were analyzed by western blotting with the anti-FLAG antibody. Both the Full length and Siah1 SBD did not show binding to
PHD3 (b) The lysates were subjected to reciprocal FLAG-IP. Immunoprecipitates and aliquots of the cell lysates were analyzed by Western blotting
with anti-HA and anti-FLAG antibodies. In the IP, FLAG-SBD overlaps with the IgG light chain. Compared to Siah2 SBD, only weak binding of Siah1
SBD to PHD3 was observed.

doi:10.1371/journal.pone.0106547.9g002
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DNA plasmids were transiently co-transfected in subconfluent
HEK293T cells plated in a 60 mm plate with the GeneJuice
transfection reagent (Novagen) according to the manufacturer’s
instructions. Empty pcDNA3.1 vector was also co-transfected as a
control. Cells were lysed 48 hours after transfection.

Co-immunoprecipitaction

Cells were washed with cold PBS and lysed 2 days post-
transfection with lysis buffer containing 25 mM Tris-HCL
(pH 7.5), 3 mM EDTA, 2.5 mM EGTA, 20 mM NaF, 1 mM
NazVO,, 20 mM sodium B-glycerophosphate, 10 mM sodium
pyrophosphate, 0.5% Triton X-100, 0.1% B-mercaptoethanol and
Roche protease inhibitor cocktail. Lysates from transfected cells
were pre-cleared by centrifugation and were added to anti-FLAG
or anti-HA M2 monoclonal antibody coupled agarose beads to
immunoprecipitate the FLAG-Siah2 or HA-PHD3. Samples were
tumbled at 4°C for 1 hour and washed four times with NP40 lysis
buffer containing 20 mM Tris (pH 7.5), 50 mM NaCl, 0.5 mM
EDTA, 5% glycerol, 0.5% NP40 and once with buffer containing
50 mM Tris (pH 7.5).

GST-SBD expression
To prepare the recombinant GST-Siah2 SBD (residues 130

322) protein, a bacterial expression plasmid construct of GST-
Siah2 was generated in the pGEX-6P-1 vector. This construct was
transformed into E. coli BL21 and induced with 0.2 mM IPTG at
18°C overnight. Bacterial pellets were harvested, sonicated and
lysed in 50 mM Tris-HCIL (pH 8.0), 100 mM NaCl, 2 mM
dithiothreitol containing a protease inhibitor cocktail (Sigma).

GST pull down

For GST pull down assay, GST-Siah2 SBD was allowed to bind
to glutathione sepharose beads (GSH) (GE Healthcare) for 30 min
at 4°C in binding buffer containing 50 mM Tris-HCI (pH 8),
150 mM NaCl, 1 mM DTT, 5% glycerol, 0.1% Triton X-100.
Cell lysate from HEK293T cells transfected with HA-PHD3 was
incubated with the GST-Siah2 fusion proteins, immobilized on
glutathione sepharose beads, for 1 hour at 4°C. GST alone was
used as a control. After binding, the resin was washed three times
in binding buffer, and then heated in Laemmli sample buffer for
5 min at 95°C. Samples were separately resolved in 12% PAGE
and western blotted using an anti-HA antibody.

Domain swapping using fusion PCR and mutagenesis

A three step fusion PCR [37] procedure was employed to create
the fusion proteins, SBD[S1]V'[$2]°T (SBD with Siahl N-
terminus and Siah? C-terminus) and SBD[S2]V'[S1]9T (SBD
with the Siah2 N-terminus and Siahl C-terminus) from the wild
type pcDNA Siahl and Siah2 constructs. Specific mutations were
generated by site directed mutagenesis. Selected mutant
SBD[S1]VT[$2]°T and SBD[S2]NT[S1]°T constructs were custom
synthesized (Shanghai Shine Gene Molecular Biotech and Gen-
script).

Homology modeling and docking of Siah2 SBD and
PHD3

The three dimensional (3D) models of Siah2 SBD and PHD3
were prepared by homology modeling using the SWISS-MODEL
automated protein modeling server (http://swissmodel.expasy.
org/) [38]. The model of the complex of Siah2 SBD/PHD3 was
constructed using the ClusPro program [39], which is composed of
three steps: docking using a Fast Fourier Transform-based
algorithm; energy filtering using a combination of desolvation
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and electrostatic energies; clustering steps to discriminate against
false positives and reduce the set of configurations to near-native
structures. The models with a balanced scoring function were
accepted and the top ranked model was analyzed for interacting
residues using Pymol [40] and Pdbsum [41].

Results

SBD of Siah2 alone can independently interact with
PHD3

Given that PHD3 is a well characterized substrate of Siah2, we
chose this substrate for our studies. We used co-immunoprecip-
itation to analyze the interaction between Siah2 and PHD3. Two
Siah2 plasmid constructs, full length and SBD with an N-terminal
FLAG tag, were generated. Subsequently, cells were cotransfected
with the constructs encoding for full length FLAG-Siah2 or
FLAG- Siah2 SBD and HA-PHD3. Anti-FLAG M2 agarose beads
were used to immunoprecipiate the Siah2-PHD3 protein complex.
The complex was analyzed using western blots with HA antibody
to detect PHD3 bound to Siah2. When comparing the ratio of
PHD3 in the FLAG-immunopreciptates to that in the lysate, an
enrichment of PHD3 protein was seen in the immunoprecipitates,
suggesting strong binding of Siah2 to PHD3 (Fig. 1a). Further-
more, it was found that the amounts of PHD3 bound to full length
Siah?2 and the SBD of Siah2 were similar. The comparable
binding of PHD3 to full length and SBD of Siah2 suggests that the
substrate binding domain alone is sufficient for the interaction with
PHD3. Hence, in further experiments we focused on the
interaction between Siah2 SBD and PHD3.

To confirm the interaction between Siah2 SBD and PHD3, we
also carried out GST pull down assay, using recombinant GST
tagged SBD of Siah2 and lysates from cells transfected with PHD3.
As shown in Fig. 1b, specific in vitro binding of PHD3 to Siah2
SBD was detected.

Siah1-PHD3 interaction

It has been reported that Siah2 is more efficient than Siahl in
inducing the degradation of PHD3 [27]. However, no direct
interaction of Siahl with PHD3 has been reported so far. Hence,
we performed co-immunoprecipitation assay to check the binding
of both full length and the SBD of Siah1 with PHD3. To this end,
HEK293T cells were cotransfected with the corresponding
expression constructs, followed by HA immunoprecipitation.
However, no binding between PHD3 and Siahl was detected
(Fig 2a). Subsequently, reciprocal co-immunoprecipitation was
performed to compare the interaction of Siahl and Siah2 with
PHD3. Thus, HEK293T cells were cotransfected with the FLAG-
Siahl SBD and FLAG-Siah2 SBD and HA-PHD3 expression
constructs, followed by FLAG immunoprecipitation. Interestingly
we observed only a weak interaction of Siahl SBD with PHD3
when compared to the binding of Siah2 SBD to PHD3 (Fig. 2b)
Hence, the data obtained by immunoprecipitation assays suggest
that there is a marked difference in the binding affinities of Siahl
and Siah2 SBD for PHD3.

Interaction of chimeric forms of Siah1 and Siah2 SBD with
PHD3

In order to determine which regions of the SBD are critical for
the interaction with PHD3, we generated chimeric forms of Siahl
and Siah2 SBD. The SBD of Siahl and Siah2 comprises of
residues 90-282 (193 aa) and 130-322 (193 aa), respectively. To
avoid confusion, residue numbers for both the Siahl and Siah2
SBD are labeled and hereafter referred as 1-193, unless stated
otherwise. Residues 101-193 of Siahl were swapped with the
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Figure 3. Interaction of wild type (WT) and chimeric Siah proteins with PHD3. (a) Diagrammatic representation of the WT Siah1 and Siah2
SBD, which comprises of 1-193 residues, and the chimeric forms of Siah1 and Siah2 SBD, SBD[S11N"[S2]T and SBD[S21V'[S11°". Corresponding original
residue numbers are given in parentheses. (b) HEK293T cells were transfected in 60-mm cell culture plates for 2 days with the indicated expression
plasmids. 48 hours after transfection, the cells were lysed and cell lysates were subjected to FLAG immunoprecipitation (IP). Immunopercipiates and
the aliquotes of lysates were then immunoblotted using indicated antibodies. Both the chimeric forms lost binding to PHD3 as compared to wild

type.
doi:10.1371/journal.pone.0106547.g003

corresponding region of Siah2 and vice versa to obtain the Siahl
N-terminus/Siah2 C-terminus SBD chimera ([S1]¥'[$2]9") and
the Siah? N-terminus/Siahl  C-terminus  SBD  chimera
([S21N'S11CY) constructs, respectively (Fig. 3a). We used co-
immunoprecipitation to investigate the interactions of these two
chimeras with PHD3 (Fig 3b). Consistent with our previous
results, the wild type Siah2 SBD interacted with PHD3 strongly
compared to the weak binding of Siah1 SBD. The binding of both
chimeric forms [S1]NT[82]9" and [S2]N'[S119" with PHD3 was
markedly reduced. Thus, the chimera that lacks the N- or C-
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terminal region of Siah2 SBD lost its binding with PHD3
compared to wild type Siah2. These results suggest that both
regions of SBD of Siah2, 1-100 and 101-193, are important for
binding with PHD3.

Identification of critical residues in the Siah2 SBD that
mediate substrate specificity

Next, we performed mutation studies with the chimeric forms to
investigate the molecular basis of the substrate specificity. Hence,
to identify the critical residues in the Siah2 SBD, pairwise
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Figure 4. Effect of mutations in Siah1 and Siah2 SBD Chimeras on binding with PHD3. (a) Pairwise sequence alignment of Siah1 and Siah2
SBD was performed by EMBOSS Needle tool. The 26 amino acids that are unique in Siah1 and Siah2 SBD are highlighted in grey. Dissimilar amino
acids are highlighted by “*'. Similar amino acids are highlighted by "’ and identical amino acids are highlighted by ‘|' (top panel). The 10 dissimilar
amino acids between Siah1 and Siah2 SBD are shown in diagrammatic representation of the chimeric forms, SBD[S1]N[S2]°T and
SBDISTIV[S2] T (bottom panel). The original residue numbers are labeled in the respective colors (b) HEK293T cells were transfected with the
indicated expression plasmids, followed by FLAG immunoprecipitation (IP) of cell lysates. Immunoprecipitates and lysates were then analyzed by
western blotting using the indicated antibodies. The N-terminal mutant chimera, [S1-(E175/P575/F98H)IN'[S2]°T did not regain binding to PHD3 and
the C-terminal mutant chimera, [S2]1NT[S1-(Q121L/T160AI°" regained complete binding to PHD3 equivalent to WT Siah2 SBD.
doi:10.1371/journal.pone.0106547.g004
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Figure 5. Effect of mutations in the C-terminal region of the SBD on binding with PHD3. HEK293T cells were transfected with the
expression plasmids for the indicated proteins. The cells were lysed followed by FLAG immunoprecipitation (IP) of cell lysates. Immunoprecipitates
and lysates were then analyzed by western blottilg? using the indicated antibodies. The [S2]VT[$1-Q121L]I°" chimera regained binding equivalent to

Siah2 SBD wild type. In contrast, [S2]V[S1-T160A]
light chain.
doi:10.1371/journal.pone.0106547.g005

sequence alignment of Siahl and Siah2 SBD was performed by
the EMBOSS Needle tool [42]. Based on the alignment, 26 amino
acids were found to be different, of which 10 residues are dissimilar
and 16 are similar (Fig. 4a top panel). Therefore, we first focused
on the 10 dissimilar amino acids in our mutation studies.

Out of the 10 dissimilar residues, 6 residues are in the N-
terminal region and 4 residues are in the C-terminal region of the
SBD (Fig. 4a bottom panel). Mutations were generated in a
stepwise manner to identify the critical residues that might confer
substrate specificity. First, three of the 6 N-terminal dissimilar
amino acids of Siahl in [S1]N[S2]°" chimera (Glul7, Pro57,
Phe98) were mutated back to the corresponding Siah2 residues,
giving rise to the chimera [S1-(E17S/P57S/F98H)INT[S2]CT.
Similarly, out of the 4 dissimilar amino acids of Siahl in the
[S2INY[S119Y chimera, two (GIn121, Thr160) were mutated back
to the corresponding Siah2 residues, resulting in [S2]~T[S1-
(QI21L/T160A]°". Next, we carried out co-immunoprecipitation
studies with the mutated chimeras to determine whether the
introduced mutations would improve the binding to PHD3. The
results show that [S1-(E17S/P57S/F98H)N"[S2]“" did not
regain binding, suggesting other residues in the N-terminal SBD
could be important. On the other hand, [S2]™'[S1-(QI21L/
T160A]“" regained binding with PHD3 to levels equivalent to the
binding of wild type Siah2 SBD (Fig. 4b). This indicates the crucial
role of the Siah2 residues Leul21 and Alal60 in binding to PHD3.
Hence, further single point mutations of S2]N'[S1-(QI21L/
T160A]“"  and selected mutations of [SI-(E17S/P57S/
FIO8H)|NT[S2]CT were generated to identify the specific residues
that play a critical role in selective binding.

We first focused on the C-terminal SBD. As shown above,
mutation of the Siahl residues GInl21 and Thrl60 to the
corresponding residues in Siah2, Leul21 and Alal60, respectively,
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showed only a small increase in PHD3 binding. FLAG-SBD Siah in the IP was masked by the IgG

restored the binding to PHD3 to Siah2 SBD wild type levels.
Therefore, we next investigated which of the two mutants (either
one or both) is critical for PHD3 binding. To this end, two
individual point mutants were generated, [S2]~ [S1-Q1211]°T
and [S2]N'[S1-T160A]°". Subsequently, the binding of the two
mutants to PHD3 was analysed by co-immunoprecipiation. It was
observed that the Q121L mutant restored binding to the level of
wild type Siah2 SBD. In contrast, T160A showed only a small
increase in PHD3 binding. These results indicate the critical
importance of Leul21 in the C-terminal region of the Siah2 SBD
(Fig. 5).

In subsequent experiments, we studied the involvement of
critical residues in the N- terminal region of Siah2 SBD. Our
initial chimera [S1-(E17S/P57S/F98H)]NT[S2]°T did not exhibit
any significant binding to PHD3. This indicates that other residues
in the N-terminal SBD are important in conferring specificity for
substrate binding to Siah2. We focused on the three remaining N-
terminal dissimilar residues in the [S1]N'[S2]" chimera (Pro21,
Ala26, GIn62). We generated a chimeric construct in which these
three amino acids were mutated back to the corresponding
residues in Siah? SBD, [S1-(P21H/A26P/Q62A)1N'[$2]°". In
addition we also generated a chimera in which all 6 dissimilar
residues were mutated back to those in Siah?2, [S1-6Mut]N'[$2]¢"
(where 6Mut corresponds to E17S/P21H/A26P/P575/Q62A/
F98H) (Fig. 4a). Subsequently, the interaction between these
mutant constructs and PHD3 was investigated using co-immuno-
precipitation. Both [S1-(P21H/A26P/Q62A)~ " [$2]°" and [S1-
6Mut]N"[$2]°" chimeras only partially regained binding to
PHD3, compared to binding of wild type Siah2 SBD to PHD3
(Fig. 6a). Furthermore, it was found that the chimeras with the
three and six mutations showed similar binding to PHD3. This
suggests that the partial regaining of the interaction with PHD3 is
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Figure 6. Effect of mutations in the N-terminal region of the SBD on binding with PHD3. HEK293T cells were transfected with the
expression plasmids for the proteins indicated at the top of each panel. The cells were lysed and the cell lysates were subjected to FLAG-
immunoprecipiation (IP). Immunoprecipitates and lysates were then analyzed by western blotting using the indicated antibodies. (a) Both [S1-(P21H/
A26P/Q62A)NT[S2]T and [S1-6Mut]NT[S2]°" chimeras only partially regained binding to PHD3, compared to binding of wild type Siah2 SBD to PHD3.
(b) Only the chimera with the P21H/A26P mutations regained partial binding with PHD3. In contrast, mutation of Q62A did not increase PHD3

binding. FLAG-SBD Siah in the IP was masked by the IgG light chain.
doi:10.1371/journal.pone.0106547.g006

likely due to the mutant residues in [S1-(P21H/A26P/
Q62A)]NT[SQ]CT. These results suggest an involvement of
His21, Pro26 and/or Ala62, whereas Serl7, Ser57 and His98
are not involved in the interaction of Siah2 with PHD3.
Subsequently we studied the importance of His21, Pro26 and
Ala62 in the C-terminal region of Siah2 SBD. Thus, we generated
two mutant constructs. In the first construct, Pro21 and Ala26 in
the Siahl SBD were mutated to the corresponding residues in
Siah2, His21  and  Pro26, respectively  ([S1-(P21H/
A26P)INT[S2]9Y). In the second construct, GIn62 in the Siahl
SBD was mutated to the corresponding Ala62 ([S1-
Q62A1N[S21°"). Only the chimera with the P21H/A26P
mutations regained partial binding with PHD3. In contrast, the
Q62A mutation did not increase PHD3 binding (Fig. 6b),
indicating that Ala62 is not critical for the Siah2-PHD3
interaction. Thus, of the 6 dissimilar amino acids in the N-
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terminal region of the SBD of Siah2 (1-100 aa), we found that
His21 or Pro26, or both, play a role in binding to PHD3.

Our results also suggest that in addition to His21 and Pro26,
other Siah2 residues are important for mediating substrate
specificity between Siahl and Siah2. Out of the 10 similar amino
acids in the N-terminal region of Siahl and Siah2 SBD, we
hypothesized a critical role for Ser3 and Tyr34 through their
plausible involvement in hydrogen bonding (Fig. 7a). We therefore
used the chimera in which all six dissimilar amino acids in the N-
terminal region of [S1IN'[S2]°T were mutated from Siah1 back to
Siah2. Tn to this [S1-6Mut]¥'[S2]°" construct, two additional
mutations (N3S/F34Y), corresponding to the candidate similar
amino acids, were introduced, resulting in the mutant, [SI-
8Mut]™M (821" (where 8Mut = N3S/E17S/P21H/A26P/
F34YP57S/Q62A/F98H). Indeed, the [S1-8Mut]™ [$2]“T mu-
tant increased binding compared to [S1-6Mut]™ " [S2]°" (Fig. 7b).
Densitometry quantification of the binding affinities revealed that
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Figure 7. Effect of additional mutations in the N-terminal region of the SBD on binding with PHD3. (a) The 10 similar amino acids in the
N terminal region (1-00) of Siah1 and Siah2 SBD are highlighted in grey. Mutated residues among the similar amino acids are highlighted within the
box. (b) HEK293T cells were transfected with the expression plasmids for the indicated proteins. The cells were lysed and the cell lysates were
subjected to FLAG-immunoprecipiation (IP). Immunoprecipitates and lysates were then analyzed by western blotting using the indicated antibodies.
The [$1-8Mut]NT[S2]°T mutant increased binding compared to [S1-6Mut]NT[S2]". (c) The amount of PHD3 that coimmunoprecipitated with chimeric
and mutated Siah1 and Siah2 SBD was quantified using Gel-pro analyzer software. The binding of the chimeric and mutated SBD to PHD3 was
expressed as percentage of the binding of WT Siah2 SBD to PHD3. The data are represented as mean=S.E.M from three independent experiments.
Differences in measured variables were assessed with Student’s t test. * denotes p<<0.05.

doi:10.1371/journal.pone.0106547.g007

SBD in conferring substrate specificity. However, given that
introducing these four amino acids into Siahl results only in a

the mutation of the 6 dis similar amino acid increased the binding
of [S11N'[82]€Y from 4 to 29 percent. The additional mutation of

the two similar amino acids (N3S/F34Y) resulted in a further
increase in the binding affinity to 48 percent (Fig. 7c). Taken
together, our study suggests that a critical role for the four amino
acids Ser3, His21, Pro26, Tyr34, in the N-terminal region of Siah2
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partial recovery of binding, other amino acids are likely to be
involved in the interaction between the N-terminal region of Siah2
SBD and PHD3 (see discussion).
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Figure 8. Docking model of the N-terminal Siah2 SBD and PHD3. N-terminal region (1-100) of the modeled Siah2 SBD was docked with
PHD3 using an automated Cluspro server. The complex was then presented using Pymol as (a) cartoon representation, and (b) space filling
representation. (c) The details of the interactions were obtained by PDBsum. The number of H-bond lines between any two residues indicates the
number of potential hydrogen bonds between them. For non-bonded contacts, the width of the striped line is proportional to the number of atomic

contacts.
doi:10.1371/journal.pone.0106547.g008

Discussion

The present work attempts to identify the critical residues of
Siah2 SBD that determine the preference of PHD3 binding to
Siahl over Siah2. Our results highlight that both the N- and C-
terminal regions of the Siah2 SBD are involved in the interaction
with PHD3. In the C-terminal region of the Siah2 SBD, Leul21 is
critical for selective binding to PHD3. Thus, mutating Glul21, the
corresponding residue in Siahl, to Leul2l markedly increases
PHD3 binding. In Siah2, the amino acids around Leul2l are
hydrophobic and hence we hypothesize that this region might
form a hydrophobic pocket or interaction surface that would
favour the binding of PHD3. In contrast, in Siahl this
hydrophobic pocket or interphase might be disrupted by Glul21.

In the N-terminal region of the Siah2 SBD, we could identify
four residues (Ser3, His21, Pro26, Tyr34) that are likely to be
involved in the binding to PHD3. Substituting the corresponding
Siahl residues with these four amino acids increases PHD3
binding to 48% percent compared to wild type Siah2. In order to
identify additional residues that mediate substrate specificity of
Siah2 and would restore the binding of Siahl to PHD3 to 100%,
we performed docking studies between the N-terminal region of
the modeled Siah2 SBD and PHD3 to obtain a structural
perspective. The complex was then analyzed for its detailed
interactions using PDBsum. 18 residues of the N-terminal Siah2
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SBD and 20 residues of PHD3 were found to be involved in
mteractions. These include 16 hydrogen bonds and 161 non-
bonded contacts (Fig. 8). The 18 amino acids of Siah2 are found to
be within the first 35 residues of the N-terminal SBD region. When
analyzing the N-terminal sequences of both Siahl and Siah2 SBD,
most of the non-identical amino acids are also present within the
first 35 residues of Siah2 SBD. In the docking model, out of the
four residues (His21, Pro26, Ser3, Tyr34) that are likely to be
mvolved in PHD3 binding, as determined experimentally, three
residues (His21, Ser3, Tyr34) were involved in Hydrogen bonding
with PHD3. As proline residues confer conformational rigidity and
act as a structural disruptors [43], we hypothesize that Pro26
might cause some structural change in the Siah2 SBD that favours
the selective binding to PHD3. Based on the docking analyses
shown in Fig. 8¢, additional residues in the N-terminal region of
Siah2 SBD could be tested in future mutation studies. The
corresponding original residue numbers of the reported residues
(Leu 121, Ser3, His21, Pro26, Tyr34) are Leu250, Ser132, His150,
Prol55, Tyrl63 (Fig. 4a).

Evidence from in wvitro, in vivo, and patient sample studies
describe opposite roles for Siahl and Siah2 in cancer progression,
metastasis, and therapeutic responses [20]. The different roles of
Siahl and Siah2 are highly likely to be due to the ubiquitination of
distinct sets of substrate proteins. Our study helps in understanding
the molecular basis of substrate specificity between Siahl and
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Siah2 by identifying specific Siah2 SBD residues conferring
substrate specificity. This information may be of importance to
identify potential inhibitors targeting specifically Siah2, but not
Siahl, for therapeutic purposes. It has been reported that targeting
the SBD or RING domain using a peptide inhibitor or mutants is
capable of reducing tumor growth and metastasis in various
models [13,30,44]. However, targeting the RING domain is
challenging because of the similarity of this domain among the
Ring-type E3 ligase family [45] and thus most of the inhibitors for
E3 ligases obtained so far inhibit multiple ligases [46]. So far,
menadione is the only available Siah2 selective inhibitor, identified
from a Meso-scale-based assay of 2000 compounds [44]. However,
menadione has multiple other biological activities. The Siah
proteins are unique in their SBD architecture, compared to other
ligases [47]. Thus, differences in the SBD between Siahl and
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