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Abstract: Mammals that live in cold climates endure months of exposure to low temperature in the
winter. The incidence of respiratory diseases has increased. The goal of this study was to investigate
the effects of chronic cold stress on lung inflammatory networks, apoptosis, and mitochondrial
function via Yorkshire pig models, as well as the ameliorative effect of glucose as energy supplements.
Here, two trials were conducted (chronic cold stress and glucose supplementation). The results
showed that chronic cold stress induced obvious inflammatory cell infiltration in the lungs and
damaged the lung tissue structure. Compared with the Y-Con group, the expression of toll-like
receptor 4 (TLR4), myeloid differentiation primary response 88 (MyD88), high mobility group box 1
(HMGB1), nucleotide-binding domain, and leucine-rich repeat protein 3 (NLRP3), IL-1β, IL-2, IL-6,
and IFN-γ in the lungs of the Y-CS group was enhanced by chronic cold stress (p < 0.05). Moreover,
chronic cold stress promoted the expression of the Bax and Mfn2 in lungs of Y-CS group (p < 0.05).
Interestingly, dietary glucose supplementation significantly reduced inflammatory cell infiltration in
the lungs. Moreover, glucose supplementation inhibited the expression of TLR4, MyD88, HMGB1,
NLRP3, IL-1β, IL-2, IL-6, IFN-γ, and Bax during chronic cold stress. In conclusion, chronic cold stress
promoted inflammatory networks, apoptosis, and mitochondrial fusion in the lungs. Dietary glucose
supplementation inhibited the inflammatory network during chronic cold stress.

Keywords: chronic cold stress; lung; inflammatory network; apoptosis; mitochondrial function;
glucose

1. Introduction

The northern sites of the globe have more temperate climates in summer, while the
environment temperature is extremely low during the winter months in cold climates.
The low temperature environment is a thorny problem that people living at high latitudes
have to face. They are forced to endure daily temperature below 0 ◦C for several months.
Although most people live in warm environments during the cooler seasons, a significant
number of people work in relatively extreme cold environments. There are many studies
that have evaluated the negative impacts of low temperature on human health. The
cold is known to impair manual performance [1,2], induce cardiovascular disease [3,4],
induce peripheral circulation-related disorders [2,5], and cause mental manifestations of
depression [6]. Commonly, chronic cold stress causes respiratory disease [7]. Even during a
normal winter in the north, up to 29 percent of people still experience cold-like symptoms,
such as cough and runny nose [6]. Both long- and short-term exposure to low temperature
may lead to inflammatory changes in the airways or worsening of respiratory function [8].
Evidence from animal models suggest that chronic cold stress activates the Nrf2 pathway
to induce oxidative stress injury in the lungs [9]. However, few studies have revealed the
effects of chronic cold stress on the inflammatory pathways.

Both pathogens and endogenous ligands were recognized by toll-like receptor 4
(TLR4) to initiate inflammatory reactions. TLR4/myeloid differentiation primary response
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88 (MyD88) is a classic signaling pathway that involves inflammation [10]. TLR4 is ex-
pressed in macrophages and lung bronchial epithelial cells and a primary source of the
innate immune system [11]. TLR4 recruits MyD88 to activate nuclear factor kB (NF-kB) to
induce inflammatory cytokines, such as IL-6, TNF-α, and IL-1β [12]. In addition, inflamma-
somes are cytoplasmic high-molecular-weight protein platforms, in response to damage
signals [13]. Among inflammasomes, NLRP3 (nucleotide-binding domain and leucine-rich
repeat protein 3) has been researched extensively and found to be activated by a spectrum
of stimuli widely. Generally, one of the important pathways of NLRP3 activation is TLR4
signaling [14,15]. NLRP3 inflammasome also promotes the release of high mobility group
box 1 (HMGB1), which is involved in endotoxemia and sepsis [16]. More interestingly,
HMGB1 can also promote apoptosis [17]. Apoptosis is a classical type of programmed cell
death. Bax and B-cell lymphoma 2 (Bcl-2) belong to the same family, but their roles are
opposite. Bax directly promotes cell apoptosis, contrary to the effect of Bcl2 [18]. Apoptosis
culminates in the engulfment and degradation of the apoptotic cell [19]. At present, the
interference of chronic cold stress on the inflammatory signaling network and cell death
pathway in the lungs is unclear.

Endotherms that are exposed to low temperatures need to expend more energy [20].
Various cellular functions in mammals need ATP for energy supply. Large amounts of ATP
are produced by mitochondria to maintain metabolic activities. The normal physiological
function of mitochondria depends on the balance of mitochondrial dynamics (fusion and
fission) [21]. So far, the regulation of mitochondrial function in the lungs by chronic
cold stress is not fully understood. Increasing energy intake is thought to enhance cold
adaptation in endothermy animals [22]. Glucose is the preferred energy source for many
eukaryotic cells. We will explore whether glucose as energy supplements can alleviate lung
injury induced by chronic cold stress.

Pigs are widely used animal models in biomedical research, due to the fact that their
physiological and immunological characteristics are similar to those of humans [23–25].
This study used Yorkshire pig models to reveal the regulatory mechanism of chronic cold
stress on the lung’s inflammatory pathways and apoptosis and mitochondrial functions.
Additionally, we also explored the benefits of glucose supplementation on the lungs of pig
models during chronic cold stress.

2. Results
2.1. Chronic Cold Stress Induces Lung Injury and Enhances Inflammatory Factors Expression
in Lungs

The pathological sections of the lungs in the first trial are shown in Figure 1. According
to the histological observation parameters of the lungs, the morphology of lung tissue in
the Y-CS group was observed and compared with that of the Y-Con group as the normal
standard. Compared with the Y-Con group (Figure 1A), there were obvious lesions in lung
tissue structure of the Y-CS group (Figure 1B). Clear and intact alveoli were rare. Lungs in
Y-CS group had a poorly developed bronchial tree with narrow airway lumens. Moreover,
alveolar infiltration with eosinophils and intra-alveolar edema were evident in lung tissue
of Y-CS group. Chronic cold stress induced obvious lung injury.

The inflammatory cytokines mRNA expression in the lung tissue was assayed. Com-
pared with the Y-Con group, the expression levels of IL-2 (Figure 1C), IL-6 (Figure 1D), and
IFN-γ (Figure 1E) in the lungs of the Y-CS group were promoted (p < 0.05). Apparently,
chronic cold stress overexpresses pro-inflammatory factors in the lungs.
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Figure 1. Lung injury assessment and inflammatory cytokines. (A) Hematoxylin and eosin (HE) in 
lung tissue of the control group (Y-Con). (B) HE in lung tissue of the cold stress group (Y-CS). Black 
arrows indicate inflammatory cell infiltration or abnormal development. (C) IL-2 mRNA expression 
in lungs. (D) IL-6 mRNA expression in lungs. (E) IFN-γ mRNA expression in lungs. Data are ex-
pressed as the mean ± SEM, n = 6, * p < 0.05. 

The inflammatory cytokines mRNA expression in the lung tissue was assayed. Com-
pared with the Y-Con group, the expression levels of IL-2 (Figure 1C), IL-6 (Figure 1D), 
and IFN-γ (Figure 1E) in the lungs of the Y-CS group were promoted (p < 0.05). Appar-
ently, chronic cold stress overexpresses pro-inflammatory factors in the lungs. 

2.2. Chronic Cold Stress Activates the TLR4/MyD88 Pathway and Pyroptosis 
Next, we explored changes in the inflammatory pathways and pyroptosis during 

chronic cold stress. The expression of TLR4 (Figure 2A), MyD88 (Figure 2B), and IL-1β 
(Figure 2F) was enhanced in lungs of the Y-CS group (p < 0.05). In addition, compared 
with the Y-Con group, NLRP3 (Figure 2C) and HMGB1 (Figure 2D) mRNA expression 
was increased in lungs of the Y-CS group (p < 0.05), although the mRNA expression of 
Caspase1 was not affected (Figure 2E, p > 0.05). We further examined the protein expres-
sion levels of these genes (Figure 2L). The protein expression of TLR4, MyD88, NLRP3, 
HMGB1, and mature-IL-1β in lungs was promoted during chronic cold stress (Figure 2G–
K, p < 0.05). These data suggested that chronic cold stress activates the TLR4/MyD88 path-
way and pyroptosis, thus promoting the release of a large number of pro-inflammatory 
factors. 

Figure 1. Lung injury assessment and inflammatory cytokines. (A) Hematoxylin and eosin (HE) in
lung tissue of the control group (Y-Con). (B) HE in lung tissue of the cold stress group (Y-CS). Black
arrows indicate inflammatory cell infiltration or abnormal development. (C) IL-2 mRNA expression
in lungs. (D) IL-6 mRNA expression in lungs. (E) IFN-γ mRNA expression in lungs. Data are
expressed as the mean ± SEM, n = 6, * p < 0.05.

2.2. Chronic Cold Stress Activates the TLR4/MyD88 Pathway and Pyroptosis

Next, we explored changes in the inflammatory pathways and pyroptosis during
chronic cold stress. The expression of TLR4 (Figure 2A), MyD88 (Figure 2B), and IL-1β
(Figure 2F) was enhanced in lungs of the Y-CS group (p < 0.05). In addition, compared
with the Y-Con group, NLRP3 (Figure 2C) and HMGB1 (Figure 2D) mRNA expression was
increased in lungs of the Y-CS group (p < 0.05), although the mRNA expression of Caspase1
was not affected (Figure 2E, p > 0.05). We further examined the protein expression levels of
these genes (Figure 2L). The protein expression of TLR4, MyD88, NLRP3, HMGB1, and
mature-IL-1β in lungs was promoted during chronic cold stress (Figure 2G–K, p < 0.05).
These data suggested that chronic cold stress activates the TLR4/MyD88 pathway and
pyroptosis, thus promoting the release of a large number of pro-inflammatory factors.

2.3. Chronic Cold Stress Promotes Apoptosis and Inhibits the Expression of Brain-Derived
Nutritional Factors in Lungs

Then, we focused on the apoptotic pathway under chronic cold stress. Bax mRNA and
protein expression were increased in the lungs of the Y-CS group (Figure 3A,G, p < 0.05),
while Bcl2 and Caspase3 expression were not changed (Figure 3B,C, p > 0.05). In addition,
the expression of brain-derived nutritional factors (BDNF) was inhibited by chronic cold
stress in lungs (Figure 3E, p < 0.05). No change in signal transducer, activator of transcrip-
tion 3 (STAT3), and tropomyosin receptor kinase B (Trkb) mRNA expression was detected
(Figure 3D,F, p > 0.05). Chronic cold stress promoted apoptosis and inhibits BDNF in lungs.
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Figure 2. Chronic cold exposure promotes inflammatory pathways in lung tissue. (A) Toll-like re-
ceptor 4 (TLR4) mRNA expression. (B) Myeloid differentiation main response 88 (MyD88) mRNA 
expression. (C) Nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) mRNA ex-
pression. (D) High mobility group box 1 (HMGB1) mRNA expression. (E) Caspase1 mRNA expres-
sion. (F) IL-1β mRNA expression. (G) TLR4 protein expression. (H) MyD88 protein expression. (I) 
NLRP3 protein expression. (J) HMGB1 protein expression. (K) Mature-IL-1β protein expression. (L) 
Heat map of protein expression levels. Data are expressed as the mean ± SEM, n = 6, * p < 0.05. 

2.3. Chronic Cold Stress Promotes Apoptosis and Inhibits the Expression of Brain-Derived  
Nutritional Factors in Lungs 

Then, we focused on the apoptotic pathway under chronic cold stress. Bax mRNA 
and protein expression were increased in the lungs of the Y-CS group (Figure 3A,G, p < 
0.05), while Bcl2 and Caspase3 expression were not changed (Figure 3B,C, p > 0.05). In 
addition, the expression of brain-derived nutritional factors (BDNF) was inhibited by 

Figure 2. Chronic cold exposure promotes inflammatory pathways in lung tissue. (A) Toll-like
receptor 4 (TLR4) mRNA expression. (B) Myeloid differentiation main response 88 (MyD88) mRNA
expression. (C) Nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) mRNA
expression. (D) High mobility group box 1 (HMGB1) mRNA expression. (E) Caspase1 mRNA
expression. (F) IL-1β mRNA expression. (G) TLR4 protein expression. (H) MyD88 protein expression.
(I) NLRP3 protein expression. (J) HMGB1 protein expression. (K) Mature-IL-1β protein expression.
(L) Heat map of protein expression levels. Data are expressed as the mean ± SEM, n = 6, * p < 0.05.
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2.4. Chronic Cold Stress Promotes Mitochondrial Fusion in Lungs 
Energy is used for thermogenesis in response to the cold. The energy supply is ex-

tremely dependent on oxidative phosphorylation in the mitochondria. Therefore, we in-
vestigated the effects of chronic cold stress on the mitochondrial function in the lungs. In 
this study, the expression of genes associated with mitochondrial autophagy mitophagy 
(BNIP3, PINK1, p62, LC3І, and LC3II) in the lungs was not regulated by chronic cold stress 
(Figure 4A, p > 0.05). However, Mfn2 mRNA and protein expression was upregulated 
(Figure 4B,D, p < 0.05), while Mfn1, OPA1, Fis1, and MFF expression was not altered dur-
ing chronic cold stress (Figure 4B, p > 0.05). Incidentally, no significant changes in PGC-

Figure 3. Chronic cold exposure promotes the apoptotic pathway and reduces the expression of
brain-derived neural factor in lungs. (A) Bax mRNA expression. (B) B-cell lymphoma 2 (Bcl2) mRNA
expression. (C) Caspase3 mRNA expression. (D) STAT3 mRNA expression. (E) BDNF mRNA
expression. (F) Neurotrophic receptor tyrosine kinase 2 (Trkb) mRNA expression. (G) Bax protein
expression. Data are expressed as the mean ± SEM, n = 6, * p < 0.05, ** p < 0.01.

2.4. Chronic Cold Stress Promotes Mitochondrial Fusion in Lungs

Energy is used for thermogenesis in response to the cold. The energy supply is
extremely dependent on oxidative phosphorylation in the mitochondria. Therefore, we
investigated the effects of chronic cold stress on the mitochondrial function in the lungs. In
this study, the expression of genes associated with mitochondrial autophagy mitophagy
(BNIP3, PINK1, p62, LC3I, and LC3II) in the lungs was not regulated by chronic cold stress
(Figure 4A, p > 0.05). However, Mfn2 mRNA and protein expression was upregulated
(Figure 4B,D, p < 0.05), while Mfn1, OPA1, Fis1, and MFF expression was not altered during
chronic cold stress (Figure 4B, p > 0.05). Incidentally, no significant changes in PGC-1α
were observed (Figure 4C, p > 0.05). Chronic cold stress enhances mitochondrial fusion
in lungs.
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of genes related to mitochondrial autophagy. (B) Expression of genes related to mitochondrial dy-
namic balance. (C) PPARG coactivator 1 alpha (PGC-1α) mRNA expression. (D) Mitofusin 2 (Mfn2) 
protein expression. Bax protein expression. Data are expressed as the mean ± SEM, n = 6, * p < 0.05. 

2.5. Glucose Supplementation Alleviates Lung Injury Induced by Chronic Cold Stress to a  
Certain Extent 

In the second trial, the Yorkshire pig models with chronic cold stress was established. 
In the C-CS group, incomplete alveolar structure and lymphocyte infiltration were ob-
served (Figure 5A). Interestingly, only bronchial stenosis and less inflammatory infiltra-
tion were observed in the G-CS group (Figure 5B). The expression of IL-2, IL-6, and IFN-

Figure 4. Chronic cold exposure disrupts the mitochondrial kinetic balance in lungs. (A) Expression of
genes related to mitochondrial autophagy. (B) Expression of genes related to mitochondrial dynamic
balance. (C) PPARG coactivator 1 alpha (PGC-1α) mRNA expression. (D) Mitofusin 2 (Mfn2) protein
expression. Bax protein expression. Data are expressed as the mean ± SEM, n = 6, * p < 0.05.

2.5. Glucose Supplementation Alleviates Lung Injury Induced by Chronic Cold Stress to a
Certain Extent

In the second trial, the Yorkshire pig models with chronic cold stress was established.
In the C-CS group, incomplete alveolar structure and lymphocyte infiltration were observed
(Figure 5A). Interestingly, only bronchial stenosis and less inflammatory infiltration were
observed in the G-CS group (Figure 5B). The expression of IL-2, IL-6, and IFN-γ mRNA was
inhibited in lungs of G-CS group (Figure 5C–E, p < 0.05). Thus, glucose supplementation
alleviated the lung injury induced by chronic cold stress to a certain extent and inhibited
the expression of inflammatory factors.
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first trial, we focused on the regulation of glucose supplementation on inflammatory path-
ways and pyroptosis in lungs. The mRNA expression of TLR4, MyD88, NLRP3, HMGB1, 
Caspase1, and IL-1β was reduced by glucose supplementation in the lungs (Figure 6A–F, 
p < 0.05). Further, we measured their protein expression levels (Figure 6L). The expression 
of TLR4, MyD88, NLRP3, HMGB1, and mature-IL-1β protein was suppressed in the G-CS 
group, compared to the C-CS group (Figure 6G–K, p < 0.05). Apparently, glucose supple-
mentation suppresses the inflammatory network in lungs during chronic cold stress. 

Figure 5. Lung injury assessment and inflammatory cytokines. (A) Hematoxylin and eosin (HE) in
lung tissue of the cold stress control group (C-CS) group. (B) HE in lung tissue of the cold stress
with glucose supplementation (G-CS) group. (C) IL-2 mRNA expression in lungs. (D) IL-6 mRNA
expression in lungs. (E) IFN-γ mRNA expression in lungs. Data are expressed as the mean ± SEM,
n = 6, * p < 0.05. Black arrows indicate inflammatory cell infiltration or abnormal development.

2.6. Glucose Supplementation Inhibits TLR4/MyD88 Pathways and Pyroptosis in Lungs during
Chronic Cold Stress

Based on the mechanism of chronic cold stress inducing inflammation in the lungs
in first trial, we focused on the regulation of glucose supplementation on inflammatory
pathways and pyroptosis in lungs. The mRNA expression of TLR4, MyD88, NLRP3,
HMGB1, Caspase1, and IL-1β was reduced by glucose supplementation in the lungs
(Figure 6A–F, p < 0.05). Further, we measured their protein expression levels (Figure 6L). The
expression of TLR4, MyD88, NLRP3, HMGB1, and mature-IL-1β protein was suppressed in
the G-CS group, compared to the C-CS group (Figure 6G–K, p < 0.05). Apparently, glucose
supplementation suppresses the inflammatory network in lungs during chronic cold stress.

2.7. Glucose Supplementation Inhibits Apoptosis Induced by Chronic Cold Stress but Don’t
Modulate Mitochondrial Function in Lungs

Glucose supplementation inhibited Bax mRNA and protein expression (Figure 7A,F,
p < 0.05). There was no significant change in the Bcl2 and Caspase3 expression (Figure 7A,
p > 0.05). In addition, we did not observe significant changes in the expression of genes
related to the mitochondrial function (BNIP3, PINK1, p62, LC3I, LC3II, Mfn1, Mfn2, OPA1,
Fis1, MFF, and PGC-1α) and STAT3 pathway (Figure 7B–E, p > 0.05). These results suggested
that glucose supplementation inhibited the apoptosis induced by chronic cold stress.
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Figure 6. Glucose supplementation improved promotes inflammatory pathways in lung tissue
during chronic cold exposure. (A) Toll-like receptor 4 (TLR4) mRNA expression. (B) Myeloid
differentiation main response 88 (MyD88) mRNA expression. (C) Nucleotide-binding domain and
leucine-rich repeat protein 3 (NLRP3) mRNA expression. (D) High mobility group box 1 (HMGB1)
mRNA expression. (E) Caspase1 mRNA expression. (F) IL-1β mRNA expression. (G) TLR4 protein
expression. (H) MyD88 protein expression. (I) NLRP3 protein expression. (J) HMGB1 protein
expression. (K) mature-IL-1β protein expression. (L) Heat map of protein expression levels. Data are
expressed as the mean ± SEM, n = 6, * p < 0.05. ** p < 0.01.
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Data are expressed as the mean ± SEM, n = 6, ** p < 0.01.

3. Discussion

Living bodies adapt to alterations in their environment by regulating physiological
functions. At present, it is widely believed that some diseases are induced when ambient
temperature changes overwhelm the capacity of mammals. Changes in ambient tempera-
ture are often thought to be an important cause of respiratory diseases [8,26], due to the fact
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that the respiratory tract maintains a constant interaction with the external environment [27].
The lungs are a vital part of the respiratory system for mammals. Here, we revealed that
the mechanisms of lung injury are induced by chronic cold exposure and evaluated the
alleviative effect of glucose supplementation through pig models. Inflammatory cell infil-
tration was evident in the lungs of the Y-CS group under chronic cold stress. Not only that,
the alveolar structure was incomplete, and the bronchus was poorly developed. There is
no doubt that prolonged exposure to low temperatures can induce lung injury. However,
surprisingly, glucose supplementation alleviated the lung injury induced by chronic cold
stress to some extent. In G-CS group, histopathological findings showed the inflammatory
cell infiltration was reduced. These observations prompted us to focus on the expression
of inflammatory cytokines in lungs. We found that the expression levels of IL-1β, IL-2,
IL-6, and IFN-γ in the lungs of the Y-CS group were significantly up-regulated, compared
with the Y-Con group. In contrast, dietary glucose supplementation down-regulated the
expression of these inflammatory factors in the cold-exposed pig models. Generally, natural
killer (NK) cells are among the earliest responders to damaged, transformed, or infected
host cells through the cytotoxicity and cytokine production. As a proinflammatory factor,
IL-2 is produced by Th1 cells [28] and can cooperate with IL-18 to induce extensive IFN-γ
release from NK cells [29]. In addition, IL-1β and IL-6 are involved in the inflammatory
response. The survival and differentiation of B and T lymphocytes is controlled by IL-6,
which contributes to inflammatory processes [30]. Clearly, in our research, chronic cold
stress promoted the expression of these inflammatory factors and induced inflammation.
Interestingly, glucose supplementation inhibited the expression of proinflammatory factors
during chronic cold stress, which was beneficial for mammals.

Based on the high expression of these inflammatory factors, we further analyzed the
Toll-like receptor 4 (TLR4) pathway in the lungs of pig models as driven by chronic cold
stress. TLR4, a major source of innate immune system [31], is expressed in macrophages
and lung bronchial epithelial cells to drive airway inflammation [11]. TLR4 recruits MyD88
at the plasma membrane and induces the oligomerization of MyD88 to form Myddo-
some [32]. Myddosome activates nuclear factor κB (NF-κB) to release a large number of
proinflammatory cytokines, including IL-6, IL-1β, and TNF-α [33–35]. Our results showed
that chronic cold stress enhanced the expression of TLR4 and MyD88 and induced IL-1β,
IL-6, and IFN-γ expression in the lungs. These suggested that chronic cold stress activated
the TLR4/MyD88 pathway to induce lung inflammation. Numerous studies have shown
that TLR4 activation is associated with NLRP3 inflammasome [36], which is composed
of a NLRP3 receptor, Caspase-1, and apoptosis-associated, speck-like protein containing
a CARD domain [37,38]. The activated NLRP3 leads to the activation of Caspase-1 and
secretion of IL-1β by assembling at the inflammasome [15]. In our study, NLRP3 in the
lungs was driven by chronic cold stress. Although Caspase-1 expression was not regu-
lated, mature-IL-1β was secreted in large quantities. In addition, HMGB1 has also been
indicated to promote inflammation. HMGB1 not only promoted NLRP3 activation, but
it also promoted apoptosis [39,40]. Its high expression also contributed to inflammation
during chronic cold stress. Interestingly, dietary glucose as an energy supplement effec-
tively inhibited the TLR4/MyD88 pathway, as well as the NLRP3, Caspase-1, and HMGB1
expression during chronic cold stress. Low temperature environments intensify the energy
consumption of endotherms, which require the body to mobilize large amounts of adeno-
sine triphosphate (ATP). TLR4 is involved in promoting the process of glycolysis to rapidly
produce ATP, which depends on mitochondrial function [41,42]. However, the high activity
of the mitochondria also promotes the release of ROS and oxidative stress damage [43].
Increasing the energy level of the diet may have eased the stress on ATP production during
chronic cold stress, thereby inhibiting inflammatory pathways. However, this remains to
be confirmed by a larger study.

Apoptosis is the active process of programmed cell death, which is regulated by
environmental conditions, in order to maintain homeostasis. In this process, Bax promotes
apoptosis and Bcl2 protects cells from death [18]. The ratio of these two proteins determines
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the fate of apoptosis. Cells are susceptible to apoptosis when Bax is in excess [44]. Apoptosis
culminates in the engulfment and degradation of the apoptotic cell [19]. We found that
chronic cold stress increased the expression level of Bax in the lungs, indicating that
apoptosis was enhanced. Glucose supplementation attenuated the Bax expression in the
lungs of cold-exposed pigs, thereby inhibiting apoptosis.

Neurotrophic factors are important growth factors that depend on the nervous system.
BDNF is one of the key members of the neurotrophic factors. BDNF coordinates lung
smooth muscle formation and innervation by extrinsic neuronal pathways [45]. BDNF
expression binds with high affinity to the TrkB [46]. A recent study has shown that BDNF-
TrKB signaling can mediate repairs after lung injury by promoting the regeneration of
the alveoli [46]. Our data indicated that BDNF expression in the lungs was significantly
inhibited by chronic cold stress. Obviously, that is unfavorable for the development of
the lungs. In addition, energy supplementation did not restore the expression level of
BNDF. This might be one of the important reasons why glucose supplementation did not
completely alleviate the lung injury induced by chronic cold stress.

The production ATP of normal cells relies on mitochondrial oxidative phosphory-
lation primarily. Mitochondria produce ATP through oxidative phosphorylation at the
inner mitochondrial membrane. Damaged mitochondrial are inefficient in the ATP, but
produce more ROS in cells [47]. Excessive ROS can induce cell damage and death [48].
Commonly, mitochondria are dynamic organelles and exist in a steady state of fusion and
fission events. The balance of fusion or fission to either extreme is driven by pathological
insults [21]. The mitochondrial fusion is regulated by Mfn1 and Mfn2 for the outer mem-
brane and OPA1 for the inner membrane [49,50], whereas Fis1 and MFF are responsible
for mitochondrial fission [21]. The high demand for ATP in mammals exposed to low
temperatures forced us to focus on changes in mitochondrial function. We found that the
expression of Mfn2 in the lungs was enhanced under chronic cold exposure. This result
suggested that mitochondrial fusion was promoted. As a mitochondrial outer membrane
protein, Mfn2 is considered to be a key regulator of mitochondrial fusion and mitochondrial
metabolism [51]. Its high expression promoted mitochondrial fusion and might impair
the physiological function of the mitochondria. Nonetheless, several ideas highlight the
beneficial effects of mitochondrial fusion, of which, the promotion of fusion can produce
more ATP to accommodate higher energy demands during chronic cold stress [52]. In
short, these implied that low temperatures increase the body’s need for ATP, but might
cause mitochondrial function to be disrupted. In addition, energy supplementation with
glucose did not alter mitochondrial kinetic balance in the lungs of cold-exposed pigs. These
results also implied that the main mechanism by which glucose supplementation alleviated
chronic cold expose-induced lung injury was not by regulating mitochondrial function, but
inhibiting the inflammatory pathways.

4. Materials and Methods
4.1. Animals, Administrations, and Procedures

In this study, all protocols were approved by the Ethical and Animal Welfare Com-
mittee of Heilongjiang Province, China. The proposals and procedures for the care and
treatment of animals were approved by the Institutional Animal Care and Use Committee
of Northeast Agricultural University (NEAU-[2011]-9).

Firstly, a trial of chronic cold stress was conducted (Exp. 1). A total of 12 Yorkshire
pigs (females) were divided into two group: control (Y-Con, 24.83 kg ± 0.64 kg, n = 6) and
chronic cold stress (Y-CS, 24.80 kg ± 0.61 kg, 7 ± 3 ◦C, n = 6) groups. The environment
temperature of Y-Con group (17 ± 3 ◦C) was maintained by electronic heaters (GSM501,
Guangzhou Rongce Electronics, Guangzhou, Guangdong, China), and the environment
temperature of Y-CS group (7 ± 3 ◦C) was derived from natural conditions. This trial lasted
for 21 days. The diets involved in Exp. 1 were shown in Table 1.
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Table 1. Composition of experimental diets (90% of dry matter).

Basic Diet Ingredients Content (%)

Corn 73.00
Soybean meal, de-hulled 15.30

Full-fat soybean meal, puffed 5.00
Fish meal 2.00

Soybean oil 1.00
L-Lysine 0.39

DL-Methionine 0.04
L-Threonine 0.12

L-Tryptophan 0.02
Calcium hydrogen phosphate 1.19

Limestone 0.66
Salt 0.28

Premix A 1.00

Chemical levels B

Net energy (Mcal/kg) 2.50
Crude protein 16.05

Lysine 0.98
Methionine 0.29
Threonine 0.60

Leucine 0.17
Calcium 0.66

Total phosphorus 0.56
Available phosphorus 0.33

Sodium 0.14
Chlorine 0.19

A Provided the following per kilogram of diet: Fe, 160 mg; Cu, 150 mg; Mn, 40 mg; Zn, 140 mg; Se, 0.4 mg; I,
0.5 mg; vitamin A, 8000 IU; vitamin D3, 2000 IU; vitamin E, 30 mg; vitamin B1, 1.60 mg; vitamin B2, 5.00 mg;
vitamin B6, 5.00 mg; vitamin B12, 0.01 mg; pantothenic acid, 20 mg; niacin, 15 mg; biotin, 0.05 mg. B Chemical
levels were calculated values (the percentage of crude protein is the actual detected value). The proportion of dry
matter in the diet is 90%.

Next, in the second trial, we established cold-exposed Yorkshire pig models with
glucose diets (Exp. 2). A total of 12 Yorkshire pigs (females) were randomly divided into
control (C-CS, 23.54 ± 0.84 kg, n = 6) and glucose diet (G-CS, 23.76 ± 0.78 kg, n = 6) groups.
The environment temperature of cold stress group (under natural conditions) was 8 ± 3 ◦C.
This trial lasted for 22 days. The diets of C-CS group were shown in Table 1, and the diets
of G-CS group were shown in Table 2.

Table 2. Composition of glucose-supplemented diets (90% of dry matter).

Basic Diet Ingredients Content (%)

Corn 60.68
Soybean meal, de-hulled 17.53

Full-fat soybean meal, puffed 5.00
Fish meal 2.00
Glucose 10.00

Soybean oil 1.00
L-Lysine 0.35

DL-Methionine 0.05
L-Threonine 0.11

L-Tryptophan 0.01
Calcium hydrogen phosphate 1.25

Limestone 0.62
Salt 0.40

Premix A 1.00
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Table 2. Cont.

Basic Diet Ingredients Content (%)

Chemical levels B

Net energy (Mcal/kg) 2.63
Crude protein 16.05

Lysine 0.98
Methionine 0.29
Threonine 0.60

Leucine 0.17
Calcium 0.66

Total phosphorus 0.56
Available phosphorus 0.34

Sodium 0.19
Chlorine 0.26

A Provided the following per kilogram of diet: Fe, 160 mg; Cu, 150 mg; Mn, 40 mg; Zn, 140 mg; Se, 0.4 mg; I,
0.5 mg; vitamin A, 8000 IU; vitamin D3, 2000 IU; vitamin E, 30 mg; vitamin B1, 1.60 mg; vitamin B2, 5.00 mg;
vitamin B6, 5.00 mg; vitamin B12, 0.01 mg; pantothenic acid, 20 mg; niacin, 15 mg; biotin, 0.05 mg. B Chemical
levels were calculated values (the percentage of crude protein is the actual detected value). The proportion of dry
matter in the diet is 90%.

All animals in this study were fed separately from a single metabolic cage (including
water dispensers). They were provided access to food and water ad libitum during the
time of the experiment. Animal cages were cleaned and sanitized daily during these two
experiments. The diets involved in this study were formulated (Tables 1 and 2) to reference
the Ministry of Agriculture of the People’ s Republic of China (MOA, 2020) and National
Research Council (NRC, 2012) recommended requirement. Nutrient levels in the two diets
were calculated as 90% dry matter. The percentage of crude protein was the analytical value.

4.2. Sample Collection

All pigs in this research were fasted overnight for 12 h before slaughter. A total of
3 g of lungs was quickly collected and then frozen in liquid nitrogen. Then, these samples
were transferred to the −80 ◦C refrigerator for storage. A total of 1 cm2 of lungs was cut
and preserved in 10% formaldehyde solution for tissue section observation.

4.3. Hematoxylin and Eosin (HE) Staining

HE staining in this research was conducted according to routine protocols. Lung
tissues were fixed with 10% formaldehyde solution, embedded in paraffin, and then
they were sectioned into thin slices with a microtome (Leica RM2016, Leica, Nussloch,
Germany) and laced with hematoxylin and eosin. Stained lung tissue sections were viewed
with a Nikon Eclipse Ci-L microscope (Nikon, Tokyo, Japan) at 100 × magnification. All
images were captured (scale bar = 100 µm) with the Nikon DS-F12 digital camera (Nikon,
Tokyo, Japan).

4.4. Total RNA Extraction, Reverse Transcription, and Relative Quantitative Real-Time PCR

The total RNA in lung tissue samples was isolated according to the manufacturer’s
instructions via TRIzol Reagent (Invitrogen, Carlsbad, CA, USA). The quality of the total
RNA was determined by confirming that the ratio of OD260 and OD280 was between 1.8
and 2.0. The total RNA was reverse-transcribed using a PrimeScript TM RT reagent kit
(Takara, Biotechnology, Dalian, China). The total RNA was reverse-transcribed using an
integrated first-strand cDNA synthesis kit (Dining, Beijing, China). Next, the 2 × Fast qPCR
master mixture (Dining, Beijing, China) was used to perform real-time PCR in an ABI 7500
fast real-time PCR system (Foster City, CA, USA). Every reaction was performed at least
2 times. The relative amount each target mRNA for was normalized to the β-actin mRNA
levels. Information on all the primers is shown in Table 3. The relative gene expression was
calculated using the 2−∆∆Ct.
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Table 3. The real-time PCR primers.

Gene GenBank ID Primer Sequences (5’ to 3’)

β-actin AY550069 F: ATGCTTCTAGGCGGACTGT
R: CCATCCAACCGACTGCT

Bax XM_005664710 F: ATGGAGCTGCAGAGGATGAT
R: AAAGTAGAAAAGCGCGACCA

Bcl2 NM_001164511.2 F: ACTTCTGCGAAAGCGAATTGCC
R: AGCCTCCGTTTTGCCTTATCC

Caspase3 NM_214131 F: CGGACAGTGGGACTGAAGTA
R: GATCCGTCCTTTGAATTTCG

NLRP3 NM_001256770.2 F: CTGGGACTCTGACTAGGGCT
R: TTTTTCTGTCTGGCCCCGAG

HMGB1 NM_001004034.1 F: GAGGAAACTTGAGACCCACCA
R: GTGTCCTTCCTTCCCTCATGT

Caspase1 NM_214162.1 F: TACAAGAATCCCAGGCGGTG
R: CCTTTGGGCTATGTCTGGGG

TLR4 NM_001113039.2 F: CAGTCAAGATACTGGACCTGAGC
R: GGCTCCCAGGGCTAAAACTCT

MyD88 NM_001099923.1 F: CCATTCGAGATGACCCCCTG
R: TAGCAATGGACCAGACGCAG

IL-1β NM_2140551.1 F: GCCAACGTGCAGTCTATGGAGTG
R: GGTGGAGAGCCTTCAGCATGTG

PGC-1α NM_213963.2 F: ATGGAGCAATAAAGCGAAGAGCATTTG
R: GAGGAGGGTCATCATTTGTGGTCAG

Mfn1 NM_001315732.1 F: TGGACTTTATCCGAAACCAGATGAACC
R: AACCTTATTTGCCACCTCCTCTGTAAC

Mfn2 XM_021095369.1 F: CCACACCACCAACTGCTTCCTG
R: TCTTGACGCTCCTCTTCTCCTCTG

MFF NM_001244126.1 F: CAGGTTCCAGAGAGAATTGTCGTAGC
R: TTAGTGCCAGAGGTTTAAAGGGAGTTG

Fis1 XM_021086263.1 F: CAGACAGAGCCACAGAACAACCAG
R: CAAGTCCAATGAGTCCAGCCAGTC

OPA1 XM_021070063.1 F: ACAGAGGATGGTGCTTGTTGACTTAC
R: ACACAGTATGATGGCGTTGGGATTC

STAT3 NM_001044580.1 F: CAGCGGTAAGACCCAGATCC
R: AGGGTAGAGGTAGACCAGCG

BDNF NM_214259.2 F: CAGAGCAGCTGCCTTGATGTT
R: CTTTCATGGGGGCAGCCTTC

TrkB XM_021064650.1 F: TCTCGGTCTACGCTGTGGTA
R: GCAGCATCAACCAACAAGCA

BNIP3 XM_003359404.4 F: GAGGAGGATTACATGGAGAGGAGGAG
R: TCGGGTGCTTGAAGAGGAGGAAC

PINK1 XM_021095478.1 F: GGCGGTGATTGACTACAGCAAGG
R: TGGTAACTGCGGCTTTCAAGGTG

p62 NM_001244307.1 F: CTGCCTGAAGACTATTACACGAGACC
R: GAAGATGCTTGTGCCGAGGATAGAG

LC3I NM_001170827.1 F: GCCTTCTTCCTGCTGGTGAACC
R: GGGAGGCGTAGACCATGTAGAGG

LC3II NM_001190290.1 F: TTCTTCCTGTTAGTGAACGGACATAGC
R: ATCCATCTTCATCCTTCTCGCTTTCG

4.5. Western Blot Analysis

Firstly, the total protein in lung tissues was acquired with RIPA buffer mix, including
1% PMSF (Beyotime Biotechnology, Shanghai, China). The protein concentrations were
determined by an enhanced BCA protein assay kit (Beyotime Biotechnology, Shanghai,
China). After SDS-PAGE, protein was transferred to a polyvinylidene fluoride (PVDF) mem-
brane through electrophoretic transfer. The membrane was blocked in TBST (containing
5% nonfat dry milk) at room temperature for 2 h. Subsequently, the blots were incubated
with primary antibodies (TLR4, MyD88, NLRP3, HMGB1, Mature-IL-1β, Bax, and Mfn2)
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overnight at 4 ◦C. After thoroughly washing three times by TBST, the membranes were
incubated with the second antibody for 2 h at room temperature. After the membranes were
washed, antibody reactivity was detected by chemiluminescence through the BeyoECL
star fluorescence detection kit (Beyotime Biotechnology, Shanghai, China). These bands
were imaged by a gel imaging and analysis system (UVItec, Cambridge, Britain), and
band intensity was assessed using the Image J system, with correction for background
and loading controls. β-actin was used to normalize the intensity of the bands. All the
antibodies information involved in this study is displayed in Table S1.

4.6. Statistical Analysis

The normality and homogeneity of variances of the data were evaluated. Then, we
analyzed the data by “t-Test” (SPSS 22.0; IBM-SPSS Inc., Chicago, IL, USA) and visualized
them via GraphPad Prism (Graph Pad Software Inc., San Diego, CA, USA). The data were
expressed as the means ± SEM. Differences were considered significant when p < 0.05.

5. Conclusions

Here, we reveal the mechanism of lung injury caused by chronic cold stress and
the alleviating effects of glucose supplementation in pig models. On the one hand, our
data illustrated that chronic cold stress induced lung injury by promoting inflammatory
pathways, apoptosis, and mitochondrial fusion. On the other hand, dietary glucose supple-
mentation could inhibit the TLR4/MyD88 pathway to some degree to alleviate the lung
injury caused by chronic cold stress (Figure 8). This study provides a new theoretical basis
and idea to prevent the lung injury induced by chronic cold stress.
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