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Psoralen is the principal bioactive component in the dried fruits of Cullen corylifolium (L.)
Medik (syn. Psoralea corylifolia L), termed “Buguzhi” in traditional Chinese medicine (TCM).
Recent studies have demonstrated that psoralen displays multiple bioactive properties,
beneficial for the treatment of osteoporosis, tumors, viruses, bacteria, and inflammation.
The present review focuses on the research evidence relating to the properties of psoralen
gathered over recent years. Firstly, multiple studies have demonstrated that psoralen exerts
strong anti-osteoporotic effects via regulation of osteoblast/osteoclast/chondrocyte
differentiation or activation due to the participation in multiple molecular mechanisms of
the wnt/b-catenin, bone morphogenetic protein (BMP), inositol-requiring enzyme 1 (IRE1)/
apoptosis signaling kinase 1 (ASK1)/c-jun N-terminal kinase (JNK) and the Protein Kinase B
(AKT)/activator protein-1 (AP-1) axis, and the expression of miR-488, peroxisome
proliferators-activated receptor-gamma (PPARg), and matrix metalloproteinases (MMPs).
In addition, the antitumor properties of psoralen are associated with the induction of ER
stress-related cell death via enhancement of PERK: Pancreatic Endoplasmic Reticulum
Kinase (PERK)/activating transcription factor (ATF), 78kD glucose-regulated protein
(GRP78)/C/EBP homologous protein (CHOP), and 94kD glucose-regulated protein
(GRP94)/CHOP signaling, and inhibition of P-glycoprotein (P-gp) or ATPase that
overcomes multidrug resistance. Furthermore, multiple articles have shown that the
antibacterial, anti-inflammatory and neuroprotective effects of psoralen are a result of its
interaction with viral polymerase (Pol), destroying the formation of biofilm, and regulating the
activation of tumor necrosis factor alpha (TNF-a), transforming growth factor beta (TGF-b),
interleukin 4/5/6/8/12/13 (IL-4/5/6/8/12/13), GATA-3, acetylcholinesterase (AChE), and the
hypothalamic-pituitary-adrenal (HPA) axis. Finally, the toxic effects and mechanisms of
action of psoralen have also been reviewed.
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INTRODUCTION

The dried fruits of Cullen corylifolium (L.) Medik, termed
“Buguzhi” in China, described in “Leigong’s Treatise on the
Preparation of drugs”, have been widely used as medicinal herbs
for 1,000 years and are listed in the Chinese Pharmacopoeia (Li K.
et al., 2019). According to the theory of traditional Chinese
medicine, it is used for nourishing the kidneys and tonic yang,
warming the spleen, relieving diarrhea, and supporting qi and
asthma, caused by osteopathy, neoplastic infection and
inflammation. Modern pharmacology research indicates that the
principal components of Cullen corylifolium (L.) Medik are
coumarins, flavones, and terpene phenols, which have anti-
osteoporotic, antitumor, antibacterial, antioxidant, photosensitive,
antidepressant, and other pharmacological properties.

Psoralen is a principal bioactive component of Cullen
corylifolium(L.)Medik, and is also found in many vegetables
and fruits, such as Apium graveolens L and Ficus carica L. As
shown in Figure 1, psoralen is a tricyclic coumarin-like aromatic
compound, the molecular structure of which is 7H-Furo[3, 2-g]
benzopyran-7-one (molecular weight: 186.16; molecular
formula: C3H6O3) (Sui et al., 2020). Psoralen is widely used as
a quality control component in herbal formulae such as Sishen
Wan, Yaotong Pian, andWenweishu Jiaonang (Ji et al., 2015; Hai
et al., 2017), and combined with ultraviolet-A light for the
treatment of psoriasis, vitiligo, and eczema (Madigan and Lim,
2016). This article will review the pharmacological properties of
psoralen, including its anti-osteoporosis, anti-tumor, anti-viral,
antibacterial and anti-inflammatory effects, and its toxicity.
Psoralen is a natural product of considerable interest that has
attracted much attention in the research community due to
having wide distribution across a variety of plant species,
combined with its excellent potential as a pharmaceutical
agent. This suggests that psoralen has broad prospects in
therapeutic applications. Multiple studies have focused on its
pharmacological effects, but a comprehensive and systematic
review of the literature has not been published. This review
aimed to collate recent studies on psoralen so as to provide an
exhaustive reference for researchers.
CLINICAL RESEARCH

Cullen corylifolium (L.) Medik (Buguzhi) is widely used as a
traditional Chinese medicine. It is not only used in the formulae
Frontiers in Pharmacology | www.frontiersin.org 2
of a variety of traditional Chinese medicines to treat various
diseases but it can also be combined with ultraviolet light to treat
a number of skin diseases. Zhuanggu Guanjie Wan is formulated
from psoralen as the main raw material and was recorded in the
Chinese Pharmacopoeia in 2015. It can be used to treat
osteoarthritis and is widely used in clinic (Zeng et al., 2006). In
addition, Yifei Qinghua Gao is used clinically as an adjuvant
treatment for advanced lung cancer (Liu and Qi, 2016; Li D. R.
et al., 2017), and Gunben Kechuan Pian is used to treat chronic
bronchitis, emphysema, and bronchial asthma (Sun et al., 2009).
Baidianfeng Jiaonang is administered for the treatment of vitiligo
(Guo et al., 2016). Psoralen, the principal active ingredient of
Psoralea corylifolia L (Zhang et al., 2016), plays an important
role in the treatment of osteoporosis, tumors, inflammation, etc.
Therefore, research on psoralen is beneficial for the more
widespread treatment of diseases such as osteoporosis, tumors,
and inflammation.
ANTI-OSTEOPOROTIC EFFECTS
OF PSORALEN

Promotion of Osteoblast Proliferation
and Differentiation
Osteoblasts can effectively inhibit the occurrence and
development of osteoporosis by secreting type I collagen (Col-
I) and supporting its calcification. Promotion of osteoblast
proliferation and differentiation is an effective treatment
strategy for osteoporosis. Glucose transporter 3 (GLUT3) is a
transporter with high affinity for glucose, important for
osteoblast proliferation (Masin et al., 2014). The crucial
transcription factor runt-related transcription factor 2 (Runx2)
is involved in osteoblast differentiation (Li et al., 2018). Alkaline
phosphatase (ALP) is a calcium-binding transporter located in
the cell membrane which promotes cell maturation and
calcification. Studies have demonstrated that psoralen increases
the gene expression levels of osteoblast-specific markers such as
GLUT3, Runx2, Col-I, osteocalcin, bone sialoprotein, and
osterix, in addition to enhancing the activity of ALP,
increasing colony formation in fibroblasts and promoting
osteoblast differentiation (Tang et al., 2011; Yang et al., 2012;
Li F. et al., 2017; Zhang et al., 2019).

BMPs serve vital roles in the differentiation of osteoblasts. BMP-
2/4 promote the expression of ALP and Col-I (Soundharrajan et al.,
2018) and bind to the cell surface receptors on bone cells, inducing
the phosphorylation of Smad1/5/8. Subsequently, Smad4
combines with phosphorylated Smad1/5/8 and is transported
to the nucleus where it activates bone-specific gene transcription,
and accordingly stimulates bone formation (Abdallah and Ali,
2019; Jungbluth et al., 2019). It has been further established that
psoralen enhances the gene expression levels of BMP-2/4,
increases phospho-Smad1/5/8 protein expression and induces
the activity of BMP reporter 12xSBE-OC-Luc. It also enhances
the expression of Osterix (OSX), a direct target gene of
BMP signaling. The deletion of BMP-2/4 genes eliminates
stimulation by psoralen of osteoblast marker gene expression
OO O
FIGURE 1 | Chemical structure of Psoralen.
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(Tang et al., 2011). These results suggest that psoralen promotes
osteoblast differentiation through activation of BMP signaling,
and may represent a potential anabolic agent for the treatment of
osteoporosis and other bone-loss related diseases.

Mitogen-Activated Protein Kinases (MAPKs) play important
roles in regulating cell growth, differentiation, and morphogenesis
in a variety of tissues (Yasoda et al., 2004). It has been confirmed
that MAPK signaling pathways participate in osteoblast
proliferation (Hou et al., 2019). One study confirmed that
psoralen stimulates osteoblast proliferation through the
extracellular signal-regulated kinase (ERK) / MAPK, JNK /
MAPK, p38 / MAPK, and Nuclear factor-kB (NF-kB) pathways
(Li F. et al., 2017). Similar to BMP, TGF-b is also a membrane
protein upstream of ERK, JNK, and P38/MAPK. It is controlled by
a variety of factors such as the ubiquitin proteasome system,
epigenetic factors, and microRNA (Wu et al., 2016). Therefore,
we hypothesize that psoralen may play a role in bone development
through TGF-b signaling.

Distal-Less Homeobox 5 (DLX5) serves a vital role in bone
development and healing. Osteopontin (OPN) is generally
secreted by osteoclasts, osteocytes and osteoblasts, and is
involved in the process of absorption and mineralization of
bone matrix (Li et al., 2018). In human periodontal ligament
cells (HPDLCs), psoralen markedly increases the protein
expression levels of the osteogenic proteins DLX5, Runx2 and
OPN and facilitates bone formation in periodontal tissue (Li
et al., 2018).

IRE1 can coactivate ASK1 with TNF-receptor-associated
factor 2 (TRAF2) to form the IRE1/TRAF2/ASK1 trimer.
ASK1 is a key regulator of cell apoptosis and can promote the
phosphorylation of its downstream JNK. Phosphorylated JNK
can activate the genes of pro-apoptotic proteins thereby inducing
apoptosis (Chen et al., 2013a; Choi et al., 2020). Chen et al. found
that psoralen inhibits the expression of upstream IRE1 and
reduces the phosphorylation of ASK1 and JNK, promoting the
proliferation of osteoblasts and blocking the apoptosis of
osteoblasts. In addition, they also found that the expression of
B-cell lymphoma-2 (Bcl-2), which inhibits apoptosis, increases,
while Bax, which promotes apoptosis, decreases in psoralen-
treated osteoblasts (Chen et al., 2017a).

Psoralen can promote the proliferation and differentiation of
osteoblasts through BMP, MAPK, and IRE1 signaling,
promoting bone growth and providing a theoretical basis for
the treatment of certain bone-related diseases.

However, the effect of psoralen on the phosphorylation of
ASK1, JNK, and MAPK P38 in osteoblasts and osteoclasts
remains controversial and requires further study (Li F. et al.,
2017; Chen et al., 2017a; Chai et al., 2018; Zhang et al., 2019).
Inhibition of Osteoclast Differentiation
and Activation
The principal nuclear factor-kB ligand (RANKL) signaling
cascade constituted by transcription factors I kappaB (I-КB),
NF-КB, AP-1, phosphorylated ERK and AKT are the
downstream signaling pathways of osteoclast proliferation and
Frontiers in Pharmacology | www.frontiersin.org 3
differentiation (Lee et al., 2005). Chai et al. reported that psoralen
was able to significantly reduce the expression of phosphorylated
JNK in osteoclasts. Finally, It has been suggested that psoralen
ameliorates osteoclast differentiation and bone resorption
through inhibition of AP-1 and AKT pathway activation in
vitro (Chai et al., 2018).

Effects on Osteoblasts and Osteoclasts
Osteoprotegerin (OPG) and RANKL can regulate bone
remodeling in bone metastasis. OPG can down-regulate
RANKL signaling and inhibit the differentiation and activation
of osteoclasts by competitively binding RANK and up-regulating
the expression of OPG (Lacey et al., 2012). It has been found that
the expression of IL-8, macrophage colony-stimulating factor
(M-CSF), and parathyroid hormone-related protein (PTHrP)
increases in breast cancer cells that have migrated to bone (Hsu
et al., 2014). Wu et al. reported that the expression of IL-8, M-
CSF, PTHrP, and RANKL decreased but OPG expression
increased in osteopathy after treatment with psoralen (Wu
et al., 2013). These observations indicate that psoralen can
inhibit interaction among osteoclasts, osteoblasts, and cancer
cells in tumor-bearing mice, and can significantly reduce the
burden of bone metastasis due to breast cancer in mice. Psoralen
may be an essential regulator of osteoblast and osteoclast
function in tumor-bearing mice by inhibition of the growth of
breast cancer cells in the bone microenvironment. Therefore, it
may represent a potential bone-modifying agent in the treatment
of bone metastasis. However, further research is required to
elucidate the role psoralen has in modifying the function of these
cell types and in the microenvironment used in this model.

Following a fracture, osteoclasts resorb the dead ends of the
bone, creating space for new bone formation (Gomez-Barrena et al.,
2015; Hankenson et al., 2015). Osteoblasts then migrate into the site
to secrete new bone matrix (Zakłos-Szyda et al., 2020). After freshly
formed bone combines with the fractured bone ends, osteoclast-
induced bone resorption and osteoblast-guided bone formation
continue the bone remodeling process. Research has
demonstrated that there are considerable numbers of interactions
between osteoblasts and osteoclasts, which synergistically promote,
then inhibit fracture healing (Aghajanian and Mohan, 2018). Based
on the complementary actions of osteoclasts and osteoblasts, Zhang
et al. demonstrated that psoralen is able to promote osteoclast
differentiation by activating ERK signals which could also promote
osteoblast differentiation, That is, psoralen can enhance the viability
of osteoblasts and osteoclasts by activating the ERK signaling
pathway, thereby promoting fracture healing. In addition,
osteoclast and osteoblast differentiation induced by psoralen can
be inhibited by a specific inhibitor of phosphorylated ERK (Zhang
et al., 2019).

Protecting Chondrocytes
A number of molecular components including Wnt-4, glycogen
synthetase kinase-3b (GSK-3b), b–Catenin and frizzled-2
represent the constituent parts of the Wnt/b-catenin signaling
pathway and have been reported to have an association with
osteoarthritis (OA) (Clevers and Nusse, 2012; Lietman et al., 2018).
September 2020 | Volume 11 | Article 571535
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Zheng et al. observed that the expression levels of cyclin D1,
Wnt-4, b-Catenin and frizzled-2 in chondrocytes treated with
psoralen clearly increased, while those of GSK-3b were down-
regulated. Cyclin D1 is a factor crucial to the cell cycle.
Additional studies have confirmed that psoralen increases the
expression of cyclin D1 by regulating the Wnt/b-catenin
signaling pathway, increasing the proliferation of chondrocytes
(Zheng et al., 2017).

MMPs, and MMP-13 in particular, maintain the metabolic
balance of extracellular matrix (ECM) in cartilage. Other
members of the MMP family can be activated when MMP-1/2/
3 are highly expressed (Jabłońska-Trypuć et al., 2016). The
mutual activation capability represents a complex protease
network in synovial fluid, which may inhibit the regeneration
of damaged tissues (Zhang et al., 2014). Wang et al.
demonstrated that psoralen can down-regulate MMP-1/2/3/9/
12/13 gene expression and inhibit the synthesis of MMP-13
protein, indicating that it can potentially stimulate chondrocyte
proliferation and increase cartilage-specific gene expression. This
ultimately protects chondrocytes from the abnormal gene
expression induced by TNF-a Wang C. et al., 2019. Inflammation
is a typical biological feature of OA, which manifests as the
secretion of MMPs or inflammatory mediators leading to
the degradation of cartilage. The dual functions of Psoralen
in inhibiting inflammation and activating and protecting
chondrocyte physiology represents an alternative agent for the
treatment of OA.

Psoralen also up-regulates the expression of Col-II, the
principal component of cartilage matrix, promoting the
synthesis of cartilaginous ECM and inhibiting the degradation
of cartilage matrix, which protects the viability of chondrocytes
in situ, delaying the erosion of the cartilage surface, and
ultimately preventing the degradation of articular cartilage by
monosodium iodoacetate (MIA)-induced OA (Xu et al., 2015;
Zheng et al., 2017; Wang C. et al., 2019). Xu et al. demonstrated
that psoralen increased the expression levels of Sox-9 and
proteoglycan, promoting the synthesis of glycosaminoglycan
(GAG) and activating chondrocytes in vitro (Xu et al., 2015),
suggesting it has potential as a treatment for OA or osteoporosis
(OP). However, there are certain limitations. It is unclear
whether psoralen exhibits differences in its effects n other types
of OA.

Other Actions
PPARg is mostly involved in the regulation of fat. Excessive
differentiation of adipose tissue leads to sparseness of bone
trabeculae, proliferation of bone fat cells, resulting in
osteoporosis, and even slight fractures in severe cases (Corder
et al., 2016; Horowitz and Tommasini, 2018). Li et al. have
demonstrated that psoralen can improve pathological changes in
steroid-induced avascular necrosis of femoral heads (SANFHs).
Psoralen reduced the protein expression levels of PPARg and
increased the expression of osteocalcin (Li H. et al., 2019). The
experiment demonstrated that psoralen was able to reduce
adipogenesis in bone marrow, promote calcium deposition,
and prevent osteoporosis, thus having a positive effect on the
rehabilitation of patients with ANFH.
Frontiers in Pharmacology | www.frontiersin.org 4
Huang et al. found that miR-488 was downregulated in bone
marrow mesenchymal stem cells (BMSCs) following treatment
with psoralen. Runx2 was found to be a potential target of miR-
488 (Huang et al., 2019). It has been suggested that the targeting
of Runx2 by miR-488 may participate in osteogenic differentiation
after treatment with psoralen. miR-488 / Runx2 represents an
association that has so far not been used for the treatment of
osteoporosis. Intervention using miR-488 to target Runx2 may
represent a mechanism-based treatment strategy for osteoporosis.
Yang et al. reported that Psoralen improved bone mass indicators
by elevating trabecular thickness and reducing trabecular space
(Yang et al., 2012). Wong et al. suggested that Psoralen in collagen
matrix enhanced new local bone formation and could be used for
bone transplantation or induction of bone formation (Wong and
Rabie, 2011).

miRNAs, such as miR-182-5p, hsa-miR-205-5p, miR-370,
and miR-140-5p, can affect the process of bone resorption and
formation by regulating MAPK, BMP, RUNX2 etc (Itoh et al.,
2012; Hwang et al., 2014; Yang and Fang, 2016; Suttamanatwong,
2017; Pan et al., 2018). The therapeutic potential of miR-138,
miR-338-3p and miR-188 has been confirmed in OP
(Suttamanatwong, 2017). In addition, it has been found that
the regulation of upstream TLR4 and TRAF6 affects the NF-kB
and MAPK signaling pathways, and Ca2+ influx, ultimately
inhibiting osteoclast activation (He, 2013).

We, therefore, hypothesize that psoralen may operate by acting
on miRNAs, TLR4 or TRAF6 to regulate various signaling
molecules in the treatment of various bone-related diseases.
However, the specific mechanisms require further study.

The molecular pathways specifically involved are discussed
and shown in Table 1, and some of the pathways shown in
Figure 2.
THE ANTI-TUMOR EFFECTS
OF PSORALEN

Increasing Endoplasmic Reticulum (ER)
Stress-Dependent Apoptosis
The endoplasmic reticulum is an intracellular membrane
organelle whose principal function is the synthesis and
secretion of membrane proteins, their correct folding, and the
storage of Ca2+ (Cubillos-Ruiz et al., 2017). Due to the influence
of external or internal factors, misfolded and unfolded proteins
accumulate in the endoplasmic reticulum, causing the balance of
Ca2+ to become disordered which leads to ER stress. Tumor cells
display strong growth and metabolism, although adverse
conditions can result in protein misfolding and accumulation.
Tumors can adaptively regulate protein folding through ER
stress. The activation of a variety of ER stress sensors, such as
GRP78, GRP94, Activating Transcription Factor 6 (ATF6) and
PERK, in addition to other related regulatory proteins, has been
shown to confer increased tumorigenicity, drug resistance and
metastasis on malignant cells. However, when these adaptive
mechanisms cannot resolve protein-folding defects, cells enter
apoptosis (Wang and Kaufman, 2014; Cubillos-Ruiz et al., 2017).
September 2020 | Volume 11 | Article 571535
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TABLE 1 | Pharmacological molecular mechanisms of psoralen.

Models Ususal doses/concentrations Molecular mechanisms References

1. The anti-osteoporosis effect of psoralen
Primary mouse calvarial osteoblasts 10, 100 mM Activated BMP signaling pathway Tang et al. (2011)
Human periodontal ligament cells
(HPDLCs)

1.6–12.5 µg/ml Upregulated the expression of osteogenic protein
Runx2, DLX5 and OPN

Li et al. (2018)

hFOB1.19 cells 5, 10, 15, 20 µM Stimulated NF-kB-MAPK signaling pathway Li F. et al. (2017)
Osteoporotic osteoblasts 16 mmol/L Suppressed the IRE1/ ASK1/ JNK pathway. Chen et al. (2017a)
Mature osteoclasts 0.05, 0.1 mM Inhibited the activation of Akt and AP-1 pathway Chai et al. (2018)
Tumor-bearing female nude mice 17.5 mg/kg Inhibited the interaction among cancer cells,

osteoblasts, and osteoclasts, and reduced the
burden of bone metastasis of breast cancer in mice

Wu et al. (2013)

Murine osteoblastic MC3T3-E1 cells
osteoclasts

2.5, 5, 10, 20, 40 mM Activated ERK signaling pathway Zhang et al. (2019)

Chondrocytes 10-8, 10-7, 10-6, 10-5, 10-4 mol/l Regulated the Wnt/b-catenin signaling pathway Zheng et al. (2017)
Rat chondrocytes 1, 10, 20 µM Inhibited the expression of MMPs Wang C. et al. (2019)
Articular chondrocytes 1, 10, 100 mM Activated chondrocytes Xu et al. (2015)
SANFH rabbit 35 mg/kg Reduced the expression of PPARg, increased

osteocalcin expression
Li H. et al. (2019)

BMSCs 20 µg/ml Reduced the expression of miR -488 Huang et al. (2019)
Female Sprague-Dawley rats 4 mg/ml Elevated trabecular thickness and reduced trabecular

space
Yang et al. (2012)

New Zealand White rabbits 0.25 mg/ml Enhanced new bone formation Wong and Rabie (2011)
2. The anti-tumor effect of psoralen
SMMC-7721 cell 40 mM Enhanced the expression of GRP78, GRP94,

DDIT3, ATF4, XBP1, GADD34, GDF15 and IRE1a,
activated ER stress signaling pathway

Wang X. et al. (2019)

HepG2 cell 50, 100, 200, 400 mmol/L Activated ER-stress related pathways, activated
Caspase-3/8 and up -regulated the expression of
CHOP and Bax

Yu et al. (2020)

HepG2 cell 150, 300, 450 mM Inhibited viability Zhou et al. (2018)
SMMC-7721 cell 10, 30, 50, 100 mg/ml Up-regulated expression of Bax, Caspase-3, p53

and reduced protein expression
Jiang and Xiong (2014)

KB, KBv200, K562, K562/ADM cells 50 mg/ml Induced apoptosis Wang et al. (2011)
MCF-7
MDA-MB-231cells

8 mg/ml
12 mg/ml

Regulated Wnt/b-catenin signaling pathway Wang et al. (2018)

SMMC-7721 cell 40 mM Blocked the cell cycle in G1 phase Wang X. et al. (2019)
MCF-7/ADR cell 21.5, 43.0, 64.5, 86.0, 107.5 µM Arrested the G0/G1 phase Wang X. H. et al. (2016)
MCF-7 cell 10-7, 10-6, 10-5 mol/l As an estrogen receptor agonist Xin et al. (2010)
A549/D16 cell 5, 10, 20 mM Inhibited the activity of ABCB1 promoter Hsieh et al. (2014)
MCF-7/ADR cell 8 µg/ml Inhibited efflux function of P-gp transporter Jiang et al. (2016)
MCF-7/ADR cell 43 µM Inhibited the activity of P-gp protein dependent

ATPase
Wang X. H. et al. (2016)

Molecular docking 0.03, 0.1 mM Inhibited NF-kB/DNA interactions Marzaro et al. (2013)
MCF-7/ADR cell 43 µM Repressed the activation of NF-kB p65 Wang X. H. et al. (2016)
HBL-100 cell 50, 100 mM Protective effect Du J. et al. (2019)
MCF-7 and MCF-7/ADR cells 50mM Down-regulated MMP1, HSD17B6, INHBA and

CD63 Protein levels, overexpressed SESN3 gene
expression

Wang X. et al. (2016)

JB6 cell 14.8, 15.6, 17.1 µg/ml Induced QR activity, inhibited ODC activity Lee et al. (2011)
Osteosarcoma SD rat 320mg/(kg·d), 1600 mg/(kg·d) Reduced the serum ALP level Lu et al. (2014)
3. The antiviral and antibacterial effect of psoralen
MHV-68 10 mg/ml Antiviral activity Cho et al. (2013)
HBV 10 mg/ml Interacted with HBV pol Parvez et al. (2019)
Orthomyxoviruses
CCHFV
LASV

10 mg/ml Keep the particles and RNA intact and non-infectious Schneider et al. (2015)

DENV-1 10 mg/ml. Retained its three-dimensional structure Maves et al. (2010); Maves et al.
(2011)

A/PR/8/34 H1N1 virus 0.2 µg/ml Inhibited the replication Choi et al. (2017)
H37RV 220.4 µg/ml Antibacterial effect Chiang et al. (2010)
P. cinnamomi mycelia 100, 150 mg/L Inhibited the growth Villegas et al. (2015)
P.gingivalis 6.2 µg/ml Inhibited the formation of biofilm, eliminated the

established biofilm, reduced the viability of biofilm
Li et al. (2018)

(Continued)
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GRP78, also termed Bip, is considered to be the homeostasis
receptor of the endoplasmic reticulum. In physiological
conditions, PERK, IRE1 and ATF6 remain inactive due to their
occupation of GRP78 (Almanza et al., 2019). In conditions of
stress in the endoplasmic reticulum, large unfolded or misfolded
proteins cleave GRP78 which is normally combined with three
types of response proteins, causing them to become exposed then
activated, resulting in expression of CHOP. However, high CHOP
expression causes the loss of Ca2+ from the endoplasmic
reticulum, causing increased mitochondrial permeability and
apoptosis (Szalai et al., 2018).

The phosphorylation of PERK promotes translation of ATF4
and also causes phosphorylation of the catalytic substrate eIF2a
which inhibits the synthesis of protein leading to apoptosis following
long-term inhibition (Hetz, 2012). ATF4 overexpression activates
the CHOP apoptotic pathway, thereby activating GADD34 that
results in oxygen-free radical damage (Rosenbaum et al., 2014).

GRP94 is found mostly in the endoplasmic reticulum and
represents a crucial factor in the ER stress response. In such a
response, GRP94 induces the expression of the CHOP protein,
thereby attenuating the expression levels of Bcl-2 and promoting
apoptosis (Rosenbaum et al., 2014).

Activated ATF6 promotes the expression of CHOP, which
then inhibits the expression of Bcl-2 and causes apoptosis (Xu
et al., 2018). In addition, growth differentiation factor 15
(GDF15) can inhibit A549 cell proliferation, invasion, and
migration, inducing apoptosis (Duan et al., 2019). Wang et al.
found that psoralen enhanced the expression of GRP78, GRP94,
CHOP, ATF4, X-Box Binding Protein 1 (XBP1), GADD34,
GDF15, and IRE1a. Activated ER stress, causing expansion
and dysfunction in the endoplasmic reticulum, was found to
Frontiers in Pharmacology | www.frontiersin.org 6
inhibit SMMC7721 cell proliferation, thereby resulting in
apoptosis of liver cancer cells (Wang X. et al., 2019).
Furthermore, Yu et al. found that psoralen markedly increased
the expression of ATF6, ATF4, PERK, eukaryotic initiation
factor 2 (eIF2a), and GRP78, in addition to enhancing the
levels of CHOP, Bax, and phosphorylated JNK. The results
illustrate that induced ER stress mediates apoptosis through
the PERK/ATF pathways (Yu et al., 2020).

However, psoralen had little effect on the proliferation of
HepG2 cells (Wang X. et al., 2019). This is controversial because
Zhou et al. demonstrated that psoralen reduced the viability of
HepG2 cells, primarily by inhibiting proliferation (Zhou et al.,
2018). Moreover, Yu et al. indicated that psoralen activates
Caspase-3/8, and up-regulates Bax and CHOP expression,
apparently inducing HepG2 cell apoptosis (Yu et al., 2020).
Liver damage caused by psoralen is more likely to be related to
oxidative stress, mitochondrial damage and endoplasmic
reticulum dysfunction. However, the overall mechanism of
psoralen-induced liver injury and its relationship with
endoplasmic reticulum stress remains to be studied.

In addition, Jiang et al. reported that psoralen can inhibit the
viability of SMMC-7721 cells, displaying strong promotion of
cell apoptosis through the up-regulation of Bax, p53 and
Caspase-3 expression, and reducing Bcl-2 protein expression
(Jiang and Xiong, 2014).

Wang et al. found that psoralen displayed dose-dependent anti-
tumor activity towards the KB and KBv200 (vincristine resistance
subline of KB) carcinoma lines, and K562 and K562/ADM
(doxorubicin resistance subline of K562) human erythroleukemia
cells, by induction of apoptosis, thus confirming its anti-cancer
potential (Wang et al., 2011).
TABLE 1 | Continued

Models Ususal doses/concentrations Molecular mechanisms References

4. The anti-inflammatory effect of psoralen
human neutrophils 10.9 mM Inhibited superoxide anion generation Chen C. H. et al. (2017)
Raw 264.7 cells 2.5, 5, 7.5 mg/ml Inhibited the expression of IL-6 and TNF-a Chen et al. (2013b)
D10 cells stimulated by concanavalin A
(Con A)

2, 4, 8×10-2 mM Inhibited the expression of Th2 cytokines IL-4/5/13
and Th2 transcription factor GATA-3

Jin et al. (2014)

THP-1 cell 1.56, 3.13, 6.25, 12.5 µg/ml Released the expression of IL-1b and IL-8 Li et al. (2018)
Murine fibroblast NIH3T3 cells 5, 10, 20, 40 mM Reduced the expression of TNF-a, IL-1b, and TGF-b1, Du M. Y. et al. (2019)
TNF – a induced inflammation of synovial
cells

1, 10, 20 µM Down-regulated the expression of IL-1 b, - 6, - 12 Wang C. et al. (2019)

HEPG-2 Cell 10, 50, 100, 150, 200 mM Inhibited COX activity Ai et al. (2019)
5. The effect of psoralen on melanocytes
Channa punctatus and Bufo
melanostitus

1, 2, 4, 8, 16, 32, 64×10-7 g/ml Stimulated of cholinergic receptors Meitei and Ali (2012).
Sultan and Ali (2011)

Melanocytes 0.5, 1.0, 3.0, 5.0, 7.0, 10 mg/ml Reduced the survival rate Quintão et al. (2019))
6.The neuroprotection properties of psoralen
Adult neural stem cells 100 nM Increased the expression of GFAP, reduced the

expression of TuJ1,
Ning et al. (2013)

Scopolamine-induced amnesia rats 0.1, 0.3 mg/kg inhibited AChE activity Wu et al. (2007)
Adult male Wistar rats 100, 200 mg/ml Connected to the residues of the AChE binding site

by p-p conjugate and hydrogen bonding
Somani et al. (2015)

The FST-treated mice 10, 20, 40 mg/kg Attenuated alterations in 5-HT and 5-HIAA levels Xu et al. (2008)
7. Pharmacological properties of psoralen on muscle atrophy and fibrosis
The myoblast (C2C12) cell line 20, 40, 60, 80, 100, 120 mM Attenuated the expression of MuRF1, MAFbx,

trim62 and GDF15 and miR-675-5P
Lin et al. (2019)

bleomycin -induced mouse 5 mg/kg/day Reversed the expression of a - SMA Du M. Y. et al. (2019)
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Blockade of the Cell Cycle
Wnt signaling serves a pivotal role in modulating cancer cell
proliferation by regulation of the cell cycle. The classic Wnt/b-
catenin pathway is related to the regulation of tumorigenesis
through arrest of the cell cycle. When b-catenin is stable, it
accumulates in the nucleus and structurally activates target genes
related to the cell cycle, such as Fra-1 which can functionally
increase cell and vascular invasiveness (Liu et al., 2017; Gao et al.,
2017). Wang et al. found that psoralen increased the expression
of Axin-2, a negative regulator of the Wnt/b-catenin/TCF
signaling pathway, in MCF-7 and MDA-MB-231 cells, and
decreased the expression of b-catenin and its downstream
target Fra-1. Additional studies confirmed that psoralen
induced cell cycle arrest in breast cancer cells by regulation of
the Wnt/b-catenin pathway (Wang et al., 2018).

Cyclin D1 and Cyclin E1 play important roles in cell cycle
regulation, acting as positive regulators of cyclin-dependent kinase
(CDK). Cyclin D1 binds to CDK4/6 and Cyclin E1 binds to CDK2,
promoting transition from G1 phase to S phase, resulting in cell
division (Ingham and Schwartz, 2017). Wang et al. found that
psoralen increased the expression of Cyclin D1 and decreased the
expression of Cyclin E1, causing blockade of the cell cycle in G1
phase and inhibiting SMMC7721 cell proliferation (Wang X. et al.,
2019). In addition, Wang et al. found that psoralen reversed
multidrug resistance (MDR) by arresting cycling at the G0 / G1
phase, rather than by promoting apoptosis (Wang X. H. et al., 2016).

Interestingly, Xin et al. found that psoralen, an estrogen
receptor alpha (ERa) agonist, significantly promoted the
proliferation of MCF-7 cells (Xin et al., 2010). However, as
Frontiers in Pharmacology | www.frontiersin.org 7
previously described, psoralen markedly inhibited the
proliferation of MCF-7 cells by inducing G0/G1 phase arrest
(Wang et al., 2018). Therefore, the effect of psoralen in MCF-7
cells requires additional exploration.

Reversing Multidrug Resistance
Extensive studies have demonstrated that the principal
mechanism of cancer multidrug resistance is via the action of
the transmembrane drug efflux protein P-gp, encoded by the
human ATP−binding cassette subfamily B member 1 (ABCB1)
gene. Overexpression of this gene suppresses the effect of cancer
chemotherapy (Genovese et al., 2017). Hsieh et al. found that
Psoralen inhibited the activity of the ABCB1 promoter, at least
partially reduced the expression of ABCB1 at the transcriptional
level, and sensitized drug-resistant cells when combined with
chemotherapy drugs, resulting in their death (Hsieh et al., 2014).
However, Jiang et al. demonstrated that psoralen had no
noticeable impact on the expression of P-gp. The effect of
psoralen on multidrug resistance may be related to the
inhibition of efflux by the P-gp transporter, rather than a
reduction in P-gp mRNA or protein expression (Jiang et al.,
2016). The activity of P-gp requires energy from ATP hydrolysis.

Similarly, Wang et al. found that psoralen reversed MDR by
inhibiting the activity of P-gp protein-dependent ATPase rather than
reducing the protein expression of P-gp (Wang X. H. et al., 2016). A
detailed understanding of the mechanism by which psoralen inhibits
P-gp transport may be important to overcome MDR. Therefore,
further studies are required to clarify these mechanisms, especially
the effect of P-gp on adenosine triphosphatase activity.
FIGURE 2 | Molecular pathways involved in the anti-osteoporosis actions of psoralen.
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Inhibition of Epithelial to Mesenchymal
Transition
Psoralen has been previously shown to inhibit tumor invasion
and migration via inhibition of NF-kB / DNA interactions
(Marzaro et al., 2013). Wang et al. demonstrated that psoralen
inhibited epithelial to mesenchymal transition (EMT) through
suppression of NF-kB p65 activation, weakening the migration
of MCF-7 / ADR cells (Wang X. H. et al., 2016). Interestingly, Du
et al. found that psoralen had a clearly protective effect on HBL-
100 cells from the non-malignant human breast epithelial cells
line injured by ionizing radiation, but did not protect MCF-7
tumor cells (Du J. et al., 2019). This suggests that healthy cells
treated with psoralen would be protected from radiation damage
while tumor cells would be selectively removed. This observation
also provides a reference for the protection of healthy cells during
the treatment of tumors.

Regulation of Exosome Secretion
The PPAR signaling pathway regulates the synthesis of ceramide
levels, and, like p53, ceramides are important regulatory molecules
of exosome secretion (Kita et al., 2019; Pavlakis and Stiewe, 2020).
Wang et al. found that the MMP1 gene associated with the PPAR
signaling pathway was down-regulated in addition to HSD17B6,
the gene coding for inhibin beta A (INHBA) protein, following
treatment with psoralen. In addition, expression of the exosome
marker CD63 also decreased in MCF-7/ADR cells, and Sestrin 3
(SESN3), associated with the p53 signaling pathway, was
overexpressed in the presence of psoralen (Wang X. et al.,
2016). The results illustrate that psoralen possibly affects
exosomes through PPAR and the p53 signaling pathway,
resulting in a decrease in the transmission of drug resistance via
exosomes, and providing a potential novel strategy for defeating
drug resistance in breast cancer in the future.

Other Actions
Lee et al. found that psoralen was able to inhibit carcinogenesis
induced by carcinogens, especially during the initiation and
promotion stage through the inhibition of ornithine
decarboxylase activity and induction of quinone reductase
activity. It was also found to suppress murine epidermal JB6
cell tumor development (Lee et al., 2011).

In osteosarcoma, serum ALP activity is increased. Lu et al.
found that psoralen significantly decreased the activity of serum
ALP in osteosarcoma in nude rats, and exhibited a significant
inhibitory effect on osteosarcoma in nude mice (Lu et al., 2014).

In recent years, the concept of the UPR being able to regulate
the anti-cancer immune response has emerged (Lhomond et al.,
2018). In addition, Th2 cell-related cytokines can activate the
IRE1 pathway. Drugs that inhibit IRE1 can block cathepsin
secretion and macrophage-mediated cancer cell invasion (Yan
et al., 2016). Psoralen can induce endoplasmic reticulum stress
and regulate UPR. Therefore, we suspect psoralen may control
cancer through an anti-cancer immune response. The specific
mechanism requires additional study.

The specific molecular pathways involved are discussed and
shown in Table 1, and some pathways involved are shown in
Figure 3.
Frontiers in Pharmacology | www.frontiersin.org 8
ANTIVIRAL AND ANTIBACTERIAL
EFFECTS OF PSORALEN

Anti DNA Virus
Gamma herpes viruses such as Kaposi’s sarcoma-associated herpes
virus (KSHV) and Epstein–Barr virus (EBV) are important human
pathogens responsible for a variety of malignancies (Sethuraman
et al., 2018; Jog et al., 2018). Cho et al. demonstrated that psoralen
had clear antiviral activity towards murine gamma herpes virus 68
(MHV-68) and exhibited significant inhibition of the lytic cycle of
human gamma herpes viruses. Although not all antiviral agents
screened from MHV-68 may be effective for both KSHV and EBV
(Cho et al., 2013), the results highlight how the MHV-68
replication system can be used to identify candidate antiviral
drugs for development against gamma herpes viruses.

The hepatitis B virus (HBV) can cause acute and chronic liver
diseases (Teo and Locarnini, 2010). Parvez et al. found that
psoralen inhibited HBV replication through HBV Pol, the most
important viral protein, representing a potential drug target
(Parvez et al., 2019). It has been suggested that psoralen has
the potential to be used as a pol / RT inhibitor of HBV.
Anti-RNA Virus
Recent studies of the antiviral pharmacology of psoralen have
shown that it has wide application value in the prevention and
treatment of RNA viruses. Firstly, psoralen can inactivate a virus
which can then be used in vaccine preparation. Compared with
the widely used methods of high temperature or application of
toxic chemicals, which denatures or cross-links proteins and
nucleic acids, psoralen renders the virus non-infectious, but does
not destroy the particles or RNA, but conversely preserves the
structures required for genomic analysis, enabling the inactivated
virus to be used in vaccine development (Schneider et al., 2015).
If this virus inactivation method is to become a generally-
accepted method of inactivation, it is necessary to conduct
multi-site specificity and drug specificity verification studies,
testing the method robustly in a large trial to ensure that the
inactivated virus is truly non-infectious.

Dengue viruses are categorized into four distinct serotypes of
RNA virus of the Flaviviridae family. Maves et al. found that
psoralen was able to inactivate dengue virus type 1 (DENV-1),
while retaining the virus’s three-dimensional structure, allowing
the production of antibodies with multiple epitopes for priming
the immune system. Additional studies have shown that the
candidate DENV-1 vaccine raised from inactivated virus using
psoralen displayed immunogenicity in mice. The subsequent
effects of the candidate vaccine tested on Aotus nancymaae
monkeys exhibited a protective effect (Maves et al., 2010;
Maves et al., 2011).

Subsequently, Choi et al. found that psoralen significantly
inhibited the replication of A/PR/8/34 H1N1 virus and induced
macrophages to secrete antiviral cytokines such as interferon-
beta (IFN-b). Choi et al., 2017. A recent study found that low
concentrations of IFN-b can significantly inhibit Severe Acute
Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection
(Mantlo et al., 2020). This provides a new opportunity to treat
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Coronavirus Disease 2019 (COVID-19) which is currently causing
a global outbreak. SARS-CoV-2, the causative pathogen of
COVID-19, is a single-stranded RNA-type b-coronavirus for
which there is currently no specific antiviral drug or vaccine
(Yang et al., 2020). In addition, psoralen has the characteristics of
retaining the three-dimensional structure of the virus, preserving
immunogenicity, which is conducive to vaccine production.
Therefore, it is anticipated that psoralen could be used as an
agent to treat or prevent SARS-CoV-2 and has potential
application value in the preparation of related vaccines.

Antibacterial Properties
Chiang et al. found that psoralen displayed an antibacterial effect
on mycobacterium tuberculosis H37Rv (Chiang et al., 2010).
Villegas observed that psoralen inhibited the growth of P.
cinnamomi mycelia (Villegas et al., 2015), indicating that
psoralen has the potential to be a biological pesticide. Li et al.
found that psoralen inhibited the formation of biofilms,
eliminated established biofilms and reduced their viability (Li
et al., 2018). Periodontitis is a chronic inflammatory disease that
causes the destruction of periodontal tissues. Psoralen has the
dual effects of promoting bone formation and inhibiting major
periodontal pathogens, and so can be used for the treatment and
prevention of periodontitis. It provides new ideas for the
development of new comprehensive therapeutic drugs. The
relevant molecular pathways are discussed and shown in Table 1.
Frontiers in Pharmacology | www.frontiersin.org 9
ANTI-INFLAMMATORY EFFECTS
OF PSORALEN

Human neutrophils play a vital role in the host defense against
microorganisms and the pathogenesis of a variety of diseases
(Kolaczkowska and Kubes, 2013). Reactive oxygen species (ROS)
were thought to be a host defense molecule released by neutrophils
to kill foreign pathogens, such as bacteria (Dallenga et al., 2017).
Chen et al. found that psoralen strongly inhibited superoxide
anion generation in human neutrophils, and thus representing an
anti-inflammatory response (Chen C. H. et al., 2017).

The melanocortin 1 receptor (MC1R) gene regulates coat color
in mammals (Chen et al., 2017b). Macrophages are important
inflammatory cells that participate in the initiation of the
inflammatory response, able to secrete TNF-a, IL-6, and other
pro-inflammatory mediators, playing a vital role in the
development of an inflammatory response (Giavridis et al., 2018).
TNF-a and IL-6 can induce the clinical syndromes of atopic
dermatitis, including skin allergy syndrome and other immune
disorders (Ford, 2016). Chen et al. found that high concentrations
psoralen, an MC1R antagonist, preferentially combined with
MC1R to cause sustained feedback regulation, promoting the
expression of cyclic adenosine monophosphate (cAMP), an
important molecule in the MC1R signal transduction pathway.
This had the effect of dampening the innate immune-mediated
response and expression of TNF-a and IL-6 (Chen et al., 2013b).
FIGURE 3 | Molecular pathways involved in the anti-tumor effects of psoralen.
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Taken together, the study demonstrated that MC1R was able to
reduce inflammation in vivo and in vitro and may be an effective
target for inhibiting an inflammatory response.

A T helper 2 (Th2) response is the principal pathological
mechanism in asthma, in which Th2 cell-derived cytokines are
believed to be the driving force for the development of airway
hyperresponsiveness, inflammatory cell accumulation and
mucus hypersecretion (Holt and Sly, 2007). IL-4 and IL-13 are
critical for mucus hypersecretion and IgE production, while IL-5
is essential for the survival, activation, and recruitment of
eosinophils (Romagnani, 2000). GATA-3 is a key transcription
factor and considered key to the up-regulation of Th2 cytokines
(Hosoya et al., 2010). Jin et al. found that psoralen significantly
inhibited the expression of the Th2 cytokines IL-4/5/13, and
GATA-3 in D10 cells stimulated by concanavalin A, but
displayed no inhibition of cell viability (Jin et al., 2014). These
findings support the hypothesis that psoralen may be a critical
compound for inhibition of a Th2 response in asthma.

Furthermore, Li et al. reported that psoralen significantly
decreased the release of IL-1b and IL-8 in THP-1 cells (Li et al.,
2018). Du et al. found that psoralen reduced the expression of
TGF-b1, IL-1b, and TNF-a in a mouse model of bleomycin-
induced primary pulmonary fibrosis (Du M. Y. et al., 2019).
Recently, Wang et al. found that psoralen inhibited TNF-a
induced inflammation in synovial cells by down-regulation of
IL-1b, -6, and -12 gene expression and inhibition of the synthesis
of IL-1 b protein (Wang C. et al., 2019).

Cyclooxygenase (COX) is responsible for the formation of
prostaglandins. COX-2 is a subtype found in multiple disorders,
such as inflammation and many cancers (Limongelli et al., 2010).
Ai et al. confirmed that psoralen possessed COX inhibitor
activity in HepG2 cells by combining random forest and self-
organizing feature map neural networks and through molecular
docking analysis (Ai et al., 2019).

It has been reported that the IRE1a-XBP1-cMyc axis has been
identified in NK cell immunity, required for the host to resist
murine cytomegalovirus (MCMV) infection and cancer (Dong
et al., 2019). Psoralen can activate IRE1 and XBP1 and has
certain anti-tumor effects. It can achieve anti-viral and anti-
inflammatory effects through a variety of means. Therefore,
whether psoralen can regulate NK cell immunity through the
IRE1a-XBP1-cMyc axis remains to be verified. The relevant
molecular pathways are discussed and displayed in Table 1.
EFFECT OF PSORALEN ON
MELANOCYTES

Melanocytes are large, specialized, flat pigment cells within the
skin of vertebrates. They can cause the skin to undergo rapid
change in color when exposed to a variety of stimuli and has been
used as a unique model to study the complex mechanisms of skin
pigmentation (Sultan and Ali, 2011). Vitiligo is a disorder caused
by the absence or reduced number of melanocytes, resulting in
reduced skin melanin production (Frisoli et al., 2020). Sultan
et al. found that psoralen was able to stimulate cholinergic
receptors and cause melanocytes to diffuse within the Channa
Frontiers in Pharmacology | www.frontiersin.org 10
punctatus and Bufo melanostitus (Sultan and Ali, 2011). From
these results, Meitei et al. believed that psoralen induced a
distinct form of melanin diffusion in reptile skin by mimicking
the action of acetylcholine to stimulate cholinergic receptors, an
effect antagonized by atropine and scopolamine (Meitei and Ali,
2012). More recently, Quintão et al. found that psoralen reduced
the survival rate of melanocytes to a certain extent, but did not
significantly change the viability of keratinocytes. Psoralen
promoted the production of less melanin than cells stimulated
by the melanin-promoting agent 3-isobutyl-1-methylxanthine
(Quintão et al., 2019). The relevant molecular pathways are
discussed and presented in Table 1.
NEUROPROTECTIVE PROPERTIES
OF PSORALEN

Adult neural stem cells (NSCs) in the mature nervous system are
a common source of all nerve cells, including neurons, astrocytes,
and oligodendrocytes (Navarro Negredo et al., 2020). Astrocytes
excite inhibitory neurons and inhibit the general activities of
peripheral neurons that prevent overexcitation of neurons in the
nerve ring (Choe et al., 2012). Without the help of astrocytes,
neurons cannot produce an enhanced response, the foundation
of learning and memory (Frankland and Josselyn, 2020). Ning
et al. reported that psoralen was able to inhibit neural stem cell
proliferation and self-renewal of nerve cells. In addition, psoralen
increased the expression of the astrocyte-specific marker glial
fibrillary acidic protein (GFAP), but led to the slightly reduced
expression of the neuron-specific marker b-tubulin III (TuJ1). It
has been suggested that psoralen can induce astrocyte
differentiation. Additional research had found that psoralen
specifically regulates the gene expression profile of NSCs (Ning
et al., 2013). suggesting that psoralen has the potential to treat
neurodegenerative diseases.

Research study suggests that psoralen competitively inhibits
AChE activity in a concentration-dependent manner, which
therefore activates the central cholinergic neuronal system, and
tightly binds the residues at the enzyme binding site by p-p
conjugation and hydrogen bonding (Somani et al., 2015),
indicating that psoralen may be a potential candidate to inhibit
AChE. This should be further explored for clinical applications
in Alzheimer’s disease.

Depression is related to behavioral disorders, serotonin, and
neuroendocrine dysfunction (Forbes, 2020). Neuroendocrine
abnormalities in depression are due to hyperactivity of the HPA
axis characterized by excessive secretion of corticotrophin-releasing
factor (CRF), which stimulates the release of corticosterone
(Horowitz and Zunszain, 2015). CRF is a neuroregulatory factor
found in the brain. The transmission of serotonin (5-HT) is
regulated by CRF (Marcinkiewcz et al., 2016). 5-HT can be
broken down into 5-hydroxyindoleacetic acid (5-HIAA) (Weber
et al., 2015). A forced swimming test (FST) can induce
abnormalities in the serotonergic and HPA axis (Xiao et al.,
2019). Xu et al. found that psoralen increased swimming in a
mouse FST, reducing changes in 5-HT and 5-HIAA levels, and
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attenuating the ratio of 5-HIAA/5-HT in the frontal cortex and
hippocampus. Furthermore, psoralen reduced the expression levels
of corticosterone and serum CRF and so normalized HPA axis
activity. This indicates that psoralen could regulate the serotonin
and HPA axis system (Xu et al., 2008), and that psoralen may
represent a potential candidate for the treatment of depression. The
relevant molecular pathways are discussed and shown in Table 1.
PHARMACOLOGICAL EFFECTS OF
PSORALEN ON MUSCLE ATROPHY
AND FIBROSIS

MAFbx, MuRF1, and TRIM62 are members of the E3 ubiquitin
ligase family. MAFbx and MuRF1, key regulators of muscle
atrophy, are involved in skeletal muscle protein breakdown
(Conraads et al., 2010). and have been found to be up-
regulated in a variety of muscle atrophy models (Sacheck et al.,
2007; Price et al., 2010; Powers et al., 2011). TRIM62 is thought
to be involved in the regulation of differentiation, immunity,
development and apoptosis, playing a vital role in the Toll like
Receptor 4 (TLR4) signaling pathway (Reymond et al., 2001;
McNab et al., 2011). Various studies have found that the
expression of TRIM62 is increased significantly in the muscles
of critically ill patients (Langhans et al., 2014), and that activation
of TRIM62 results in persistent muscle inflammation, promoting
atrophy in critically ill patients (Uchil et al., 2013). GDF15 is a
member of the TGF-b family, also known as macrophage
inhibitory factor . Lin et al. previously found that miR-675-5P
was significantly up-regulated in patients with muscular dystrophy
compared with healthy individuals and that psoralen reduced the
cytotoxicity, cell atrophy and apoptosis induced by TNF-a in C2C12
myoblasts. The therapeutic effect of psoralen on muscle atrophy
occurs through attenuation of the expression of atrophy marker
proteins MuRF1, MAFbx, TRIM62, and GDF15, and miR-675-5P
which is expressed in skeletal muscle and up-regulated during
myoblast differentiation and muscle regeneration (Lin et al., 2019).
These observations provide a theoretical basis for the study of
muscular atrophy mechanisms in the future. Du et al. found that
psoralen inhibited the proliferation of mouse fibroblasts and had a
therapeutic effect in bleomycin-induced primary pulmonary fibrosis.
Furthermore, Psoralen partially reversed bleomycin-induced a-
smooth muscle actin expression, and collagen synthesis.
Additionally, psoralen reduced inflammation in lung parenchyma
and increased the survival rate of mice (Du M. Y. et al., 2019). The
relevant molecular pathways are discussed and displayed in Table 1.
SAFETY AND TOXICITY

The toxicity of psoralen is an issue of wide concern. However,
there are few reports of the toxicity of psoralen. In addition, the
underlying mechanisms of psoralen-induced toxicity remain
unclear. The specific molecular pathways involved are
discussed and presented in Table 2, and a number of pathways
involved are shown in Figure 4.
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Liver Damage
Recently, studies have demonstrated that psoralen exhibits
hepatotoxicity in rats, and that psoralen is the hepatotoxic
agent in buguzhi (Yu et al., 2019).

Mammalian target of rapamycin complex 1 (mTORC1)
appropriately regulates cell metabolism, proliferation, and cell
cycle progression. AKT and adenosine monophosphate-activated
protein kinase (AMPK) are important upstream regulatory factors
of mTORC1. AKT indirectly activates mTORC1. Conversely,
AMPK can inhibit mTORC1. 4EBP1 and p70S6K are the
principal signaling molecules downstream of mTORC1 (Liu and
Sabatini, 2020). Zhou et al. found that inhibition of mTOR
signaling induced by psoralen, which causes activation of AMPK
and inhibition of AKT and p70S6K, may also cause S-phase arrest
in L02 cells. In addition, psoralen also caused mitochondrial
damage, decreased liver regeneration and compensatory capacity,
and induced liver damage (Zhou et al., 2018).

In the cell cycle process, activation of cyclin-dependent kinase 2
(CDK2)-cyclin E complexes promotes cells entering into S phase,
and then cyclin E is rapidly degraded. At this stage, the gradually
increasing cyclin A2 combines with CDK2 to form an activated
cyclin A-CDK2 complex, maintaining the progress of S phase and
promoting the initiation of DNA synthesis (Hustedt and Durocher,
2016; Du Toit, 2020). For the first time, Zhou et al. found that
psoralen-induced S-phase arrest was chiefly related to the up-
regulation of p27 and cyclin E1 and down-regulation of cyclin A2.
It has been speculated that excessive cyclin E1may occupy the CDK2
binding site, and then possibly inhibit an association between cyclin
A and CDK2, resulting in S-phase arrest (Zhou et al., 2018).

The liver is the principal organ for biotransformation. The
cytochrome P450 (CYP450) superfamily is the principal enzyme
system in the liver (Kwon et al., 2020). It is generally agreed that
the majority of chemicals require metabolic activation prior to
the manifestation of toxic effects. Furan ring structures are active
functional groups that produce reactive metabolites through
CYP450s. A furan ring double bond is oxidized to produce a
reactive furanoepoxide or g-ketoenal intermediate, resulting in
irreversible inhibition of CYP450s. A number of active furan
epoxides have been demonstrated to cause hepatotoxicity (Mays
et al., 1990; Koenigs and Trager, 1998a; Koenigs and Trager,
1998b; Wang et al., 2012; Lu et al., 2016). Song et al. found that
psoralen may induce liver injury in rats through the cytochrome
P450 metabolic pathway of xenobiotics, among which Akr7a3,
Gstm1, Cyp1a2, and Cyp1a1 are important genes in hepatotoxicity,
and the endoplasmic reticulum is the principal target subcellular
structure. It has been suggested that various cancers and metabolic
conditions might be susceptible to hepatotoxicity induced by
psoralen (Song et al., 2019). Wang et al. demonstrated that
psoralen inhibited the activity and protein expression of CYP2E1
(Wang et al., 2012). Zhuang et al. reported that the inhibitory effect
of psoralen on CYP1A2 production was reversible (Zhuang et al.,
2013). However, other studies found that psoralen exhibited
mechanism-based inactivation (also called irreversible
inactivation) of CYP2A6 (Koenigs and Trager, 1998a). and
CYP2B1 (Koenigs and Trager, 1998b), in addition to CYP2B6 (Ji
et al., 2015) and CYP3A4 (Liu and Flynn, 2015; Hai et al., 2017),
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which were oxidized by psoralen to produce the reactive metabolite
furanoepoxide, suggesting that the metabolite exerted an inhibitory
effect rather than the parent compound. In addition, Hai et al.
found that the active metabolites can be inactivated by H2O and
GSH in the liver, helpful for the safe intake of fruits and vegetables
containing psoralen, to a certain extent (Hai et al., 2017).

Isoleucine, leucine and valine are standard amino acids with
aliphatic side-chains, also known as branched-chain amino acids
(BCAAs). There have been reports of changes in BCAAs in the
Frontiers in Pharmacology | www.frontiersin.org 12
diagnosis of liver dysfunction (Rawat et al., 2017). Zhang et al.
revealed that psoralen caused increased production of ALT and
AST, decreased Glu and ALB, and interference in amino acid
metabolism (Zhang et al., 2018).

Renal Damage
Diabetic nephropathy is the most serious complication of diabetes,
causing glomerular fibrosis and renal function damage. However,
Seo et al. found that psoralen increased the activity of high glucose-
TABLE 2 | Molecular mechanisms of the safety and toxicity of psoralen.

Models Ususal doses/concentrations Molecular mechanisms References

Sprague Dawley (SD) rats 60 mg/kg Regulated the expression of Cyp1a1, Cyp1a2,
Gstm1 and Akr7a3

Song et al. (2019)

Male Kun-Ming strain mice 20,40 mg/kg Inactivated of CYP2E1 Wang et al. (2012)
Male SD rats 5 mg/kg Reversibly inactivated CYP1A2 Zhuang et al. (2013)
P4502A6 from the crude insect cell paste 100 µM Irreversibly inactivated CYP2A6 Koenigs and Trager (1998a)
P4502B1 100 µM Irreversibly inactivated CYP2B1 Koenigs and Trager (1998b)
Recombinant human P450 enzymes 40, 80, 120, 160, 200 µM Irreversibly inactivated CYP2B6 Ji et al. (2015)
Human recombinant CYP3A4 enzyme 200 µM Irreversibly inactivated CYP3A4 Liu and Flynn (2015)

Hai et al. (2017)
SD rats 60 mg/kg Increased ALT and AST, decreased Glu and

ALB, interfered with amino acid metabolism
Zhang et al. (2018)

L02 cell 150, 300, 450 mM Up-regulated cyclin E1, p27, down-regulated
cyclin A2, induced S-phase arrest, inhibited
mTOR signaling pathway

Zhou et al. (2018)

High glucose-treated mice mesangial MES-13 cells 4 mg/ml Reduced the expression of cleaved PARP and
Bad, and promoted expression of phospho-Bad
(ser112) and Bcl-2.

Seo et al. (2017)

Zebrafish embryo/larval 10.61µM Up-regulated Keap1 expression, down-regulated
Nrf2, Mn-Sod hmgcra, ppara1 and fas
expression. increased the expression of p53,
puma, apaf-1, caspase-3/9, caspase-3,
decreased Bcl-2 expression

Xia et al. (2018)
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FIGURE 4 | Molecular pathways involved in psoralen safety and toxicity.
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treated mice mesangial MES-13 cells, reduced the expression of
pro-apoptosis proteins, cleaved PARP and Bad, and promoted
expression of the pro-survival markers phospho-Bad (ser112) and
Bcl-2. Additional investigation found that psoralen inhibited the
expression of mRAI-1 which is related to fibrosis in membrane cells
(Seo et al., 2017). It has been suggested that psoralen may ameliorate
renal damage caused by high glucose in diabetic patients.

Embryotoxicity
Oxidative stress and abnormal energy metabolism during
embryogenesis can lead to malformations (Dartel et al., 2014;
Kupsco and Schlenk, 2015). Xia et al. found that psoralen up-
regulated Keap1 expression, while down-regulating Nrf2 and Mn-
Sod expression. In addition, an increase in active oxygen generation
and malondialdehyde concentration, and inhibition of superoxide
dismutase activity also indicated the presence of oxidative stress and
inhibition of antioxidant capacity. In addition, psoralen caused
increased expression of apaf-1, puma, p53, caspase-3/9, and
decreased expression of Bcl-2. Furthermore, down-regulated
expression levels of ppara1, fas, and hmgcra demonstrated
psoralen-induced abnormal lipid metabolism, causing zebrafish
embryo/larval developmental toxicity, reducing the rate of hatching
in zebrafish, diminishing their body length, and significantly
increasing the rate of deformity. Because the yolk is the only source
of energy during zebrafish embryo development, yolk retention,
pericardial edema, fish sting defects, and flexion were observed in
zebrafish larvae, in addition to toxic effects to the developing heart,
liver, phagocytes, and nervous system (Xia et al., 2018).

The BeWo human placental cell line is derived from
choriocarcinoma and is used as a rate-limiting barrier model
for drug and nutrient exchange between mother and fetus in the
placenta (Hawkins et al., 2018; Zhang et al., 2020). Guo et al. used
BeWo cells to study the transport mechanisms of psoralen in
vitro, and found that psoralen passed through the placental
barrier via passive diffusion without involving the P-gp
transporter and was absorbed well in the BeWo cell line (Guo
et al., 2015). This indicates that psoralen may pose a potential
risk to pregnant women, causing embryotoxicity.

When providing therapeutic doses, attention should be paid to
safety, and indicators of liver and kidney toxicity tested. In addition,
the potential risk of psoralen to pregnant women and embryos
should be further evaluated to ensure its safe use during pregnancy.
FUTURE PROSPECTS

Natural products generally have the effect of improving disease
through the intestinal flora (Feng et al., 2019). For example,
osteoporosis is a highly common disease. One area of future
osteoporosis research is the study of human intestinal microbes
(Chen Y. et al., 2017). Some animal model studies (Jones et al.,
2017) and human studies (Ji et al., 2017) have provided
convincing evidence for the importance of gut microbes in bone
metabolism and health. However, there are no literature reports
on the effect of psoralen on the intestinal flora to prevent and treat
osteoporosis, and the specific mechanism requires further study.
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CONCLUSIONS

Cullen corylifolium(L.) Medik, a traditional Chinese medicine,
has been widely used in clinics to treat various diseases such as
osteoporosis, lung cancer, osteoarthritis, etc. In the present
review, the effects of psoralen, the active ingredient of Cullen
corylifolium(L.) Medik, were compared using modern scientific
methods in order to that its pharmacological consequences
can be better understood. We have summarized the results
of the most recent pharmacological research, including its
use in anti-osteoporosis, anti-tumor, antiviral, antibacterial,
anti-inflammatory, photosensitivity, anti-neurodegenerative
diseases, anti-depression applications and in liver and kidney
toxicity studies. The studies of molecular mechanisms indicate
that psoralen regulates osteoblast/osteoclast/chondrocyte
differentiation or activation through regulation of the BMP
signaling pathway, wnt/b-catenin signaling, IRE1/ASK1/JNK
pathway, NF-kB-MAPK pathway, AKT and AP-1 pathways,
and levels of miR-488, PPARg and MMP expression. It also
regulates the Wnt/b-catenin signaling pathway to promote the
expression of cyclin D1, inducing cell cycle arrest in breast
cancer. PERK/ATF4 and ATF6/CHOP-related pathways trigger
endoplasmic reticulum stress-mediated apoptosis. Multi-drug
resistance can be reversed by inhibition of the activity of P-gp
related transporters and enzymes. In addition, psoralen can
inhibit DNA viruses, RNA viruses, and bacteria. Interestingly,
psoralen may be a potential agent against SARS-CoV-2 infection
through the induction of IFN-b secretiom. Furthermore,
psoralen inhibits TNF-a, TGF-b, IL-4/5/6/8/13, and Th2
transcription factor GATA-3 protein expression, thus inhibiting
the inflammatory response. In addition, psoralen can cause
melanin dispersion and inhibit acetylcholinesterase. Finally,
research has found that liver and kidney toxicity is caused by its
effect on cytochrome enzymes. As shown in this article, psoralen
causes a wide range of pharmacological effects, which we believe
will attract additional research effort in the future.
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