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Alternative splicing is a major diversification mechanism in the human transcriptome and proteome. Several diseases, including
cancers, have been associatedwith dysregulation of alternative splicing.Thus, correcting alternative splicingmay restore normal cell
physiology in patientswith these diseases.This paper summarizes several alternative splicing-related diseases, including cancers and
their target genes. Since new cancer drugs often target spliceosomes, several clinical drugs and natural products or their synthesized
derivatives were analyzed to determine their effects on alternative splicing. Other agents known to have modulating effects on
alternative splicing during therapeutic treatment of cancer are also discussed. Several commonly used bioinformatics resources are
also summarized.

1. Introduction to Alternative Splicing

Alternative splicing of RNA is a key mechanism of increasing
complexity in mRNA and proteins [1]. Since alternative
splicing apparently controls almost all human gene activities,
imbalances in the this splicing process may affect the pro-
gression of various human diseases and cancers [2]. Vary-
ing alternations in excision and/or inclusion of exons may
generate different mRNA transcripts and corresponding pro-
teins. Therefore, in addition to mediating changes in protein
structure, function, and localization [3], alternative splicing
in higher eukaryotes affects the differentiation and develop-
ment of cancer and other diseases [4].

2. Alternative Splicing and Diseases

Alternative RNA splicing is commonly reported in neuro-
logical and muscle diseases [5–7]. Studies show that these
diseases at least partly result from alternative splicing, which
regulates the complexity of integral membrane proteins,
including changes in their topology, solubility, and signal
peptides [3]. For example, aberrant alternative splicing has
shown associations with Parkinson disease [3, 8]. For spinal
muscular atrophy (SMA), the level of survival motor neuron
(SMN) protein was downregulated by its alternative splicing
[9]. Therapies for SMA have recently improved by targeting
RNA splicing for inclusion of exon 7 into SMN mRNA [10].
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Phorbol 12-myristate 13-acetate was reported tomodulate the
alternative splicing of sarcoplasmic reticulum Ca2+-ATPase1
(SERCA1) which is dysregulated in myotonic dystrophy type
1 disease [11].

Additionally, alternative splicing reportedly regulates
heart development [12], cardiovascular disease [13], blood
coagulation [14], cholesterol homeostasis [15], cellular prolif-
eration, apoptosis, immunity [16], and systemic sclerosis [17].
For example, heart-specific knockout of the serine/arginine-
(SR-) rich family of splicing factors, ASF/SF2, produces car-
diomyopathy and affects splicing of cardiac troponin T and
LIM domain-binding protein [18]. Specific CLK inhibitors
(dichloroindolyl enaminonitrile KH-CB19) of CDC2-like
kinase isoforms 1 and 4 (CLK1/CLK4) can inhibit phospho-
rylation of cellular SR splicing factors and affect the splicing
of tissue factor isoforms flTF (full-length TF) and asHTF
(alternatively spliced human TF) [19].

Using exon array, the global mRNA splicing profile of
ischemic cardiomyopathy has been investigated, and the
alternative splicing of four main sarcomere genes, such as
cardiac troponin T (TNNT2), cardiac troponin I (TNNI3),
myosin heavy chain 7 (MYH7), and filamin C, gamma
(FLNC), was dysregulated [20]. The alternative splicing
of blood coagulation-related genes including tissue factor
(coagulation factor III), tissue factor pathway inhibitor
(TFPI), and coagulation factor XI has been well reviewed
[14]. For cholesterol production and uptake, alternative splic-
ing of 3-hydroxy-3-methylglutaryl coenzyme A reductase
(HMGCR) and LDL receptor (LDLR) can suppress their pro-
tein activities [21, 22]. Proprotein convertase subtilisin/kexin
type 9 (PCSK9) [23], HMG-CoA synthase (HMGCS1) [24],
and mevalonate kinase [25] also reported to be involved
in cholesterol biosynthesis and receptor-mediated uptake
through alternative splicing.

3. Alternative Splicing and Cancer

In cancer-associated genes, splicing has important roles in
oncogenesis, tumor suppression [26], and metastasis [27].
Alterations in alternative splicing are commonly reported
in various cancers [27–29]. Reported examples include p53
and PTEN [30], kallikrein-related peptidase 12 (KLK12)
[31], breast cancer early-onset 1 (BRCA1) [32], protein N-
arginine methyltransferases 2 (PRMT2) [33], and CDC25
phosphatases [34] in breast cancer; lysyl oxidase-like 4
(LOXL4) [35] and growth factor receptor-bound protein
7 (GRB7) in ovarian cancer [36]; androgen receptor in
prostate cancer [37]; tissue inhibitor of metalloproteinases-
1 (TIMP1) and the cell adhesion molecule CD44 in colon
cancer [38, 39]; Bcl-xL, CD44, and others in lung cancer [40];
calpain 3 inmelanoma [41]; and Krüppel-like factor 6 (KLF6)
in liver cancer [42]. Therefore, alternative spliced variants
are potential biomarkers [43, 44] for the cancer diagno-
sis/prognosis andmay be the targets for cancer therapy based
on specific splicing correction treatments.

Single nucleotide polymorphisms (SNPs) affecting exon
skipping has reviewed to confer to complex diseases [45].The
improvement of high-throughput technologies such as RNA-
Seq [46, 47] and exon arrays [48, 49] is helpful to identify the

genome-wide cancer-associated splicing variants. Splicing
changes may associate with lung and prostate cancer risk in
terms of some SNPs. For example, a coding synonymous SNP
G870A of cyclin D1 (CCND1) with a modulating ability to its
splice pattern was reported to be associated with lung cancer
susceptibility [50]. Similarly, some coding synonymous SNPs
may generate new splicing sites in the middle of an exon of
p53 gene to change splicing [51]. Mutations in the adenoma-
tous polyposis coli (APC) [52] and BRCA1 [53, 54] genes have
reported to skip exon by altering splicing. Furthermore, an
intronic SNP, IVS −27G>A/IVSΔA, creates a new splicing
factor SR-binding site and deletes two other overlapping SR-
binding sites, generating three alternative splicing forms of
KLF6 (KLF6 SV1-3) [55].This SNPwas found to be associated
with prostate cancer [56]. For lung cancer study, the tumor
patients with overexpression of KLF6 SV1 have lower survival
[56, 57].

Actually, the information of many SNPs located in 3 and
5 splicing sites is searchable in the dbSNP in NCBI website
(http://www.ncbi.nlm.nih.gov/snp) when the “limit” func-
tion is chosen. Researchers may choose the SNPs of splicing
sites located in interested genes to identify their association
relationships to diseases and cancers. A database consisting
of genome-wide SNP and splicing sites, namely, ssSNPTarget
[58] was designed to search the splice site SNPs (ssSNPs)
by input of gene symbol, SNP rs number, transcript ID, or
genomic position (http://variome.kobic.re.kr/ssSNPTarget/).

4. Alternative Splicing-Related Drugs and
Natural Products

Splice modulating therapies have been developed for human
disease [59–61] and cancer therapy [62, 63]. Antitumor
drugs have been developed to target alternative splicing [64],
splice variants [65], and spliceosomes [66, 67]. For example,
pharmacological interventions may be affected by mRNA
transcript diversity [68]. To correct aberrant splicing, specific
mRNA transcripts have been targeted in genetic disorders
such as Duchenne muscular dystrophy. Since mutations of
splicing factor 3B subunit 1 (SF3B1) are common in several
haematological malignancies, the use of various natural
products and their synthetic derivatives in therapies targeting
SF3B has proven highly effective [67].

For drug discovery for SMA, several small molecules
including sodium vanadate [69], aclarubicin [70], and indo-
profen [71], hydroxyurea [72], valproate [73], 5-(N-ethyl-N-
isopropyl)-amiloride (EIPA) [74], and phenylbutyrate [75]
that increases inclusion of exon 7 of SMN2 gene have been
identified, although some of them may have side effects.
Recently, novel phosphatasemodulators, namely, pseudocan-
tharidins have been discovered with the similar regulating
function to SMN splicing [76]. Valproic acid was found to
enhance SMN2 expression in SMA cell model involving the
SF2/ASF and hnRNPA1 [77].

Clinical drugs such as novantrone (mitoxantrone) can
enhance the effectiveness of therapeutic treatments for famil-
ial neurodegenerative diseases by stabilizing the tau pre-
mRNA splicing regulatory element [78]. Tamoxifen has
proven effective for clinical treatment of estrogen receptor-
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(ER-) positive breast cancer [79]. In endometrial cancer cells,
alternative splicing of ER involving ER-alpha36 is also known
to enhance the agonist activity of tamoxifen [80].

Natural products, including many xenobiotics, are also
known to impair alternative splicing [81]. For example, natu-
ral products such as pladienolide B and FR901464 [82, 83] are
known to affect spliceosome function.However, the synthesis
of these compounds is complicated by their multiple stere-
ocenters. A recent study synthesized Sudemycins, which are
novel analogues of FR901464. By inducing alternative gene
splicing, the Sudemycins conferred both in vitro and in vivo
antitumor effects [84]. Alternative splicing has also shown
regulating effects on the antitumor drug Spliceostatin A, a
stabilized derivative of a Pseudomonas bacterial fermentation
product [85] which specifically targets the SF3b spliceosome
subcomplex to inhibit pre-mRNA splicing [86].Meayamycin,
an analogue of the natural antitumor product FR901464
[87], inhibits RNA splicing against multidrug-resistant cells
and performs antiproliferative effect against human breast
cancer MCF-7 cells by suppression of alternative splicing
[88]. These results suggest that, because of their modulating
effects onRNAsplicing, xenobiotic analogs have potential use
as chemical probes and as anticancer agents. Similarly, the
polyketide natural product borrelidin inhibits cancer metas-
tasis by modulating alternative splicing in VEGF [89]. Anti-
tumor effects involving alternative splicing [90, 91] have
also been reported in natural dietary products. For example,
resveratrol can modulate exon inclusion of SRp20 and SMN2
pre-mRNAs and induce the expression of processing factors
of alternative splicing such as ASF/SF2, hnRNPA1, and HuR
[92].

Recent studies have investigated the role of splice variants
in apoptotic pathways [93, 94]. Regulation of alternative
splicing genes may have anticancer effects. For example,
BCL-Xs and BCL-XL have been associated with proapoptotic
and antiapoptotic effects, respectively, during the progression
of cancer [67, 95, 96]. The ratio of BCL-Xs/BCL-XL can
be decreased by the treatment of protein kinase C (PKC)
inhibitor and apoptotic inducer staurosporine in 293 cells
[97]. Soluble and membrane-bound forms of TNF receptor
superfamily, member 6 (FAS) containing exons 5/7 and 5/6/7
also display proapoptotic and antiapoptotic effects, respec-
tively [67]. The caspase 9 (CASP9) gene has two antagonistic
isoforms, proapoptotic Casp9a and prosurvival Casp9b, and
its splicing is dysregulated in NSCLC lung cancer cell lines
[98].

Alternative splicing is regulated by chromatin structure
and histone modifications [4]. In thyroid tumor cells, for
example, histone deacetylase inhibitors such as butyrate
modulate transcription and alternative splicing of prohibitin
[99]. A study of bovine epithelial cells showed that butyrate,
a major metabolite generated by bacterial fermentation of
dietary fiber in colon cells, has regulating effects on apoptosis
and cell proliferation through alternative splicing [100]. Since
histone deacetylase inhibitor may have antitumor effects, the
identification of this kind of inhibitor in natural products can
improve drug development for tumor therapy.

5. Alternative Splicing-Related
Bioinformatics Resources

Several bioinformatics analyses for the detection and regula-
tion of alternative splicing have been well reviewed [101–103].
However, these literatures mainly focused on the methodol-
ogy for detection of alternative splicing, and the databases of
alternative splicing are less addressed and summarized. Here,
we collect several helpful bioinformatics resources related to
alternative splicing as shown in Table 1.

For example, AsMamDB [104] is one of the early estab-
lished alternative splice databases of mammals, although
their websites are not functional currently. PALS db [105]
provides the putative alternative splicing database based
on UniGene clusters of human and mouse sources which
mainly consist of EST data. Similarly, some databases such
as EASED [107] and AVATAR [108] are constructed by
datasets of EST and mRNAs. ASAP [106] provides the detail
annotation for exon-intron boundary, alternative splicing,
and its tissue specificity for the user to design probes for
distinguishing different splicing isoforms. MAASE [109] is
also specifically designed to apply in splicing microarray
experiments. In contrast, Splicy [115] provide the web-based
tool to predict possible alternative splicing events from
Affymetrix probe set inputs. ASTALAVISTA [116] provides
alternative splicing prediction for transcriptome data from
GENCODE, REFSEQ, and ENSEMBL as well as from custom
gene datasets. Furthermore, SpliceCenter [120] is aweb server
for predicting the influence of alternative splicing on RT-
PCR, RNAi, microarray, and peptide-based data.

Both PolyA DB [110] and AltTrans provide the infor-
mation for alternative polyadenylation [111]. For AltTrans,
the AltSplice pipeline on splicing and the AltPAS pipeline
on polyadenylation were implemented. ASTD [126] also
provides the variants for splicing, transcription initiation, and
polyadenylation. Of note, the dataset of transcriptomics for
alternative splicing is larger than for alternative polyadeny-
lation. GRSDB [112] is a mammalian database of alternative
splicing based on quadruplex forming G-rich sequences
which modulate the 3 end processing of pre-mRNAs.

Additionally, several comprehensive databases for alter-
native splicing have been developed such as HOLLYWOOD
[113], ASD [114], BIPASS [117], ECgene [118], ASPicDB [121],
AspAlt [125], H-DBAS [128], SPLOOCE [129], and APPRIS
[130]. For example, the ECgene provides EST and serial
analysis of gene expression (SAGE) data-based annotation
and visualization for alternative splicing (AS). The ASPicDB
provides EST-based tissue-specific splicing information of
normal and cancer cells. The H-DBAS provides alternative
splicing annotation based on RNA-Seq transcriptomics data.
The APPRIS provides the annotation for principal isoform as
the standard reference sequence for each gene.

Some resources of alternative splicing have special fea-
tures such as splice signals in EuSplice [119], tandem splice
sites in TassDB2 [127], mutational evidence-based analysis
in Alternative Splicing Mutation Database [122], splicing
proteins in SpliceAid 2 [131], and transcription factors in
TFClass [132]. However, the impacts of alternative splicing
on the spliced transcripts encoded protein structure are less
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Table 1: The bioinformatics resources related to alternative splicing (yrs 2001–2013)∗.

AsMamDB [104] An alternative splice database of mammals (website is unavailable)
PALS db [105] Putative alternative splicing database
ASAP [106] Alternative splicing annotation project (http://www.bioinformatics.ucla.edu/ASAP/)
EASED [107] Extended alternatively spliced EST database
AVATAR [108] Database for EST and mRNA

MAASE [109] Alternative splicing database designed for splicing microarray
(http://maase.genomics.purdue.edu/)

PolyA DB [110] Database for mRNA polyadenylation in mammalian
AltTrans [111] Annotation for both alternative splicing and alternative polyadenylation

GRSDB [112] Database of quadruplex forming G-rich sequences in alternative splicing sequences
(http://bioinformatics.ramapo.edu/grsdb/)

HOLLYWOOD [113] A comparative relational database of alternative splicing (http://hollywood.mit.edu/)
ASD [114] A bioinformatics resource on alternative splicing
Splicy [115] Prediction of alternative splicing from Affymetrix data
ASTALAVISTA [116] Analysis of alternative splicing for custom datasets (http://genome.imim.es/astalavista/)
BIPASS [117] Bioinformatics pipeline alternative splicing services
ECgene [118] Alternative splicing database update (http://genome.ewha.ac.kr/ECgene/)

EuSplice [119] A resource for splice signals and alternative splicing in eukaryotic genes
(http://www.genome.com/products-1/integrated-genomics-resources/eusplice)

SpliceCenter [120] A server for analysis of alternative splicing on RT-PCR, RNAi, microarray, and peptide-based
studies (http://discover.nci.nih.gov/splicecenter/)

ASPicDB [121] Database for alternative splicing analysis (http://www.caspur.it/ASPicDB/)
The alternative splicing
mutation database [122] A hub for analyzing alternative splicing from mutational evidence

ProSAS [123] Database for analyzing alternative splicing in the context of protein structures
(http://www.bio.ifi.lmu.de/ProSAS/)

Splice-mediated Variants of
Proteins (SpliVaP) [124]

Signatures for protein isoforms due to alternative splicing
(http://www.bioinformatica.crs4.org/tools/dbs/splivap/)

AspAlt [125]
A interdatabase for comparative analysis of alternative transcription and splicing
(http://www.genome.com/products-1/integrated-genomics-resources/products-integrated-
genomics-resources-igr-aspalt)

ASTD [126] Alternative splicing and transcript diversity database
TassDB2 [127] A comprehensive database of subtle alternative splicing (http://www.tassdb.info/)
H-DBAS [128] Human-transcriptome database for alternative splicing (http://h-invitational.jp/h-dbas/)
SPLOOCE [129] Analysis server of human splicing variants (http://www.bioinformatics-brazil.org/splooce/)
APPRIS [130] Annotation of human alternative splice isoforms (http://appris.bioinfo.cnio.es/)

SpliceAid 2 [131] Database of human splicing factors expression data and RNA target motifs
(http://www.introni.it/spliceaid.html)

TFClass [132] Classification of human transcription factors (http://tfclass.bioinf.med.uni-goettingen.de/)
∗The websites for some resources without function currently are not provided.

addressed. Some databases such as ProSAS [123] and SpliVaP
[124] also provide the protein isoforms from the alternative
splicing effects. In ProSAS, the protein isoforms of splicing
transcripts are annotated in Ensembl or SwissProt. In SpliVap,
protein signatures of alternative forms are annotated in terms
of Pfam domains and PRINTS fingerprints.

6. Conclusion

Accumulating evidence shows that alternative splicing can
be selectively targeted in several genes of cancer cells. An
exciting possibility raised by this study is that the effectiveness

of anticancer therapies may be enhanced by clinical drugs,
natural products, and their synthesized analogs that target
alternative splicing machinery. Some alternative splicing-
related databases andweb serversmay also helpful to improve
the alternative splicing therapy for treating cancer and other
diseases.
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