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Abstract

The Rel/NF-jB transcription factor family has myriad roles in immunity, development, and differentiation in animals, and was

considered a key innovation for animal multicellularity. Rel homology domain-containing proteins were previously hypothesized

to have originated in a last common ancestor of animals and some of their closest unicellular relatives. However, key taxa were

missing from previous analyses, necessitating a systematic investigation into the distribution and evolution of these proteins. Here,

we address this knowledge gap by surveying taxonomically broad data from eukaryotes, with a special emphasis on lineages closely

related to animals. We report an earlier origin for Rel/NF-jB proteins than previously described, in the last common ancestor of

animals and fungi, and show that even in the sister group to fungi, these proteins contain elements that in animals are necessary for

the subcellular regulation of Rel/NF-jB.
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The Rel homology region (RHR) is an evolutionarily conserved

N-terminal DNA-binding region present in two major paralo-

gous families of animal transcription factors with crucial roles

in immunity and development: the Rel/Nuclear Factor-jB (NF-

jB) and the Nuclear Factor of Activated T-cells (NFAT) families.

Members of the Rel/NF-jB family were originally described in

the late 1980s as oncogenes (Gilmore and Temin 1986) and

immunoglobulin j light chain enhancer-binding proteins in

vertebrates (Sen and Baltimore 1986). Members of this family

have since been implicated in a wide range of cellular

processes in animals (Ghosh and Hayden 2012), including in-

nate and adaptive immunity (Hayden and Ghosh 2011), cell

cycle regulation (Ledoux and Perkins 2014), apoptosis

(Kucharczak et al. 2003), autophagy (Salminen et al. 2012),

and regulation of oxidative stress responses (Lingappan

2018). Despite these crucial roles in animals, their functions

and domain architectures in other taxa remain to be fully

explored. Pinpointing the origins and taxonomic distribution

of Rel/NF-jB proteins is a fundamental first step to tackle

these questions and understand the evolutionary history of
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Rel/NF-jB proteins. Rel/NF-jB proteins are characterized by

the presence of an RHR, consisting of an N-terminal DNA-

binding and dimerization domain that facilitates homo- or

heterodimerization, and a short stretch of arginine and/or ly-

sine residues forming a nuclear localization signal (NLS) that

mediates the translocation of these proteins into the nucleus

(fig. 1A) (reviewed in Napetschnig and Wu [2013] and

Williams and Gilmore [2020]).

The Rel/NF-jB family can be further subdivided into two

classes according to the transactivation potential of its mem-

bers. The first, collectively termed Rel proteins, include the

vertebrate RelA (p65), RelB, and c-Rel and their orthologs

(fig. 1A). Besides the RHR, Rel proteins also contain a poorly

conserved C-terminal transactivation domain (TAD) that is

acidic, and may be rich in proline, serine, glutamine, and/or

hydrophobic residues (Bull et al. 1990; Blair et al. 1994; Gross

et al. 1999), that allows them to activate target gene expres-

sion. RelB proteins additionally possess an N-terminal leucine

zipper domain critical for their activity (Dobrzanski et al.

1993). Rel proteins can homodimerize, or heterodimerize

with other Rel/NF-jB family members lacking a classical TAD

(reviewed in Napetschnig and Wu [2013]).

The second class includes the vertebrate p50 and p52 and

their orthologs (fig. 1A). p50 and p52 are synthetized as larger

precursors termed NF-jB1/p105 and NF-jB2/p100, respec-

tively. These precursors include an RHR followed by a gly-

cine-rich region (GRR) and a variable number of C-terminal

ankyrin repeats. In their inactive state, ankyrin repeats inhibit

nuclear localization and transcriptional activity and keep the

NF-jB dimers sequestered in the cytosol. They additionally

possess a death domain that mediates interaction with other

death domain-containing signaling proteins (Hayden and

Ghosh 2008). The p105 and p100 precursors are classified

as inhibitors of NF-jB (IjBs). This category also includes a

family of separate C-terminal ankyrin repeat-containing pro-

teins that carry out the same inhibitory function for Rel pro-

teins, by sequestering them in the cytosol (Kanarek et al.

2010) (fig. 1A). Upon upstream activation, C-terminal serine

residues in ankyrin-repeat-rich regions of IjBs are phosphor-

ylated by an IjB kinase complex (IKK) (Karin 1999). The IKK

complex is also involved in the processing of the p105 and

p100 precursors, leading to the ubiquitination and proteaso-

mal degradation of their C-terminal regions (fig. 1A). In this

case, the proteasome falls off at the GRR located between the

RHR and the C-terminal ankyrin repeats (Lin and Ghosh 1996;

Williams and Gilmore 2020). This process releases an intact N-

terminal part of the NF-jB protein, including the GRR

(Moorthy et al. 2006), and leads to its nuclear translocation

for gene expression activation (reviewed in Napetschnig and

Wu [2013]). A key scaffolding component of the IKK com-

plex, the IKKc/NF-jB essential modulator (NEMO), is also re-

quired for IKK recruitment and NF-jB activation (fig. 1A)

(reviewed in Napetschnig and Wu [2013]).

The NFAT family constitutes the paralogous group of RHR-

containing proteins. NFAT proteins were first described almost

three decades ago as calcium-dependent transcription factors

implicated in T-cell activation (Shaw et al. 1988), cell prolifer-

ation, migration, and angiogenesis (reviewed in Müller and

Rao [2010]). NFAT proteins contain a more centrally located

RHR flanked by longer N- and C-terminal regions, and lack

ankyrin repeats (fig. 1A). The NFAT NLS is contained not within

the RHR, but within the N-terminal regulatory region known as

the NFAT homology region (NHR) (fig. 1A). This region also

contains calcineurin-binding sites required for nuclear translo-

cation (Park et al. 2000). NFAT1-4 also possess N-terminal

TADs (Serfling et al. 2004). NFAT5, the only noncalcium regu-

lated NFAT protein in humans, lacks an NHR (fig. 1A) but is

generally located in the nucleus, and plays a role in osmotic

stress response and immune cell development (Lee et al. 2019).

Animals and their closest unicellular relatives together com-

prise the eukaryotic group Holozoa; the larger eukaryotic

group comprising Holozoa, fungi, and their closest unicellular

relatives, is known as Opisthokonta (fig. 1B). Rel homology

domain-containing proteins were initially believed to be spe-

cific to animals (Metazoa), in which these proteins have been

extensively studied. However, they were later reported in two

lineages of unicellular holozoans: the filastereans (Mikhailov

et al. 2009; Seb�e-Pedr�os et al. 2011) and choanoflagellates

(Richter et al. 2018; Williams and Gilmore 2020). These

sequences branched sister to all metazoan NF-jB and NFAT

sequences, but contained RHRs, GRR, NLS, and/or ankyrin

repeats more characteristic of the Rel/NF-jB family (Seb�e-

Pedr�os et al. 2011; Williams and Gilmore 2020). Rel homology

DNA-binding domains had also been reported as being pre-

sent in more distantly related taxa, including a nucleariid and

possibly one or more ichthyosporeans and/or pluriformeans

([de Mendoza et al. 2013; de Mendoza and Seb�e-Pedr�os

2019]; fig. 1B and supplementary table S1, Supplementary

Material online). However, these studies focused solely on

the Rel homology DNA-binding domain, and obtained con-

flicting results that cast doubt on the domain’s true taxonomic

distribution (de Mendoza et al. 2013; Richter et al. 2018; de

Mendoza and Seb�e-Pedr�os 2019). As a result, the precise or-

igin, early evolution, and molecular context of Rel homology

domain-containing transcription factors remained unknown.

To resolve these questions, we performed a taxonomically

broad survey of genomic and transcriptomic sequence data

representing all major eukaryotic supergroups, including

newly sequenced protistan lineages within Holozoa (Grau-

Bov�e et al. 2017; Hehenberger et al. 2017; Tikhonenkov

et al. 2020; Urrutia et al. 2021). We surveyed data from

180 species for key Rel homology DNA-binding and dimeriza-

tion domain-containing proteins, examined their domain ar-

chitecture, and constructed phylogenies of the proteins

identified. We additionally extended the search to homologs

of IKK components.
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FIG. 1.—Rel/NF-jB proteins emerged at the onset of Opisthokonta (A) Domain architecture representation of members of the Rel/NF-jB, and NFAT

protein families, IjB, and the IKK complex. Details of the represented features are shown in the domains and regions key. The Rel Homology Region,

characteristic of Rel/NF-jB and NFAT proteins, contains conserved Rel homology DNA-binding (RHD DB) and dimerization domains (Dim) and, in the case of

Rel/NF-jB proteins, an NLS (orange bar). Rel proteins also contain a C-terminal, serine-rich Transactivation Domain (Ct TAD) or a RelB TAD; and RelB proteins

additionally possess an N-terminal leucine zipper domain (RelB LZ). The NF-jB1 precursor (p105) and NF-jB2 precursor (p100) contain a more centrally

located GRR and C-terminal Death domain (Death). These precursors share with IjB proteins C-terminal ankyrin repeats (light green bars). Other domains

present in IjB families include proline-, glutamic acid-, serine-, and threonine-rich regions (PEST). Key domains specific to NFAT proteins, include an N-

terminal TAD (Nt TAD) inside an NHR, an NLS (orange bar) and C-terminal TAD (Ct TAD). PxIxIT and LxVP Calcineurin-binding motifs in the NHR are depicted
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study are represented in columns and color-coded according to genome or transcriptome data source (indicated in the Domain presence/absence key). The

phylogenetic relationships of selected taxa are based on several recent phylogenomic studies (Torruella et al. 2015; Grau-Bov�e et al. 2017; Hehenberger et al.

2017; Tikhonenkov et al. 2020; Urrutia et al. 2021). Taxa are color-coded according to the Taxonomic Group key.
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We identified RHRs in all but one of the holozoan groups

examined, including the filastereans Pigoraptor spp., the re-

cently sequenced Txikispora philomaios and Tunicaraptor

unikontum, and several ichthyosporean species (fig. 1B-2;

supplementary fig. S1, tables S1 and S2, Supplementary

Material online). A candidate protein was also present in

Parvularia atlantis (formerly referred to as Nuclearia sp.

ATCC 50694 [L�opez-Escard�o et al. 2018]), a member of

the sister group to Fungi (Nucleariida), suggesting that Rel

homology proteins were present in the last common ances-

tor of Opisthokonta, and were secondarily lost in Fungi

(de Mendoza et al. 2013; de Mendoza and Seb�e-Pedr�os

2019). Strikingly, at least one sequence from each of

these lineages included both DNA-binding and dimerization

domains (fig. 1B-3; supplementary fig. S1 and table S2,

Supplementary Material online), and C-terminal ankyrin

repeat-rich regions preceded by a GRR were found in at least

one sequence from Filasterea, from Ichthyosporea, and from

P. atlantis (fig. 2; supplementary table S2, Supplementary

Material online). The finding of these traits in the nucleariid

P. atlantis, in particular, not only confirms the origin of Rel/

NF-jB proteins in the opisthokont stem lineage, but also is

consistent with an ancient conserved mechanism of cyto-

solic sequestration for these proteins. Similarly, nonmeta-

zoan Rel/NF-jB-like sequences from all of these groups

share with their animal homologs key domains for DNA-

binding specificity, including a highly conserved specific rec-

ognition loop (RL) within the RHR, as well as a dimerization

domain and a highly conserved monopartite NLS (figs. 3 and

4; supplementary table S2, Supplementary Material online).

In contrast, the linker region between the DNA-binding and

dimerization domains (Ghosh et al. 1995; Müller 1995)

appears to be animal-specific (fig. 3).

Metazoan Rel/NF-jB proteins and metazoan NFAT proteins

each formed a well-supported clade, within a larger well-

supported clade of metazoan sequences. Sequences from

choanoflagellates, filastereans, and ichthyosporeans formed

a clade sister to all metazoan sequences (fig. 2). The most

parsimonious explanation suggested by the phylogeny is a

duplication of ancestral Rel/NF-jB proteins in the metazoan

stem lineage followed by loss of the GRR and ankyrin repeats

from NFAT proteins (fig. 4; Seb�e-Pedr�os et al. [2011] and

Gilmore and Wolenski [2012]), and additional duplications

in individual metazoan and choanoflagellate lineages

(Williams and Gilmore 2020). None of the nonmetazoan

Rel/NF-jB sequences contained death domains. The animal

NFAT sequences recovered in our survey contain the

calcineurin-binding motifs LxVP, and, in the case of chordates,

PxIxIT (Wigington et al. 2020) near the N-terminus. Seven of

the nonmetazoan Rel/NF-jB-like proteins contained a LxVP

motif. In the choanoflagellates Codosiga hollandica and

Savillea parva (two out of three proteins), and in the filaster-

ean Pigoraptor vietnamica, this motif was found near the N-

terminus, before the RHR (fig. 2; supplementary table S2,

Supplementary Material online). This raises the possibility

that calcineurin may be an additional regulator of some non-

metazoan Rel/NF-jB-like proteins, as it is in NFAT proteins.

Despite the presence of C-terminal ankyrin-rich repeats

preceded by a GRR in some sequences from nonmetazoan

opisthokonts, and consistent with earlier reports (Williams

and Gilmore 2020), we were unable to retrieve any apparent

orthologs of NEMO (fig. 1B; supplementary fig. S1,

Supplementary Material online) or the other IKK subunits

(IKKa, IKKb, and IKKe) outside Metazoa (data not shown). If

the C-terminal region of nonmetazoan Rel/NF-jB-like proteins

is processed, it may be phosphorylated by another kinase, or

targeted for degradation by a different mechanism.

The diversity of nonmetazoan Rel/NF-jB-like proteins likely

reflect the variety of lifestyles of the organisms in which they

are found. Choanoflagellates are free-living, mostly marine or

freshwater bacterivores, some of which form clonal multicel-

lular structures in response to specific bacterial molecules

(Alegado et al. 2012; Leadbeater 2015); filastereans include

both free-living freshwater bacterivores and endobiotic spe-

cies (Stibbs et al. 1979; Tong 1997; Hehenberger et al. 2017;

Tikhonenkov et al. 2020; Urrutia et al. 2021), at least some of

which can form multicellular aggregates (Seb�e-Pedr�os et al.

2013; Hehenberger et al. 2017; Mylnikov et al. 2019); ich-

thyosporeans include free-living species and parasites of inver-

tebrates or fish, with diverse life cycles and cell states including

multinucleate coenocytic stages (reviewed in Mendoza et al.

[2002]); and Parvularia is a free-living freshwater bacterivorous

amoeboid (L�opez-Escard�o et al. 2018). Rel/NF-jB-like proteins

may play similar or very different roles in how these organisms

interact with a variety of prey or host organisms, and/or en-

vironmental factors. Interactions with newly evolved partners

and gene duplications may have been key to increasing their

combinatorial regulatory capabilities in different lineages, in-

cluding along the animal stem.

Overall, we provide an updated evolutionary reconstruc-

tion of Rel/NF-jB and NFAT transcription factor families,

based on a broad taxon sampling including representatives

of all major eukaryotic lineages. We show that Rel/NF-jB-like

proteins emerged earlier than previously known, prior to the

split between animals and fungi. We further highlight con-

served, animal-like architecture in these proteins from diverse

opisthokonts. Together, our results suggest that localization

and regulatory mechanisms found in animal Rel/NF-jB pro-

teins were likewise present in the last common ancestor of

animals and fungi.

Materials and Methods

Raw Hidden Markov Models (HMMs) of Rel homology DNA-

binding domain (RHD_DNA_bind v.21, PF00554), Rel homol-

ogy Dimerization domain (RHD_dimer v.4, PF16179), Death

domain (Death v.21, PF00531), and the IKK component

domains Inhibitor of Kappa B Kinase Beta NEMO-binding
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domain (IKKbetaNEMObind v.7, PF12179) and NF-Kappa B

Essential Modulator (NEMO v.7, PF11577) were retrieved

from Pfam v.34.0 (Mistry et al. 2021), and used as queries

in hmmscan (hmmer 3.1b2-2; Eddy 1998; Söding 2005)

searches against a paneukaryotic predicted proteome data-

base enriched in holozoan representatives (supplementary

table S1, Supplementary Material online). BLAST searches

for IKK complex components were carried out using Homo

sapiens (GenBank accession numbers O15111.2 [Inhibitor of

nuclear factor kappa-B kinase subunit alpha], O14920.1

[Inhibitor of nuclear factor kappa-B kinase subunit beta],

Q9Y6K9.2 [NF-kappa-B essential modulator], Q14164.1

Amoebid ium paras i t icum  Apar_comp14023_c0_seq1_fr6

Aplys ia  ca l i forn ica  Acal_524868441

Helgoeca nana  Hnan_m.33607

Savi l lea parva  Spar_m.68229

Daphnia pulex  Dpul_52849

Daphnia pulex  Dpul_237874

Savi l lea parva  Spar_m.44316

Acanthoeca spectabi l is  Aspe_m.49642

Homo sapiens  Hsap_ENSP00000295025

Acanthoeca spectabi l is  Aspe_m.114880

Strongylocentrotus purpuratus  Spur_XP780741

Homo sapiens  Hsap_ENSP00000189444

Leucosolenia compl icata  Lcom_115644

Saccoglossus kowalevsk i i  Skow_NP001158473

Daphnia pulex  Dpul_329057

Leucosolenia compl icata  Lcom_38056

Sphaeroforma arct ica  Sarc4_g42T

Oscare l la  carmela  Ocar_g6369t1

Salp ingoeca hel ianth ica  Shel_m.70197

Acropora d ig i t i fera Adig_6054v104467

Leucosolenia compl icata  Lcom_85983

Salp ingoeca punica  Spun_m.10159

Capsaspora owczarzaki  Cowc_CAOG_01632

Stephanoeca d ip locostata  Sdip_AU_m.415255

Xenopus t rop ica l is  Xt ro_ENSXETP00000063270

Creol imax f ragrant iss ima  Cf ra_2801T1

Xenopus t rop ica l is  Xt ro_ENSXETP00000004697

Xenopus t rop ica l is  Xt ro_ENSXETP00000055326

Stephanoeca d ip locostata  Sdip_FR_m.262780

Crassostrea g igas  Cgig_10028750
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[Inhibitor of nuclear factor kappa-B kinase subunit epsilon])

and Nematostella vectensis (ADQ57374.1 [single IKK-like pro-

tein]) IKK complex components as queries.

Using custom Perl scripts, the resulting output files were

parsed and reanalyzed using PfamScan v.1.5 (Gish and States

1993), and all sequences containing a Rel homology DNA-

binding domain were retrieved and examined using reciprocal

best BlastP searches against the nonredundant protein data-

base (nr) of the National Center for Biotechnology

Information (NCBI). The domain architecture of all retrieved

sequences was inferred with PfamScan using the gathering

threshold as cutoff value. The number of ankyrin repeats was

verified using InterProScan 5.26-65.0 (Jones et al. 2014).

Sequences were aligned using MAFFT v7.299b E-INS-i

(Katoh et al. 2002, 2005; Katoh and Standley 2013) with

the gap extension parameter set to 0, trimmed using BMGE

v.1.0 (Criscuolo and Gribaldo 2010) using the BLOSUM45

matrix, and alignments and trimming were verified by eye.

Partial sequences with fewer than 50% of positions repre-

sented in the final trimmed alignment were excluded.

Preliminary phylogenies were constructed using FastTree v.

2.1.9 (Price et al. 2009, 2010); the number of metazoan

representatives was reduced. Final alignments were con-

structed using MAFFT E-INS-i with the gap extension param-

eter set to 0, and trimmed using trimAl v1.4.rev22

build[2015-05-21] (Capella-Guti�errez et al. 2009), and final

phylogenies were constructed using IQ-TREE multicore version

2.0-rc1 (Nguyen et al. 2015; Minh et al. 2020) with 1,000

ultrafast bootstrap resamplings (Minh et al. 2013; Hoang

et al. 2018), using LG þ F þ R7 for Rel homology domain

proteins (chosen by ModelFinder [Kalyaanamoorthy et al.

2017) as the best fitting model according to the Bayesian
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Information Criterion). Subsequently, 100 nonparametric

bootstrap replicates were also performed under the same

model.
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