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a b s t r a c t 

This article contains supporting information on data collection for the research article entitled “Aircraft noise 

exposure drives the activation of white blood cells and induces microvascular dysfunction in mice” by Eckrich 

et al. We found that noise-induced stress triggered microvascular dysfunction via involvement of innate immune- 

derived reactive oxygen species. In this article, we present the instrumentation of mice with dorsal skinfold 

chambers for in vivo microscopic imaging of blood flow, interaction of leukocytes with the vascular wall (also 

by fluorescent labelling of blood cells) and vessel diameter. In addition, we explain the preparation of cerebral 

arterioles for measurement of vascular reactivity in vitro . 

• visualization of noise-dependent effects in dorsal skinfold chamber. 
• in vivo microscopy of noise-dependent activation of white blood cells. 
• analysis of noise-dependent microvascular dysfunction in dorsal skinfold chamber and cannulated cerebral 

arterioles. 
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a r t i c l e i n f o 

Method name: In vivo fluorescence microscopy and cerebral arteriole cannulation to assess noise induced changes in activation 

of white blood cells and microvascular dysfunction 

Keywords: Dorsal skinfold chamber, Fluorescent labeling of blood cells, Cerebral arterioles cannulation, Video microscopy 
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Specifications table 

Subject Area: Medicine and Dentistry 

More specific subject area: Microvascular analysis of noise induced inflammation and microvascular dysfunction 

Method name: In vivo fluorescence microscopy and cerebral arteriole cannulation to assess noise induced 

changes in activation of white blood cells and microvascular dysfunction 

Name and reference of 

original method: 

In vivo microscopy of dorsal skinfold chambers 

• Algire GH, Legallais FY. Recent developments in the transparent-chamber technique as 

adapted to the mouse. J Natl Cancer Inst. 1949;10(2):225-53, incl 8 pl. Epub 1949/10/01. 

PubMed PMID: 15393709. 
• Sandison JC. A new method for the microscopic study of living growing tissues by the 

introduction of a transparent chamber in the rabbit’s ear. The Anatomical Record. 

1924;28(4):281-7. doi: https://doi.org/10.1002/ar.1090280403 . 
• Endrich B, Asaishi K, Gotz A, Messmer K. Technical report–a new chamber technique for 

microvascular studies in unanesthetized hamsters. Res Exp Med (Berl). 1980;177(2):125-34. 

Epub 1980/01/01. doi: 10.1007/BF01851841. PubMed PMID: 7003665. 

Cerebral arteriole cannulation 

• Reference of original method is not available. It was first described by our working group: 

Eckrich J, Frenis K, Rodriguez-Blanco G, Ruan Y, Jiang S, Bayo Jimenez MT, et al. Aircraft noise 

exposure drives the activation of white blood cells and induces microvascular dysfunction in 

mice. Redox Biol. 2021;46:102063. Epub 2021/07/19. doi: 10.1016/j.redox.2021.102063. PubMed 

PMID: 34274810. 

Resource availability: Dorsal skinfold chamber preparation 

Titanium frame of dorsal skinfold chamber (custom made) 

Autoclave (Tuttnauer systec 5050 ELVD, Tuttnauer Europe B.V., Breda, Netherlands) 

Ketamine (Ketanest; Pfizer Pharma GmbH, Berlin, Germany) 

Xylazine (Rompun; Bayer, Leverkusen, Germany) 

NaCl 0.9% (B.Braun 0,9% Mini-Plasco® connect, B. Braun Melsungen AG, Melsungen, Germany) 

Heated operation platform (MEDAX GmbH & Co KG, Neumünster, Germany) 

Eye ointment (Corneregel®, Bausch & Lomb Inc., Rochester, New York, USA; Bepathen® Eye 

and Nose Ointment, Bayer AG, Leverkusen, Germany) 

Electric razor (Remington Contour, Spectrum Brands, Middleton, Wisconsin, USA) 

Depilatory cream (Veet, Reckitt Benckiser Deutschland GmbH, Heidelberg, Germany) 

Disinfectant spray (octenisept spray, Schülke & Mayr GmbH, Norderstedt, Germany) 

Surgical sutures (ETHIBOND EXCEL V5 - USP 4-0, 0.75m, Ethicon Inc., Raritan, New Jersey, USA) 

1,5 mm Strauss cannula (DISPOMED GmbH & Co. KG, Gelnhausen, Germany) 

surgical pen (Securline Skin Marker, Aspen Surgical Products, Caledonia, Michigan, USA). 

Surgical microscope (ZEISS OPMI 1 FC, Carl Zeiss Meditec AG, Oberkochen, Germany) 

Cover glass slip (11.8 mm, Hecht Assistent, Glaswarenfabrik Karl Hecht GmbH & Co KG, 

Sondheim, Germany) 

Analgesia (Tramadol-ratiopharm, ratiopharm GmbH, Ulm, Germany) 

In vivo microscopy 

Fluorescein isothiocyanate (FITC)-labelled dextran (average mol wt 500 000, Sigma, 

Deisenhofen, Germany) 

Rhodamine 6G (Sigma, Deisenhofen, Germany) 

Local anesthesia (Emla® 25 mg/g Lidocain + 25 mg/g Prilocain creme, Aspen Germany GmbH, 

Munich, Germany) 

( continued on next page ) 
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Surgical canulla( 0.3 × 13mm, BD Microlance 3, Becton, Dickinson and Company Ltd., 

Drogheda, Ireland) 

Intravital microscope (Olympus BXFM, Olympus Deutschland GmbH, Hamburg, Germany) 

Cell Sens Dimension (Olympus Deutschland GmbH, Hamburg, Germany) 

Off-line computer-aided videoframe analysis (Cap Image, Dr. Zeintl Ingenieurbüro, Dreieich, 

Germany) 

Mechanical hand counter (Roth Selection, Carl Roth GmbH + Co. KG, Karlsruhe, Germany) 

Cerebral arteriole studies 

Precision tweezers (type 5, straight with extra fine tips, LH53.1, Carl Roth GmbH + Co. KG, 

Karlsruhe, Germany) 

Vannas capsulotomy scissors (straight, G-19760, Geuder AG, Heidelberg, Germany) 

Glass Capillaries (1.2 × 0.8 mm outer/inner diameter, 9-0 0 0-1211, Drummond Scientific 

Company, Broomall, PA, USA) 

Nylon Suture (10-0, 198001, Alcon AG, Freiburg, Switzerland) 

Vertical Pipette Puller (Model 700C, David Kopf Instruments, Tujunga, CA, USA) 

Pressure Myograph (Jim’s Instruments Manufacturing Inc., Iowa City, IA, USA) 

Pericyclic pump (Model CYCLO II, EP76.1, Carl Roth GmbH + Co. KG, Karlsruhe, Germany) 

Recirculating water bath (Model FE 2, Thermo Haake GmbH, Karlsruhe, Germany) 

Inverted microscope (Model SXB-1A, Lowest Price Microscopes, MO, USA) 

Digital camera (Model TK-C1381, JVC Deutschland GmbH, Bad Vilbel, Germany) 

Calcium chloride (5239.1, Carl Roth GmbH + Co. KG, Karlsruhe, Germany) 

Kalium chloride (6781.1, Carl Roth GmbH + Co. KG, Karlsruhe, Germany) 

Kalium dihydrogen phosphate (3904.2, Carl Roth GmbH + Co. KG, Karlsruhe, Germany) 

Magnesium sulphate (261.2, Carl Roth GmbH + Co. KG, Karlsruhe, Germany) 

Sodium chloride (9265.2, Carl Roth GmbH + Co. KG, Karlsruhe, Germany) 

Sodium hydrogen carbonate (0965.3, Carl Roth GmbH + Co. KG, Karlsruhe, Germany) 

α-(D)-( + )- Glucose monohydrate (6780.1, Carl Roth GmbH + Co. KG, Karlsruhe, Germany) 

9,11-dideoxy-9 α,11 α-methanoepoxy prostaglandin F2 α (U-46619, 16450, Cayman Chemical, 

Ann Arbor, MI, USA) 

Acetylcholine chloride (A6625-25G, Merck KGaA, Darmstadt, Germany) 

Sodium nitroprusside (1065410025, Merck KGaA, Darmstadt, Germany) 

ntroduction 

The influence of noise exposure on microvascular dysfunction, inflammation and changes in

lood flow remains the subject of intense investigation at the epidemiological level in large cohorts

1] and at the mechanistic level in mouse studies [2–5] . Since inflammation ultimately leads

o pathophysiological alterations of blood flow and the adherence and diapedesis of leukocytes,

isualization of these changes has been the main purpose of various invasive and non-invasive

echniques, exposing the vascular network to scientific investigation [6 , 7] . 

The dorsal skinfold chamber facilitates an unobstructed insight to the intramuscular vessel network

hrough exposure of the panniculus carnosus muscle in mice. Moreover, application of fluorophores

llows the visualization blood plasma [8] and specific blood cells, including, leukocytes [9] , and

hrombocytes [10] . 

orsal skinfold chamber preparation 

For the specific research performed by our working group [11] , male C57BL/6j or gp91phox −/y

ice, aged > 8 weeks ( > 25 g body weight) are used as an experimental model, however, for other

ouse strains, including immune deficient mice, chamber preparation and intravital analysis has

lso been described with some modifications [12–16] . All animal experiments were approved by the

andesuntersuchungsamt Koblenz, Germany (23 177-07/G 18-1-084 and addenda). All experiments

omply with the ARRIVE guidelines and were carried out in accordance with the EU Directive

010/63/EU for animal experiments. All experimental procedures were performed according to

nstitutional and governmental guidelines and all people involved in the experimental course were

ualified to perform experimental procedures on laboratory animals (FELASA B/C accreditation). All

nimal experiments were approved by the Landesuntersuchungsamt Koblenz, Germany (23 177-07/G

8-1-084 and addenda). 
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Fig. 1. Surgical anatomy and technical equipment of the dorsal skinfold chamber in mice. Reused from [11] with permission. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The dorsal skinfold chambers as well as all surgical instruments have to be sterilized before any

surgical intervention (Tuttnauer systec 5050 ELVD, Tuttnauer Europe B.V., Breda, Netherlands). 

The dorsal skinfold chamber (custom made) consists of two antagonizing titanium frames 

incorporating three canals for fixing screws as well as 12 holes for the surgical sutures (ETHIBOND

EXCEL V5 - USP 4–0, 0.75m, Ethicon Inc., Raritan, New Jersey, USA) affixing the chamber to the

mouse’s skin ( Fig. 1 ). 

A removable cover glass is fixed with a retaining ring in order to protect the exposed tissue within

the chamber window whilst allowing full visual access. The chamber implantation is performed after 

intraperitoneal injection of ketamine (0.1 mg/g Ketanest®; Pfizer Pharma GmbH, Berlin, Germany) 

and xylazine (0.01 mg/g Rompun®; Bayer, Leverkusen, Germany) mixed with NaCl 0.9% (B. Braun 0,9%

Mini-Plasco® connect, B. Braun Melsungen AG, Melsungen, Germany) in a 1/10 ratio. 

Since the regulation of the animals’ body temperature is significantly altered by the anesthesia,

temperature homeostasis has to be carefully observed for the duration of sedation. To avoid

hypothermia, animals are placed on a heated operation platform (MEDAX GmbH & Co KG, 

Neumünster, Germany). Furthermore, intensive eye care is of great importance. Therefore, repetitive 

application of eye ointment like Corneregel® (Bausch & Lomb Inc., Rochester, New York, USA) or 

Bepanthen® Eye and Nose Ointment (Bayer AG, Leverkusen, Germany) to avoid damage to the cornea 

throughout the course of anesthesia. 

Before any surgical intervention, sufficient anesthesia has to be determined by a loss of positional

as well as corneal and interdigital reflexes. Reevaluation of depth of anesthesia should be evaluated

repetitively throughout the operative intervention. In case of insufficient sedation, 10% of the initial 

dose of the ketamine/xylazine solution are injected intraperitoneally every 5 min until sufficient 

anesthesia is achieved. 

The chamber implantation is carried out as previously described [12] . The operation site, including

the dorsal as well as the flank skin of the mouse ( Fig. 2 A), is first depilated with an electric razor

(Remington® Contour, Spectrum Brands, Middleton, Wisconsin, USA). Razor hair removal should be 

carried our very carefully and a short layer of hair should be left to ensure integrity of the skin.

Afterwards, depilatory cream (Veet®, Reckitt Benckiser Deutschland GmbH, Heidelberg, Germany) is 

applied carefully onto the dorsal skin. Three to five minutes after application the depilatory cream and

the remaining hair are carefully removed with tissue wipes until the entire dorsal skin is completely

depilated. Residual depilatory cream and hair is washed off with warm water (37 °C). After drying,

the dorsal skin is disinfected using a pre heated, alcohol free disinfectant spray (octenisept® spray, 

Schülke & Mayr GmbH, Norderstedt, Germany). 
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Fig. 2. Operative procedure of the skinfold chamber preparation in detail. A: Area of depilation; B: transillumination to identify 

the subcutaneous vessel plexus; C: Extending the dorsal skin with sutures; D: affixing one side of the skinfold chamber with 

sutures. E: Anterograde piercing of the dorsal skinfold for subsequent screw insertion. F: surgical removal of skin and as well 

as the underlying musculocutaneous tissue with microsurgical instruments. 
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The dorsal skinfold is then carefully extended by hand to allow the positioning of the chamber

rame in reference to the vascular network within the skins’ double layer under transillumination

 Fig. 2 B). 

Two surgical sutures (ETHIBOND EXCEL V5 - USP 4–0, 0.75m, Ethicon Inc., Raritan, New Jersey,

SA) are thread through the lateral holes in the apical part of the chamber and then retrogradely

ierced through the dorsal skinfold ( Fig. 2 C). It is of great importance to position these sutures in a

ay that the chamber window is placed above a vessel branch strong in caliber in transillumination. 

The two surgical threats are subsequently affixed above the chamber window, extending the dorsal

kinfold. At least two further sutures should be placed at the apical and basal part of the chamber to

mmobilize the chamber frame on the skin ( Fig. 2 D). 

Transillumination allows the identification of the drilling holes for the fixing screws in the

hamber. The corresponding area of the skinfold is then anterogradely pierced through using a 1,5mm

trauss cannula (DISPOMED GmbH & Co. KG, Gelnhausen, Germany) ( Fig. 2 E). The fixing screws are

ubsequently inserted into the hollow cannula and retrogradely passed through the skinfold to avoid

issue damage. 

By use of transillumination the detection of the external borders of the chamber window is

ossible, which are then marked on the dorsal skin using a surgical pen (Securline® Skin Marker,
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Aspen Surgical Products, Caledonia, Michigan, USA). The mouse is then positioned on its lateral side

with sutured chamber frame facing down. 

A surgical microscope (ZEISS OPMI® 1 FC, Carl Zeiss Meditec AG, Oberkochen, Germany) is 

used for the surgical removal of the skin as well as the underlying musculocutaneous tissue.

With microsurgical instruments, the layer of skin facing upward as well as the apical panniculus

carnosus muscle and the two layers of the retractor muscle are removed entirely within the area in

correspondence to the chamber window ( Fig. 2 F). During the surgical removal, NaCl 0.9% (B. Braun

0,9% Mini-Plasco® connect, B. Braun Melsungen AG, Melsungen, Germany) is repetitively drizzled 

onto the exposed tissue to avoid drying out and consecutive tissue damage. After completion of

preparation, the opposing chamber frame with an inserted cover glass slip (12 mm, Hecht Assistent,

Glaswarenfabrik Karl Hecht GmbH & Co KG, Sondheim, Germany) is placed on the musculocutaneous 

tissue of the opposing layer within the chamber window. In a final step, the chamber is then fixed

with titanium nuts and the cover glass is immobilized using a retaining ring. 

In our experimental setup, the animals are treated with 0.1 mg/mL tramadol (Tramadol- 

ratiopharm, ratiopharm GmbH, Ulm, Germany) with the daily applied drinking water. After chamber 

implantation, weight and health conditions of every animal are to be monitored and documented in a

score sheet quantifying indicators of an impaired wellbeing. A weight loss > 20% of the postoperative

bodyweight, signs of inflammation and behavioral changes indicating pain or sickness as well as signs

of inflammation within the chamber window were previously determined as dropout criteria. 

For an experienced operator, the entire procedure described in Fig. 2 A–F will take 20–30 min

per animal. In our experience, the image quality of microscopic images decreases over time due

to ingrowth of connective tissue into the chamber window. This ultimately limits the capability to

sufficiently monitor blood flow longer than 10–14 days, especially in small vessels. 

Noise exposure 

Following chamber implantation, animals are randomized to the experimental group or control 

group, respectively. Animals within the experimental group are subsequently exposed to a previously- 

recorded playback of aircraft noise (average sound pressure level of 72 dB(A) and peak sound pressure

levels of 85 dB(A), respectively) for 96 h. These sound pressure levels are roughly comparable to a

passenger car passing by (72 dB(A)) or a ringing telephone/truck passing by (85 dB(A)) according to

the decibel scale reported in [17] . Animals randomized to the control group are kept at homologous

conditions with no noise exposure (mean background noise levels in the local animal house were

approximately 48 dB(A),comparable to the noise originating from falling rain) as previously described 

[2 , 3] . 

In vivo microscopy for analysis of microvascular reactivity and leukocyte interactions 

Approximately 15 min before microscopical analysis, fluorescein isothiocyanate (FITC)-labelled 

dextran (Sigma, Deisenhofen, Germany; average mol wt 500 000; 0.5–0.75 mL of a 5% solution in

0.9% saline) and rhodamine 6G (Sigma, Deisenhofen, Germany, 0.5-0,75 mL of a 0.05% solution in 0.9%

saline) were injected into the tail vein under local anesthesia (Emla® 25 mg/g Lidocain + 25 mg/g

Prilocain creme, Aspen Germany GmbH, Munich, Germany) utilizing a 0.3 × 13mm surgical canulla 

(BD Microlance TM 3, Becton, Dickinson and Company Ltd., Drogheda, Ireland). 

FITC-labelled dextran is injected to enhance the contrast between plasma and blood cells in order

to determine the specific blood flow as previously described [8] . 

Furthermore, rhodamine 6G is injected to visualize leukocyte-endothelial cell interactions as 

previously described [9] . 

In vivo microscopy can be performed by immobilizing the animals in an acrylic tube, which

is subsequently placed on a customized microscopy platform underneath the microscope. On this 

platform, the chamber is positioned and affixed horizontally to an acrylic glass frame with screws

( Fig. 3 ). Thus, movement is sufficiently minimized in the lateral plane without compromising

the tissues’ integrity. Additionally, the off-line computer-aided videoframe analysis software which 

was used offers a digital movement-stabilization function which efficiently reduces any residual 
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Fig. 3. Setup of fluorescein based in vivo microscopy of the dorsal skinfold chamber in mice (modified). Modified from [11] with 

permission. 
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ovements. An intravital microscope (Olympus BXFM, Olympus Deutschland GmbH, Hamburg,

ermany) allows visual access to the vascular network within the chamber window. 

Since no invasive procedures are performed, no sedation or anesthesia of the animal is necessary

or the investigational timeframe. 

In each chamber window, regions of interest (ROI) (north, east, south, west, middle) are defined.

hamber areas of insufficient quality due to non-adherence of the musculocutaneous tissue to the

hamber window should be excluded from the investigation. A green filter (Excitation [Ex]:470

m/Emission [Em]: 525 nm) is used for fluorescence imaging of the intravascular FITC-labelled

extran ( Fig. 4 ) enhancing the contrast between erythrocytes and the fluorescent blood plasma.

urthermore, an orange filter (Ex: 545 nm; Em: 605 nm) is used for the fluorescence imaging of

hodamine 6G accumulating in the mitochondria of white blood cells. 

For each ROI, representative video sequences ( ∼15 s) are recorded, using the built-in microscope

oftware cellSens Dimension (Olympus Deutschland GmbH, Hamburg, Germany) and saved as

ncompressed AVI files. 

Video sequences are analyzed off-line using a computer-aided videoframe analysis system (Cap-

mage, Dr. Zeintl Ingenieurbüro, Dreieich, Germany) as previously described [18 , 19] . Within each ROI,

,4 blood vessels are evaluated with regard to vessel diameter (d). Red blood cell velocity (V RBC )

s determined using the line shift diagram tool. For this purpose, the course of each respective

lood vessel is marked and the red blood cell flow within the vessel is automatically determined

y analyzing the time-dependent brightness at each labeled point. These data are integrated into a

oordinate system in which the length of the blood vessel is shown as the abscissa and the time

ourse as the ordinate, respectively. Consequently, gaps in motion within in the line shift diagram can

e identified and their velocity can be determined. In addition, each automatic evaluation is reviewed

anually ( Fig. 4 ). 

By integration of the obtained parameters d and V RBC , the blood flow within the analyzed segment

segmental blood flow, SBF in [pl/s]) can be determined as described by Baker and Wayland [20] : 

SBF = ( V RBC / 1 . 6 ) x ( d / 2 ) 
2 
x π
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Fig. 4. Evaluation of segmental blood flow includes labeling the course of the respective blood vessel (A, red line 1), 

determining the vessel diameter (B, red line 1) and carrying out Cap Image’s line shift diagram function in order to calculate 

red blood cell velocity (C, red lines 1-5). Original data in [11] , reused with permission. 

Fig. 5. In vivo analysis of leukocyte-microvascular interactions. For evaluation of leukocyte-microvascular wall interaction 

rhodamine 6G enhanced intravital microscopy is used (A). Adhesive leukocytes are quantified manually using a mechanical 

hand counter (B, blue arrows). To quantify the amount of rolling leukocytes (i.e., decrease in flow velocity > 50%), moving 

leukocytes are screened visually. Decrease in velocity is subsequently verified individually by frame-to-frame analysis (C, green 

crosses: time-dependent leukocyte position, red line: path of rolling leukocytes). A decrease in gap between two green crosses 

indicates a deceleration which identifies a rolling leukocyte. 

 

 

To determine the amount leukocyte rolling and adhesion, homologue rhodamine 6G enhanced 

video sequences are played back in slow motion (0.1 x original speed). First, the adhesive leukocytes

are quantified manually using a mechanical hand counter (Roth Selection, Carl Roth GmbH + Co.

KG, Karlsruhe, Germany). Each video sequence is evaluated by two independent raters, blinded with 

regard to the experimental group. 
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Fig. 6. Preparation of cerebral arterioles for video microscopy. After isolation of the brain (bottom view), a vascular tree of the 

middle cerebral artery (MCA) is carefully isolated by using Vannas scissors and fine-point-tweezers (a, anterior; p, posterior) 

(A). Next, the MCA including its branches is transferred to a pressure myograph with dual micropipettes (B). The MCA is 

then cannulated by using two fine-point tweezers, and the micropipette tip is advanced just before the arteriole is branching. 

Moreover, a loop of suture (10.0 Nylon) is placed over the artery (C). The tip of the micropipette is then guided into the arteriole 

by gently pulling the cannulated end of the MCA further on the pipette and by pushing the free end of the MCA against the 

pipette tip. The arteriole is not grabbed directly at any time of the cannulation process. Once the arteriole is cannulated, the 

free end of the MCA is taken through the suture loop and tied to the pipette (D). To avoid leakage of fluid from side branches 

of the MCA and to further secure the arteriole, a second suture is put on the cannulated part of the arteriole (E). The ends of 

the sutures and the non-cannulated end of the MCA are then trimmed, and a loop of suture material is placed on the opposite 

micropipette (F). Next, the non-cannulated end of the arteriole is put through the suture loop and tied to the micropipette (G). 

The ends of the suture on the right micropipette are then trimmed and the micropipette tips moved apart to gently stretch 

the arteriole (H). Subsequently, the perfusion chamber is placed on an inverted microscope and the arteriole pressurized to 40 

mmHg via the inserted micropipette and visualized by a digital camera (I). After an equilibration time of 30 min, the arteriole 

is ready for the measurement. 
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In a second step, rolling leukocytes were quantified. Leukocytes showing a reduction in velocity of

 50% compared to V RBC are defined as “rolling”. Using the frame-to-frame velocity analysis tool, the

peed of analyzed leukocytes was determined and the respective total number quantified ( Fig. 5 ). 

nalysis of cerebral microvascular reactivity and oxidative stress 

The here described preparation method for measurement of mouse cerebral arteriole reactivity by

ideo microscopy was established by the senior author (A.G.) [11] . Video microscopic measurement

ethods for arterioles of other vascular beds have previously been described by our working group

5 , 21] . Arterioles branching from the middle cerebral artery (MCA) were selected for measurement,

ince the MCA and its branches supply the largest part of the cerebral cortex and other brain
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Fig. 7. In cerebral arterioles branching from the middle cerebral artery noise markedly reduced endothelium-dependent 

vasodilation in response to acetylcholine. In contrast, responses to the endothelium-independent vasodilator, nitroprusside, 

and to the vasoconstrictor, U46619 (thromboxane A2 mimetic), remained unchanged ( n = 4 per group; 2-way ANOVA with 

Bonferroni’s multiple comparison test). Reused from [11] with permission. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

regions with blood [22 , 23] . Moreover, most ischemic strokes occur in the territory of the MCA

highlighting the pathophysiological relevance of this vascular bed [23] . While in untreated C57BL/6J

mice, the main branch of the MCA is almost completely unresponsive to the endothelium-dependent

vasodilator, acetylcholine, (data not shown) its small side branches display good endothelium- 

dependent responses which make them suitable for experimentation [11] . 

For in vitro- analysis, the whole mouse brain is dissected and immersed into ice cold artificial

cerebrospinal fluid to ensure tissue integrity for the subsequent preparation. Next, the middle cerebral 

artery (MCA) as well as its arteriole branches are identified. Surrounding brain tissue is carefully

removed from the vessels by means of Vannas scissors and fine-point-tweezers ( Fig. 6 A). Following

this, the MCA and its branches are transferred to a pressure myograph with dual micropipettes

( Fig. 6 B). Afterwards, the MCA’s lumen is cannulated with a micropipette, which is cautiously placed

into one of the arteriole branches ( Fig. 6 C). After verification of the correct position, the surrounding

vessel wall is fixed to the micropipette using dual 10.0 nylon sutures (10-0, 198001, Alcon AG,

Freiburg, Switzerland, Fig. 6 D,E). The end of the non-cannulated end of the MCA is then trimmed

( Fig. 6 F). In a final step, the opposite end of the arteriole is cannulated and fixed in the same fashion

( Fig. 6 G,H). For subsequent evaluations, an intravascular pressure of 40 mmHg is established under

brightfield microscopic control and balanced for 30 min ( Fig. 6 I). 

The preparation of the middle cerebral artery and its consecutive arterioles takes about 30 

min. Evaluation of their individual responsiveness to various vasodilators and vasoconstrictors takes 

roughly another 2 h. Our preliminary experiments have shown that arterioles branching out of the

middle cerebral artery may be evaluated in this context for about 6 h. Afterwards, their individual

responsiveness reduces steadily. 

Concentration-dependent response curves of arterioles branching from the MCA are established 

using the endothelium-dependent vasodilator, acetylcholine (ACh, 10 −9 –10 −4 M; Sigma-Aldrich, 

Taufkirchen, Germany), the endothelium-independent vasodilator, sodium nitroprusside (SNP, 

10 −9 –10 −4 M, Sigma-Aldrich), and the vasoconstricting thromboxane mimetic, U46619 (10 –11 –

10 −6 M; Cayman Chemical, Ann Arbor, MI, USA) for noise-exposed and control animals as shown in

Fig. 7 [11] . For analysis of response curves to vasodilating agents, arterioles are pre-toned to about

50–70% of the original diameter by titration with U46619. 

The presented cannulation method of cerebral arterioles via the main branch of the MCA is

much easier, faster and less destructive than the attempt of a direct cannulation of an arteriole.

Figure 6 demonstrates individual steps of the cannulation procedure for arterioles that branch from 

the mouse MCA in detail. 
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onclusion 

The presented experimental protocol allows the visualization and quantification of effects caused

y noise exposure on the activation of white blood cells microvascular dysfunction in mice [11] .

part from noise, multiple other pathological mechanisms like infection [24–27] , malignant diseases

28–30] , ischemia [31] , metabolic disorders [32 , 33] , pollution [34] , or thermal [35 , 36] and chemical

rauma [37] ultimately lead to inflammatory driven changes in microvascular blood flow and immune

eactions. Thus, with some minor modifications, application of the experimental protocol may enable

cientists to study specific effects on vascular function caused by other pathogens in the future. 
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