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Simple Summary: The use of immunotherapeutic agents significantly improved stage-IV melanoma
patients’ overall progression-free survival. To identify patients who do not benefit from immunother-
apy, both clinical parameters and experimental biomarkers such as radiomics are currently being
evaluated. However, no radiomic biomarker is widely accepted for routine clinical use. In a large
cohort of 262 stage-IV melanoma patients given first-line immunotherapy treatment, we investigated
whether radiomics—based on the segmentation of all baseline metastases in the whole body—in com-
bination with clinical parameters offered added value compared to the usage of clinical parameters
alone in a machine-learning prediction model. The primary endpoints were response at three months,
and survival rates at six and twelve months. The study indicated a potential, but non-significant,
added value of radiomics for six-month and twelve-month survival prediction, thus underlining the
relevance of clinical parameters.

Abstract: Background: This study investigated whether a machine-learning-based combination of
radiomics and clinical parameters was superior to the use of clinical parameters alone in predicting
therapy response after three months, and overall survival after six and twelve months, in stage-
IV malignant melanoma patients undergoing immunotherapy with PD-1 checkpoint inhibitors
and CTLA-4 checkpoint inhibitors. Methods: A random forest model using clinical parameters
(demographic variables and tumor markers = baseline model) was compared to a random forest
model using clinical parameters and radiomics (extended model) via repeated 5-fold cross-validation.
For this purpose, the baseline computed tomographies of 262 stage-IV malignant melanoma patients
treated at a tertiary referral center were identified in the Central Malignant Melanoma Registry, and
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all visible metastases were three-dimensionally segmented (n = 6404). Results: The extended model
was not significantly superior compared to the baseline model for survival prediction after six and
twelve months (AUC (95% CI): 0.664 (0.598, 0.729) vs. 0.620 (0.545, 0.692) and AUC (95% CI): 0.600
(0.526, 0.667) vs. 0.588 (0.481, 0.629), respectively). The extended model was not significantly superior
compared to the baseline model for response prediction after three months (AUC (95% CI): 0.641
(0.581, 0.700) vs. 0.656 (0.587, 0.719)). Conclusions: The study indicated a potential, but non-significant,
added value of radiomics for six-month and twelve-month survival prediction of stage-IV melanoma
patients undergoing immunotherapy.

Keywords: melanoma; prognostic biomarkers; imaging biomarkers; biomarkers for immunotherapy;
checkpoint blockade; artificial intelligence and machine-learning

1. Introduction

The treatment of patients with advanced melanoma has undergone a revolution in re-
cent years with the introduction of new therapeutic approaches. On the one hand, blocking
the RAF-RAS-MEK signaling pathway using combined BRAF and MEK inhibitors (so-called
targeted therapy) is available; however, this is only possible for around 40% of patients
due to the specific mutation patterns required [1–5]. On the other hand, since the introduc-
tion of the checkpoint inhibitors ipilimumab (CTLA-4) and nivolumab/pembrolizumab
(PD-1) and their combination, effective immunotherapies have been available that enable
treatment regardless of the mutation status [6]. The use of immunotherapeutic agents
has significantly improved patients’ overall survival (OS) and progression-free survival
(PFS) [7–9]. However, to date, around half of patients show primary resistance or develop
secondary resistance during therapy. To identify patients who do not benefit from im-
munotherapy, only clinical parameters (such as lactate dehydrogenase (LDH)) and the
presence of lung or liver metastases [10,11], as well as experimental biomarkers, (for exam-
ple, those based on radiomics) are currently available. Radiomics aims to non-invasively
extract phenotypic features from medical imaging by using automated algorithms, based
either on manually programmed algorithms or deep learning, and subsequently attempts
to develop imaging biomarkers from the derived features using machine- or deep-learning
methods [12]. Radiomics has been used in some studies to generate added value for the
prediction of OS and PFS [13–18]; however, no biomarker is widely accepted for routine
clinical use [1].

Several issues repeatedly arise regarding radiological studies. First, the studies are
often based on small cohorts and explicitly only use cohorts that are examined on a single
device, with only one defined contrast-medium phase. Second, a follow-up examination is
often required to document parameters such as tumor size reduction or the occurrence of
new metastases. Third, most of the studies only segment the largest metastases according
to RECIST 1.1. criteria or focus on a single organ, most likely due to the time-consuming
process of manual segmentation. This has the drawback of a potential loss of information
from the smaller metastases and parameters such as whole-body tumor burden.

Using a more extensive approach, we investigated whether radiomics, based on the
segmentation of all baseline metastases in the whole body in combination with clinical
parameters, offers added value compared to the usage of clinical parameters alone in a
machine-learning prediction model. The primary endpoints were response at three months,
and survival rates at six and twelve months.

2. Materials and Methods
2.1. Workflow Overview

The overall machine-learning (ML) workflow of this study is shown in Figure 1. For
the selected patient cohort, all metastatic lesions were manually segmented in the baseline
computed tomography (CT) images. Radiomic features were extracted and aggregated
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across the lesions per patient. The cohort was split into training and validation sets
following a repeated 5-fold cross-validation scheme. An ML model, which consisted
of feature pre-processing, feature selection, training, and validation, was applied and
evaluated for clinical data only (baseline model) vs. clinical data and radiomic features
(extended model).
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2.2. Patient Selection

The Central Malignant Melanoma Registry (CMMR) was used to retrospectively iden-
tify patients diagnosed with stage-IV melanoma between 1 January 2015 and 31 December
2018. They were all given first-line treatment at the department of dermatology, a tertiary re-
ferral center for melanoma patients, with nivolumab or pembrolizumab mono (n = 146), or
with a combination of nivolumab and ipilimumab (n = 116), according to current guidelines.
The study protocol was approved by the institutional ethics board. Inclusion criteria were:

1. Stage-IV melanoma;
2. First-line treatment with a PD-1 checkpoint inhibitor, a CTLA-4 checkpoint inhibitor,

or combination of both;
3. Available baseline CT scans prior to treatment initiation;
4. Available demographic data, follow-up data, and clinical metadata.
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Exclusion criteria were an absence of CT baseline imaging, prior treatment with
immunotherapy, and no visible metastasis on CT imaging. For a detailed illustration of the
inclusion and exclusion process see Figure 2.
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Figure 2. Patient selection.

2.3. CT Imaging and Lesion Segmentation

Baseline CTs for all patients were identified in the local picture archiving and com-
munication system (PACS), anonymized, and uploaded into a custom-made segmentation
software (SATORI, Fraunhofer MEVIS, Bremen, Germany). In-house staging CTs were
performed on four CT scanners (Sensation 64, SOMATOM Definition AS, SOMATOM Defi-
nition Flash, and SOMATOM Force—all from Siemens Healthineers, Erlangen, Germany)
and one PET-CT scanner (Biograph128, from Siemens Healthineers, Erlangen, Germany).
The in-house whole-body staging protocol was performed with a scan field from the skull
base to the middle of the femur with patients laid in a supine position, arms raised above
the head. Scanning was performed during the portal-venous phase after administration
of body-weight-adapted contrast medium through the cubital vein. Attenuation-based
tube-current modulation (CARE Dose, reference mAs 240) and tube voltage (120 kV) were
applied. The following scan parameters were used:

SOMATOM Force: collimation, 128 × 0.6 mm; rotation time, 0.5 s; pitch 0.6.
Sensation64: collimation, 64 × 0.6 mm; rotation time, 0.5 s; pitch 0.6.
SOMATOM Definition Flash: collimation, 128 × 0.6 mm; rotation time, 0.5 s; pitch 1.0.
SOMATOM Definition AS: collimation, 64 × 0.6 mm; rotation time, 0.5 s; pitch 0.6.
Biograph128: collimation, 128 × 0.6 mm; rotation time, 0.5 s; pitch 0.8.
Slice thickness, as well as increment, were set to 3 mm. A medium-smooth kernel was

used for image reconstruction.
Forty-three CTs of patients who had not received their baseline CT in-house at

the department of diagnostic and interventional radiology, but at several external in-
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stitutions, were also included to account for a more realistic sample and reduce sam-
ple bias. Detailed information for contrast-medium phase, tube current and tube volt-
age are not available for these cases. For a detailed distribution of CT vendors, see
Table S1 in the Supplementary Materials.

The transverse reformatted images in the portal-venous phase were used for image
analysis. All visible metastases were manually volumetrically segmented by a radiologist
(FP with 4 years of experience in oncologic imaging) using SATORI (see Figure 3). In
cases of uncertainty, a four-eyes principle with an experienced reader (AO with 8 years of
experience in oncologic imaging) was applied.
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Figure 3. Schematic feature extraction and machine-learning workflow: Top left—3D reformat-
ted model of all segmented metastases (yellow) and examples of 2D segmentation process in ax-
ial reformatted CT slices in portal-venous contrast-medium phase; bottom left—radiomic feature
types; top right—clinical feature set; bottom right—radiomic feature set; middle right—overview of
machine-learning process. Abbreviations: AUC—area under the curve; BRAF—v-Raf murine sar-
coma viral oncogene homolog B1; FCBF—fast correlation based filter; LDH—lactate dehydrogenase;
LoG—Laplacian of Gaussian.
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2.4. Radiomic Feature Extraction and Aggregation

For each segmented lesion, 14 radiomic shape features, 18 first-order statistics features,
and 75 texture features were extracted using the Pyradiomics software [12], which provides
a reference implementation of the IBSI standard [19] with the documented deviations.
The non-shape features were extracted as three different image types: original image
(93 features), image filtered with Laplacian of Gaussian (LoG) with σ = 1, 2, 3, 4, and 5 mm
(465 features), and wavelet-transformed image (744 features). In total, 1316 features were
extracted per lesion. The features were not harmonized to account for different scanner
types, as this has been shown to not improve model performance in previous work on
CT-based features [20].

We aimed to perform patient-level training and outcome prediction. Each lesion-wise
radiomic feature was aggregated per patient in four different ways: 1. feature value of the
largest lesion; 2. volume-weighted mean of the feature value for the three largest lesions;
3. feature value of the most predictive lesion; and 4. volume-weighted mean of feature
value for the three most predictive lesions. For determining the most predictive lesions,
first, all lesions were ranked by their annotated type (from most to least predictive: liver,
adrenal gland/heart/spleen, skeletal, lung, lymph nodes, and soft tissue/skin, based on
the clinical experience of the T.A. and T.E.—both experts in the field of melanoma and
experienced clinicians that have treated metastatic melanoma patients for many years at
the Center of Dermato-Oncology, Tuebingen University Hospital—as well as on further
evaluation of the data from Meier et al. [21]). Second, lesions were ranked per lesion type
by their volume (larger lesions were rated as more predictive). In addition, the lesion count
and total lesion volume were computed across all segmented lesions and per lesion type
(liver, lung, lymph nodes, soft tissue/skin, skeletal, heart, spleen, adrenal gland, and other).
In total, 5284 radiomic features were calculated per patient. Automatic feature selection was
applied during training to select those features that had a high correlation with the outcome
on training data, and little correlation with other selected features, using the fast correlation-
based filter for feature selection (FCBF) method [22]. Compared to other methods such
as minimum redundancy–maximum relevance (mRMR) feature selection [23], FCBF has
the advantage of the number of selected features being chosen automatically. For FCBF,
features were discretized by mapping the already normalized features to −1 for feature
values below −0.5, to 0 for values between −0.5 and 0.5, and to 1 for higher feature values,
as recommended for mRMR.

2.5. Machine-Learning Model

The machine-learning models were built for three different clinical endpoints: therapy
response after three months according to RECIST 1.1 criteria (binarized: complete or partial
response = response; stable or progressive disease = no response), and survival after
six months and twelve months. Patients with PD after the first cycle of immunotherapy
were considered non-responders. For each endpoint, the total patient cohort was reduced
to those patients for whom the endpoint information was available. The excluded patients
were censored.

Two ML models were trained per endpoint: the baseline model was trained on the
clinical data, using all clinical features, as listed in Figure 3. The extended model was
trained on all clinical features and a subset of the aggregated radiomic features, which was
automatically selected per fold.

All ML models were trained in 10 × 5-fold cross-validation (CV) with random assign-
ment of patients to the folds, to estimate the prediction performance. Per fold, the ML
model pipeline consisted of four steps, of which steps 1–3 were performed based on the
respective training set only:

1. Pre-processing: Ordinal encoding of nominal clinical features [24], imputation of
missing clinical feature values (0.5 for binary features, median for all other features),
standard normalization (zero mean, unit variance) of all features;
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2. Feature selection using FCBF [22]: Applied only to radiomic features, clinical features
were always used;

3. Training: Fit of an extremely randomized forest [25];
4. Validation: Prediction of outcome on the current validation set and comparison to

true outcome using AUC.

Repeated CV was chosen over simple CV to reduce the impact of the random as-
signment to folds (or data-split) in the evaluation, and therefore, to obtain a more reliable
estimate of the overall model performance.

A random forest (RF) was chosen as the core ML model because of its advantages
such as the low need for hyper-parameter tuning and robustness to noisy variables [26].
We did not tune the model hyperparameters in a computationally expensive nested cross-
validation loop, because the random forest is known to have low tunability [27] and to
avoid overfitting of the hyperparameters to the comparably small training dataset.

A property of conventional random forests is the preferred splitting at variables
with many possible values, such as continuous radiomic features, because more possible
split points are available than for discrete or binary features. This bias in split-variable
selection can lead to overfitting and splitting at non-optimal features within each tree. In
the present study, most baseline clinical features had few discrete values, while the added
radiomic features were multi-valued or continuous. Therefore, the extremely randomized
forest variant [25] was chosen, which alleviates the bias in split selection by randomly
binarizing all variables before applying the splitting rules. We used the implementation
provided in the scikit-learn Phyton package (version 0.24.2, ExtraTreesClassifier) with
default parameters, but enabled bootstrapping for building the trees [28].

2.6. Performance Evaluation

The area under the curve (AUC) of the receiver-operating-characteristic (ROC) curve
was chosen as a classification performance metric. We used bootstrapping with 1000 samples
to estimate a 95% confidence interval (CI) for the mean AUC of the 10 × 5-fold CV of each
model. We computed the mean AUC by pooling the predictions on all 5 folds, and repeated
this procedure for each of the 10 CV repetitions, using the same bootstrap sample on patient
level per repetition [29]. Per bootstrap sample, we then calculated the mean AUC across the
10 repetitions. We computed a mean ROC curve analogously with 95% CI, by estimating
the true positive rate of predictions via bootstrapping.

Statistically significant superior performance of the extended model is achieved if
the CI of the mean AUC of the baseline and extended models do not overlap. Significant
predictive capacity of a model following the outcome distribution is achieved if the lower
bound of the CI is higher than 0.5.

Furthermore, we used the twelve-months survival prediction of the baseline model
and the extended model to divide the cohort into low- vs. high-risk patients. A patient
was classified as high-risk, when the twelve-months survival prediction of the model
was negative, resulting in a risk stratification per model. The lifelines Python package
(version 0.26.0) was employed to compute a Kaplan–Meier estimator for the overall survival
of both groups, with a log-rank test for the statistical comparison of both groups [30].

3. Results
3.1. Demographics, Response after Three Months, and Survival after Six and Twelve Months

The patients were predominantly male (58%), with a median age of 70 years. The
dominant histological subtypes were superficial spreading melanoma (27%) and nodular
melanoma (24%). A total of 32% of the patients presented with elevated LDH and 48% with
elevated S100 at baseline. For detailed demographic data, please refer to Table 1.

The median overall survival was 22.1 months (95% CI: 16.6–29.6), see Figure S1 in the
Supplementary Materials.
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Table 1. Patients’ characteristics.

Clinical Data

Age (years) [median, (IQR)] 70 (22)
Gender (female) [n, %] 109 (42%)

Localization of primary tumor [n, %] Head/neck 50 (19%)
Torso 63 (24%)

Upper extremity 30 (11%)
Lower extremity 71 (27%)

Other 13 (5%)
n/a 35 (13%)

Histological subtype [n, %] SSM 71 (27%)
NM 62 (24%)

LMM 13 (5%)
ALM 29 (11%)

Mucosal 13 (5%)
Occult 61 (23%)

n/a 13 (5%)
BRAF V600E mutation status [n, %] BRAF wildtype 180 (69%)

BRAF mutation 74 (28%)
n/a 8 (3%)

Baseline LDH [n, %] Normal (<250 U/l) 164 (63%)
Elevated (≥250 U/l) 85 (32%)

n/a 13 (5%)
Baseline S100 [n, %] Normal (<0.1 µg/l) 117 (45%)

Elevated (≥0.1 µg/l) 125 (48%)
n/a 20 (8%)

Number of metastatic organs [n, %] 1–3 232 (89%)
>3 30 (11%)

Cerebral metastases [n, %] 48 (18%)
Hepatic metastases [n, %] 85 (32%)

Immunotherapy [n, %] PD1 146 (56%)
PD1+CTLA4 116 (44%)

Patient Outcome

Response after 3 months (RECIST 1.1) [n, %] CR 10 (4%)
PR 72 (27%)
SD 42 (16%)
PD 96 (37%)
n/a 42 (16%)

Survival after 6 months [n, %] Yes 181 (69%)
No 49 (19%)
n/a 32 (12%)

Survival after 12 months [n, %] Yes 115 (44%)
No 73 (28%)
n/a 74 (28%)

Lesion counts [n lesions, n patients] All 6404, 262
Lung 2738, 157
Liver 1120, 79

Soft tissue/skin 1111, 110
Lymph nodes 876, 154

Skeletal 172, 42
Spleen 97, 12
Heart 8, 3
Other 238, 54

Abbreviations: ALM—acral lentiginous melanoma; CR—complete response; CTLA4—cytotoxic T-lymphocyte-
associated protein 4; IQR—interquartile range; LDH—lactate dehydrogenase; LMM—lentigo maligna melanoma;
n/a—not available; NM—nodular melanoma; PD1—programmed death 1; PD—progressive disease; PR—partial
response; RECIST—Response Evaluation Criteria in Solid Tumors; SD—stable disease; SSM—superficial
spreading melanoma.
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3.2. Prediction of Therapy Response and Survival Using Clinical Data and Radiomic Features
3.2.1. Machine-Learning Model Comparison

The comparison of the two different models (baseline model using only clinical data
and extended model using clinical data and radiomic parameters) showed that the extended
model was numerically superior to the baseline model for survival prediction, but not for
response prediction (delta of the AUC for response after three months, −0.015; delta for
survival after six months, +0.044; delta for survival after twelve months, +0.042), see Table 2.
However, the superiority was not significant, as there was an overlap of the confidence
interval for all endpoints. Figure 4 shows the mean ROC curve for all endpoints and both
models, where an overlap of the CI of the ROC curves can also be seen.

Table 2. Number of cases with class distributions, and mean AUC from a 10 × 5-fold CV and
95% confidence interval computed by bootstrapping the 10 × 5-fold CV.

Binary Endpoint

Response at 3 Months Survival at 6 Months Survival at 12 Months

n cases, (class 0, class 1) 220 (138, 82) 230 (49, 181) 188 (73, 115)

Baseline model (clinical features),
(AUC (95% CI)) 0.656 (0.587, 0.719) 0.620 (0.545, 0.692) 0.558 (0.481, 0.629)

Extended model (clinical and radiomic
features), (AUC (95% CI)) 0.641 (0.581, 0.700) 0.664 (0.598, 0.729) 0.600 (0.526, 0.667)

Abbreviations: AUC—area under the curve; CI—confidence interval; CV—cross-validation; n—number.
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Except for the baseline model for survival after twelve months, all models indicated a
significant prediction capacity (AUC > 0.5) (see Table 2).

When the mean AUC and CI were computed for a single 5-fold CV instead of
the repeated 10 × 5-fold CV, the mean AUC was improved by the extended model in
3 out of 10 repetitions for response prediction, 10 out of 10 repetitions for survival after six
months, and 8 out of 10 repetitions for survival after twelve months, depending on the
random data-split of each CV.

3.2.2. Feature Selection

In a 10 × 5-fold cross-validation of 5284 radiomic features, on average, 6.6 features
were chosen for response after three months, 7.4 features for survival after six months, and
6.8 features for survival after twelve months.

3.3. Low-Risk vs. High-Risk Stratification for Twelve-Month Survival Prediction

The subset of the patient cohort for which twelve-month survival data was available
was split into a low-risk and a high-risk group with Kaplan–Meier estimators, depending
on twelve-month survival prediction in the 5-fold cross-validation (repeat 0). Log-rank
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tests revealed a borderline significant distinction for the baseline model (p = 0.08) as well as
the extended model (p = 0.06). Please see Figure 5 for the comparison.
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4. Discussion
4.1. Prediction of Therapy Response

Based on a 10 × 5-fold CV, the baseline model and extended model indicated a
significant predictive capacity (AUC > 0.5). The baseline model was numerically superior
to the extended model (AUC 0.656 vs. 0.641), although without a significant difference
(CI overlap). The results revealed that radiomic parameters from pre-treatment baseline
CTs did not add significantly more information to the prediction of response after three
months, compared to a prediction model based on baseline clinical parameters alone. We
even found that adding non-predictive features can potentially deteriorate the performance
of the model.

4.2. Prediction of Six-Month and Twelve-Month Survival

Like for therapy response, a baseline model (clinical features) was compared to an
extended model (clinical and radiomic features) for the binary endpoints of six-month
and twelve-month survival. For six-month survival, the baseline and extended model
indicated a significant predictive capacity (AUC > 0.5). For twelve-month survival, the
baseline model did not indicate a significant predictive capacity (AUC 0.5 included in
CI), but the extended model did. The extended model showed numerical superiority
(AUC 0.664 vs. 0.620 for six-month survival and AUC 0.600 vs. 0.558 for twelve-month
survival); however, the extended model did not reach a significant difference for either
endpoint (CI overlap).

For response prediction, as well as for survival prediction, both models presented a
large range of mean AUC on a single 5-fold CV out of 10 repetitions, depending on the
random data-split. With a single split into training, validation, and test set, which gives only
one data point as opposed to a distribution of possible AUC values, this observation would
not have been possible. Therefore, we advocate for the use of (repeated) cross-validation
instead of a single data-split for the evaluation of machine-learning models [31].

The additional amount of information gained by the extended prediction model is lim-
ited, as the low AUCs and delta AUCs of the results indicate. CT parameters such as voltage,
tube current, pitch, contrast-medium phase, reconstruction kernel, and slice thickness vary
between institutions and scanners, with consequent impacts on the radiomic parameters.
Some radiomic studies do not pool patients from different locations for the training dataset,
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but carefully select a cohort from one or two defined tomographs with predefined scan
parameters. This, however, does not reflect the reality of tumor boards, where image
data from different sources is discussed, especially at baseline diagnostics, when patients
have been diagnosed externally and no in-house image data are available [32–34]. Another
explanation for the low AUCs might be that information about the therapy response per
lesion was missing, as the study aimed to use baseline CTs only.

4.3. Risk Stratification for Twelve-Month Survival

Both models reached borderline significance in differentiating a low-risk cohort from
a high-risk cohort for twelve-month survival, with the extended model performing with
slight superiority over the baseline model (p = 0.06 vs. p = 0.08). This is in line with a
publication by Durot et al., who showed, in a small cohort with a more basic statistical
analysis, that texture parameters were significantly associated with both lower OS and
lower PFS after the administration of pembrolizumab [13].

4.4. Feature Selection/Radiomic Biomarker

In a 10 × 5-fold CV of more than five thousand radiomic features, on average,
6.6 features were chosen for response after three months, 7.4 features for survival after
six months, and 6.8 features for survival after twelve months. The features chosen were
dependent on the current data-split, thus meaning that there was no stable radiomic
biomarker fitting all cross-validation splits. This effect has previously been described in
the literature. Radiomic features are known to be highly correlated, meaning that cer-
tain features can be used interchangeably without affecting predictive performance and,
therefore, different features may be randomly selected in different splits [35]. Therefore,
it is not productive to describe differences in selected features in a 10 × 5-fold CV and
to report single chosen features. Permutation feature importance—a model-inspection
technique for machine-learning models, such as random forests, that investigates the re-
lationship between a feature and a target and shows how much the model depends on
the feature [26]—was not possible, because the technique requires uncorrelated features.
As we only performed feature selection on radiomic parameters, the clinical parameters
may have been correlated; therefore, permutation feature importance would not have been
meaningful. Lastly, as discussed before, the AUCs were not very high (<0.7), which serves
as an indicator that the selected radiomic features cannot serve as a stable biomarker.

A potential explanation might be the initial heterogeneity of the study cohort or the
method of patient-wise feature aggregation. Some radiomic studies do not pool patients
from different locations for the training dataset, but carefully select a cohort from one
or two defined tomographs with predefined scan parameters. This, however, does not
reflect the reality of tumor boards, where image data from different sources are discussed,
especially at baseline diagnostics, when patients have been diagnosed externally and no
in-house image data are available.

4.5. Strengths

The study used a large cohort (262 patients, 6404 segmented metastases) with prospec-
tive documentation of clinical data and long-term-follow ups. The cohort consisted of a
first-line-treatment collective and showed a typical response pattern after three months
of immune therapy (CR 4%, PR 27%, SD 16%, and PD 37%) [1]. Six-month survival and
twelve-month survival, as well as median overall survival, were also in the typical range of
a stage-IV melanoma cohort (69%, 44% and 22 months, respectively) [1,36].

We aimed to test the applicability of a random forest model in a real-life cohort,
including several CT vendors and different sources of image data to reduce selection bias.
More importantly, the study followed a whole-body segmentation approach and used
all visible metastases of the baseline CTs. In some studies, radiomics has been proven
to generate additional information for the prediction of response and overall survival
of stage-IV melanoma patients undergoing immune therapy [14–18,37]. Unfortunately,
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many of those studies use very homogenous patient cohorts, lacking proof of usability
in a real-life scenario [16]. Although the clinical application of a potential biomarker
would be challenging with a whole-body segmentation approach, the study’s aim was to
use as much information about the metastatic load as possible to create a benchmark for
predictive performance. Furthermore, due to modern (semi)automated segmentation tools,
whole-body segmentation will become faster and easier to apply [38–40].

4.6. Limitations

The present collective represented a very large cohort; nevertheless, an extended num-
ber of patients would have been of value to the study. Unfortunately, stage-IV melanoma
patients with complete documented clinical information and simultaneously available
image data are hard to recruit, and the initial full-body-segmentation approach did not
allow for the further inclusion of more patients.

Secondly, the study lacks an external validation cohort. We solved this problem
through multiple cross-validations, an established method that has been used in prior
studies [41]. In our case, correction for multiple testing was waived because most of the
results were not statistically significant.

Thirdly, the study included 43 CTs from external sources and twenty different to-
mographs from five vendors, partially lacking detailed information of CT acquisition
parameters. This drawback hinders a more detailed evaluation of the influence of varying
acquisition parameters on radiomics; however, that constraint was accepted to reduce po-
tential selection bias and guarantee a realistic real-life sample as requested by radiological
guidelines [42].

Fourthly, the lesion segmentation was manually carried out only once by F.P. under
supervision of A.O., lacking a second reading and a second reader; this was due to the
immense number of metastases following a whole-body segmentation approach. An
intraclass correlation coefficient analysis was, therefore, not possible, and an evaluation of
inter- and intra-reader variability is missing.

5. Conclusions

The present study indicated the potential, albeit non-significant, added value of ra-
diomics for six-month and twelve-month survival prediction in stage-IV melanoma patients
undergoing immunotherapy. While the study followed a whole-body segmentation ap-
proach of all visible metastases to gain as much information as possible, the resulting AUCs
remained low. Further approaches integrating other biomarkers or radiomic techniques are
needed to improve the prediction ability of the current model and others.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14122992/s1, Table S1: CT scanner vendors; Figure S1:
Kaplan–Meier estimator of overall survival for the whole cohort.
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Abbreviations

ALM acral lentiginous melanoma
AUC area under the curve
BRAF v-Raf murine sarcoma viral oncogene homolog B1
CI confidence interval
CMMR Central Malignant Melanoma Registry
CR complete response
CT computed tomography
CTLA-4 cytotoxic T-lymphocyte-associated protein 4
CV cross-validation
FCBF fast correlation-based filter for feature selection
IQR interquartile range
LDH lactate dehydrogenase
LMM lentigo maligna melanoma
LoG Laplacian of Gaussian
MEK mitogen-activated protein kinase kinase
ML machine learning
mRMR minimum redundancy–maximum relevance feature selection
n number
NM nodular melanoma
OS overall survival
PACS picture archiving and communication system
PD progressive disease
PD-1 programmed death 1
PET positron emission tomography
PFS progression-free survival
PR partial response
RAF rapidly accelerated fibrosarcoma
RAS rat sarcoma
RECIST Response Evaluation Criteria in Solid Tumors
ROC receiver-operating characteristic
SD stable disease
SSM superficial spreading melanoma
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