
Ecology and Evolution. 2022;12:e9005.	 		 	 | 1 of 12
https://doi.org/10.1002/ece3.9005

www.ecolevol.org

Received:	31	October	2021  | Revised:	10	May	2022  | Accepted:	13	May	2022
DOI: 10.1002/ece3.9005  

R E S E A R C H  A R T I C L E

Estimating survival and adoption rates of dependent juveniles

Phillip A. Street1  |   Thomas V. Riecke2  |   Perry J. Williams1  |   Tessa L. Behnke3  |   
James S. Sedinger1

This	is	an	open	access	article	under	the	terms	of	the	Creative	Commons	Attribution	License,	which	permits	use,	distribution	and	reproduction	in	any	medium,	
provided	the	original	work	is	properly	cited.
©	2022	The	Authors.	Ecology and Evolution	published	by	John	Wiley	&	Sons	Ltd.

1Department	of	Natural	Resources	and	
Environmental	Science,	University	of	
Nevada	Reno,	Reno,	Nevada,	USA
2Swiss	Ornithological	Institute,	Lucerne,	
Switzerland
3Program	in	Ecology,	Evolution,	and	
Conservation	Biology,	University	of	
Nevada	Reno,	Reno,	Nevada,	USA

Correspondence
Phillip	A.	Street,	Mailstop	186,	1664	
North	Virginia	Street,	Reno,	NV	89557,	
USA.
Email:	pstreet@cabnr.unr.edu

Funding information
Nevada	Chucker	Foundation;	U.S.	Bureau	
of	Land	Management;	Greater	Hart-	
Sheldon	Conservation	Fund;	Oregon	
Department	of	Fish	and	Wildlife;	U.S.	Fish	
and	Wildlife	Service;	Nevada	Department	
of	Wildlife

Abstract
Population	growth	and	fitness	are	typically	most	sensitive	to	adult	survival	 in	long-	
lived	species,	but	variation	in	recruitment	often	explains	most	of	the	variation	in	fit-
ness,	as	past	selection	has	canalized	adult	survival.	Estimating	juvenile	survival	until	
age	of	independence	has	proven	challenging,	because	marking	individuals	in	this	age	
class	may	directly	affect	survival.	For	Greater	Sage-	grouse,	uniquely	marking	juveniles	
in	the	first	days	of	life	likely	results	in	adverse	effects	to	survival,	detection	of	juve-
niles	is	not	perfect,	and	females	adopt	juveniles	from	other	parents.	These	challenges	
are	encountered	by	researchers	studying	avian	and	mammalian	species	with	similar	
life	histories,	yet	methods	do	not	exist	that	explicitly	estimate	all	these	components	
of	the	recruitment	process.	We	propose	a	novel	data	collection	method	and	demo-
graphic	model	to	simultaneously	estimate	rates	of	detection,	survival,	and	adoption	of	
juvenile	individuals.	Using	multiple	cameras	to	film	the	beginning	of	juvenile	activity	
on	 specific	days,	we	obtained	counts	of	 juveniles	 associated	with	marked	 females.	
Increases	 of	 juveniles	 to	 broods	 provided	 information	 that	 enabled	 us	 to	 estimate	
rates	of	adoption	that	can	be	applied	at	the	population	level.	Losses	from	broods	in-
formed	apparent	survival.	These	losses	could	be	attributed	to	death,	or	they	could	be	
chicks	that	were	adopted	by	other	females.	We	found	evidence	that	apparent	survival	
of	juveniles	was	influenced	by	localized	weather	patterns	when	chicks	were	young.	
Similarly,	we	found	that	young	chicks	were	more	susceptible	to	the	adverse	effect	of	
attending	females	being	flushed	by	an	observer.	Both	of	these	patterns	diminished	
quickly	as	chicks	aged.	We	provide	the	first-	ever	estimates	of	interval-	specific	adop-
tion	rates.	Our	results	suggest	that	researchers	should	be	cautious	when	designing	
studies	 to	 estimate	 juvenile	 survival.	 More	 importantly,	 they	 provide	 insight	 into	
adoption,	a	behavior	that	has	been	known	to	exist	for	decades.
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1  |  INTRODUC TION

A	 common	 goal	 of	 basic	 and	 applied	 research	 is	 to	 identify	 vital	
rates	 important	 to	 fitness	 and	 the	 persistence	 of	 populations.	
Understanding	how	a	species'	life	history	has	evolved	can	assist	in-
vestigators	when	predicting	how	populations	will	respond	to	chang-
ing	environments	(Cooch	et	al.,	2001;	Doherty	et	al.,	2004;	Rotella	
et	al.,	2012).	In	a	given	species,	some	life-	history	traits	evolve	to	be	
robust	to	environmental	variation	(Boyce	et	al.,	2006;	Pfister,	1998),	
whereas	other	traits	evolve	to	be	plastic	in	the	face	of	environmental	
variation	(Koons	et	al.,	2009).	Through	natural	selection,	the	combi-
nation	of	 these	 traits	 results	 in	phenotypes	 that	maximize	 fitness,	
even	though	they	may	not	enhance	population	persistence	(Stearns,	
1989).	When	selective	pressure	changes,	the	plasticity	of	these	vital	
rates	determines	whether	the	population	will	persist.

For	 long-	lived	 species	with	 slow	generation	 times,	 variation	 in	
adult	 survival	 is	 generally	minimal	 compared	with	 the	 variation	 in	
reproduction	 (Rotella	et	al.,	2012).	 If	 finite	population	growth	rate	
for	phenotypes	is	a	reasonable	surrogate	for	fitness,	population	ma-
trix	models	allow	researchers	to	explore	hypotheses	about	selective	
pressure	 on	 life-	history	 strategies	 (Caswell,	 2006).	 Doherty	 et	 al.	
(2004)	demonstrate	that	these	models	do	not	always	support	gen-
eral	hypotheses	based	on	life-	history	theory.	If	erroneous	estimates	
of	vital	rates	are	used,	or	if	important	vital	rates	are	not	considered,	
then	these	types	of	studies	are	inadequate	to	predict	how	popula-
tions	will	respond	to	environmental	variation.

Estimation	of	survival	from	birth	to	parental	independence	and	
ultimately	recruitment	into	the	breeding	population	has	been	a	focus	
of	population	biologist	for	decades	(Mayfield,	1961;	Williams	et	al.,	
2020).	Methods	to	estimate	survival	 in	this	age	class	often	rely	on	
individually	marked	 juveniles	 (Gregg	&	Crawford,	2009).	For	many	
species,	however,	marking	young	individuals	is	not	feasible	because	
marks	 can	 negatively	 impact	 survival	 (Hastings	 et	 al.,	2009),	 or	 it	
is	difficult	 to	apply	marks	 that	allow	 for	growth.	An	alternative	 to	
marking	individual	juveniles	is	to	count	the	offspring	dependent	on	
uniquely	identifiable	parents	to	estimate	survival	(Flint	et	al.,	1995; 
Lukacs	et	al.,	2004;	Williams	et	al.,	2020).	The	analytical	methods	
available	to	estimate	survival	from	these	types	of	data	either	assume	
that	offspring	can	be	observed	perfectly	(Flint	et	al.,	1995;	Manly	&	
Schmutz,	2001)	or	that	the	number	of	offspring	do	not	increase	after	
the	initial	count	(Lukacs	et	al.,	2004;	Williams	et	al.,	2020).

In	 some	species,	 if	 the	cost	of	parental	 care	per	 sibling	 is	 low,	
alloparental	care	may	arise	 if	 it	 is	beneficial	 to	 the	survival	of	off-
spring	of	the	adopting	parent	(Eadie	et	al.,	1988;	MacLeod	&	Lukas,	
2014).	Riedman	(1982)	documented	alloparental	care	and	adoption	
of	 young	 in	120	mammalian	 species	 and	150	avian	 species.	Avian	
species	classified	as	Galliformes	 and	Anatidae	 share	an	ancient	an-
cestry	in	the	clade	Galloanserae	(Hackett	et	al.,	2008;	Winkler	et	al.,	
2015),	 and	many	 species	 exhibit	 alloparental	 care.	Offspring	 from	
both	groups	are	precocial,	and	the	cost	of	adoption	to	the	survival	
of	attending	parents	is	low	compared	with	altricial	species,	although	
there	may	 be	 costs	 associated	with	 future	 reproductive	 attempts	
(Leach	 et	 al.,	 2019).	 Adoption	 has	 been	 documented	 in	 several	

species	of	Galliformes,	including	Northern	Bobwhites	(Faircloth	et	al.,	
2005),	 rock	and	white-	tailed	ptarmigan	 (Wong	et	al.,	2009),	and	 is	
common	in	waterfowl	(Beauchamp,	1997;	Eadie	et	al.,	1988;	Manly	&	
Schmutz,	2001).	These	adoptions	violate	the	assumption	of	closure	
required	by	current	analytical	methods.

We	 use	Greater	 Sage-	grouse	 (Centrocercus urophasianus,	 here-
after	sage-	grouse)	as	an	example	of	a	novel	approach	for	estimating	
apparent	pre-	fledging	survival	and	the	rate	of	adoption	into	broods.	
Survival	estimates	of	sage-	grouse	chicks	from	hatching	to	indepen-
dence	are	substantially	less	frequent	than	estimates	of	nest	success	
(Gibson	et	al.,	2015;	Smith	et	al.,	2019)	even	though	pre-	fledging	sur-
vival	may	be	more	variable	than	nest	success.	In	years	with	more	fall	
and	winter	precipitation,	evidence	suggests	 sage-	grouse	 lay	 larger	
clutches	(Blomberg	et	al.,	2014).	Chick	survival	may	also	be	higher	in	
years	with	more	cumulative	winter	precipitation	because	the	herba-
ceous	understory	responds	positively	to	more	moisture,	and	sage-	
grouse	rely	on	grasses	and	forbs	for	energetic	demands	as	well	as	
for	cover	(Gibson	et	al.,	2017;	Wann	et	al.,	2020).	We	suggest	that,	
as	a	result	of	the	relative	lack	of	attention	to	this	vital	rate,	the	role	
of	pre-	fledging	survival	in	population	dynamics	and	individual	fitness	
has	been	under-	appreciated	 in	 sage-	grouse	 (Dahlgren	et	al.,	2016; 
Taylor	et	al.,	2012)	and	other	species	with	precocial	young	(Acevedo	
et	al.,	2020;	Cooch	et	al.,	2001).

Estimation	of	juvenile	survival	has	been	hampered	by	three	main	
constraints	(1)	chicks	are	too	small	to	uniquely	mark	without	affect-
ing	survival	(Davis	et	al.,	2016;	Gregg	&	Crawford,	2009);	(2)	chicks	
cannot	be	detected	with	a	probability	of	one	 (Gibson	et	al.,	2016; 
Riley	&	Conway,	2020;	Riley	et	al.,	2021);	 (3)	brood	amalgamation	
makes	 it	 impossible	 to	 follow	unmarked	or	marked	chicks	 through	
space	and	time,	even	when	the	 identity	of	 the	attending	parent	 is	
known	 (Dahlgren	 et	 al.,	 2010).	 Marking	 chicks	 requires	 capturing	
them	and	often,	performing	surgery	to	implant	or	attach	the	trans-
mitter	with	 sutures,	 resulting	 in	 uncertainty	 about	whether	 death	
in	the	first	days	of	life	was	due	to	the	handling	process	or	environ-
mental	factors	(Burkepile	et	al.,	2002;	Dahlgren	et	al.,	2010;	Davis	
et	al.,	2016;	Gregg	&	Crawford,	2009).	An	additional	challenge	is	that	
an	observer	has	 to	be	within	a	 few	hundred	meters	of	a	brood	 to	
detect	a	signal	from	micro-	transmitters	attached	to	chicks,	and	as	a	
result,	many	chick's	fates	are	unknown.	Chicks	with	unknown	fates	
could	 have	 either	 lost	 their	 transmitter,	 died,	 or	 been	 adopted	 by	
another	female.	Dahlgren	et	al.	(2010)	attempted	to	follow	marked	
chicks	every	1–	2	days.	Despite	this	sampling	effort,	roughly	18%	of	
the	chicks	had	unknown	fates.	Nevertheless,	the	authors	observed	
gains	of	unmarked	chicks	in	nearly	half	of	all	focal	broods,	and	21%	
of	 marked	 chicks	 were	 adopted	 by	 another	 female.	 One	 alterna-
tive	method	 including	plasticine-	filled	bands	 requires	 recapture	of	
marked	individuals	and	reduces	the	survival	of	juveniles	(Amundson	
&	 Arnold,	2010),	 while	 passive	 integrated	 transponders	 (PIT	 tags)	
require	being	within	about	 a	meter	of	 an	antenna	 (Nicolaus	et	 al.,	
2008),	which	is	impractical	for	free-	ranging	broods.

We	developed	a	generalizable	Bayesian	hierarchical	model	de-
signed	 to	 estimate	 juvenile	 survival	 and	 rates	 of	 adoption	 when	
detection	 is	 imperfect.	 In	 addition,	 we	 developed	 a	 novel	 data	
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collection	 technique	 that	 used	 multiple	 observers	 equipped	 with	
remote	 video	 cameras	 (Figure 1)	 to	 improve	 the	 observation	 pro-
cess.	We	 collected	 data	 that	 allowed	 for	 the	 estimation	 of	 detec-
tion,	apparent	survival,	and	adoption	while	minimizing	disturbance	
to	 the	brood,	based	on	a	count-	based	metapopulation	model	 (Dail	
&	Madsen,	2011).	Like	many	precocial	 species,	behavior	of	 the	at-
tending	sage-	grouse	female	changes	when	the	entire	brood	 is	 lost	
(Patterson,	1952).	Brooding	females	are	less	likely	to	flush	than	non-	
brooding	 females,	and	often	perform	displays	 to	attract	predators	
to	 themselves	 rather	 than	 their	chicks.	We	use	 this	 information	 in	
our	model	to	help	differentiate	zero	counts	resulting	from	imperfect	
detection,	 from	a	 true	zero	count.	This	model	allows	 investigators	
to	examine	hypotheses	about	factors	influencing	survival,	including	
environmental	as	well	as	individual	variation.	We	present	the	first-	
ever	estimates	of	adoption	controlled	for	detection	and	survival	of	
offspring.

2  |  METHODS

2.1  |  Study area

We	collected	sage-	grouse	reproduction	data	from	three	study	areas	
within	 the	 Great	 Basin,	 Northern	 Nevada	 and	 Southern	 Oregon,	
USA,	 from	2013	 to	 2018.	Hart	 and	 Sheldon	 are	National	Wildlife	
Refuges	created	with	 the	goal	 to	preserve	wildlife	 for	 future	gen-
erations.	The	last	study	area,	Massacre,	is	managed	for	multiple	use,	
including	livestock	and	feral	horse	grazing.	Gridded	annual	precipi-
tation	 and	mean	 temperature	 data	 downloaded	 from	 the	 Climate	
Engine	online	interface	(Abatzoglou,	2013;	Huntington	et	al.,	2017) 
were	 similar	 for	 the	 three	 study	 areas.	Mean	 annual	 precipitation	

from	1979	to	2019	was	332,	334,	and	268	mm	for	Hart,	Massacre,	
and	Sheldon,	respectively,	while	mean	temperature	was	7.01,	7.57,	
and	 6.93°C.	 Precipitation	 occurred	 primarily	 during	 winter	 and	
spring	months	followed	by	a	dry	summer	period.

2.2  |  Clutch size, chick survival, and adoption

We	captured	female	sage-	grouse	by	spotlighting	(Giesen	et	al.,	1982) 
during	 the	 breeding	 season	 from	 mid-	March	 through	 early	 May.	
Females	were	also	captured	in	the	fall	(August	through	November)	
to	supplement	spring	captures.	All	captured	sage-	grouse	received	a	
metal	band	with	a	unique	identifying	number	and	were	fitted	with	
a	22	g	VHF	radio-	collar.	After	release,	we	monitored	females	until	
death	 or	 collar	 failure.	 From	 March	 to	 June,	 we	 located	 females	
twice	a	week	by	ground	telemetry	to	determine	nesting	status.	We	
checked	 females	on	nests	 twice	 a	week	until	 the	 fate	of	 the	nest	
could	be	determined:	hatched,	depredated,	or	abandoned.

For	 each	 female	 that	 successfully	 hatched	 a	 nest	 resulting	 a	
brood	(i),	we	counted	the	number	of	hatched	eggs	(ci,a=1,k) with de-
tached	membranes	 to	 estimate	 how	many	 chicks	were	 present	 at	
hatch	Ni,a=1,k	when	 their	age	 (a)	was	equal	 to	day	1.	 If	 the	number	
of	hatched	eggs	was	not	clear,	 then	this	value	was	considered	un-
known.	To	model	these	unknown	values,	mean	brood	size	at	hatch	(λ) 
was	modeled	for	each	female,	as	Ni,a=1,k ∼ Poisson

(
�i,k

)
.	If	the	number	

of	hatched	eggs	could	be	reliably	determined	 (ci,a=1,k),	we	assumed	
there	 was	 no	 error	 in	 the	 count	 ci,a=1,k = Ni,1,k.	 To	 assess	 weather	
effects,	we	fit	a	linear	model	as	log

(
�i,k

)
= ��,0 + ��,winter

(
winteri

)
+ ��,k,	

where	winter	was	the	total	amount	of	precipitation	that	fell	between	
December	1	and	March	1	at	each	nest	site	and	��,k	was	the	devia-
tion	from	the	weather	model	 intended	to	assess	ecological	effects	

F I G U R E  1 Example	of	camera	setup	to	obtain	counts	of	chicks.	It	is	important	to	place	cameras	so	that	video	is	recorded	from	different	
angles	to	obtain	a	different	field	of	view	when	conducting	the	counts.	For	example	videos	view	https://doi.org/10.5061/dryad.0zpc8	670w. 
The	videos	in	the	links	have	been	shortened	for	smaller	file	size	and	ease	of	viewing.	The	cameras	started	recording	before	sunrise	to	ensure	
that	the	female	was	brooding	her	clutch.	These	two	videos	were	chosen	as	an	example	of	how	a	juvenile	could	have	been	missed	using	a	
video	count.	They	are	recordings	of	the	same	female	and	brood	simultaneously,	as	described	in	the	methods.	Female	107	is	an	example	of	
a	female	experiencing	unfavorable	weather	conditions	with	newly	hatched	chicks.	This	video	starts	just	after	sunrise,	as	snow	is	beginning	
to	fall.	This	first	part	of	the	video	is	a	time-	lapse	over	∼4	h	as	snow	falls	on	a	brooding	hen.	During	this	time	period,	the	juveniles	would	be	
foraging	if	weather	conditions	were	favorable.	One	juvenile	comes	out	for	a	short	period	of	time,	but	returns	underneath	the	female.	The	
video	is	played	in	real	time	once	the	female	stops	brooding

https://doi.org/10.5061/dryad.0zpc8670w
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associated	with	 year	 and	 site.	 Each	 site	 and	 year	 (k)	were	 consid-
ered	to	be	discrete	 random	variables	with	16	different	categories.	
Each	brood	was	assigned	to	one	site–	year	category	(e.g.,	Hart	2015;	
Sheldon	 2014).	 We	 modeled	 these	 as	 random	 deviations	 from	 a	
normal	distribution	(��,k ∼ normal(0, �2

�
))	with	a	common	variance	�2

�
,	

were ��	had	a	uniform	prior	distribution	between	0	and	5.
We	hypothesized	that	chick	survival	would	be	lowest	within	the	

first	week.	To	help	assess	this	hypothesis,	we	attempted	to	get	an	
additional	count	of	chicks	within	three	days	of	hatch,	after	which,	we	
attempted	to	obtain	a	count	every	week.	To	minimize	disturbance	
of	the	brood	and	maximize	detection	of	chicks,	we	devised	a	novel	
observation	method	using	remotely	placed	video	cameras	(Figure 1). 
Observers	worked	 in	 teams	of	 two	 to	 track	 radio-	marked	 females	
just	before	sunrise	to	ensure	that	the	females	were	brooding	their	
chicks.	Observers	 then	attempted	 to	get	a	visual	 location	without	
flushing	the	bird.	If	successful,	a	camera	was	placed	where	we	first	
obtained	a	visual	of	the	female	and	recording	was	started.	Observers	
then	placed	a	second	camera	so	that	it	recorded	the	female	from	a	
different	angle.	Observers	left	cameras	in	place	and	retreated	to	a	
location	that	was	perceived	to	be	no	longer	detectable	by	females.	
Observers	monitored	the	female	from	a	distance	using	radio	telem-
etry	and	retrieved	cameras	after	females	and	chicks	had	left	the	lo-
cation.	Counts	of	chicks	associated	with	each	female	were	obtained	
from	videos.	Observers	reviewed	the	video	the	day	of	the	count	to	
make	sure	a	count	was	captured	by	the	video.	Video	was	recorded	
at	 a	minimum	 resolution	 of	 720	 p	 by	multiple	makes	 of	 cameras.	
We	recommend	a	minimum	of	a	40×	optical	zoom.	If	a	brooding	fe-
male	was	accidentally	 flushed	while	 trying	 to	obtain	a	visual	 loca-
tion,	observers	independently	counted	the	number	of	chicks	before	
they	dispersed.	We	stored	counts	in	an	array	(ci,a,j,k ),	where	i	was	the	
unique	female,	a	was	age	of	the	brood,	j	indexed	either	the	camera	
or	observer	 involved	 in	the	multiple	count,	and	k	was	the	site	and	
year	the	female	was	monitored.	We	modeled	detection	probability	
(pi,a)	for	each	observer,	as	ci,a,j,k ∼ Binomial(pi,a,Ni,a,k ). There were two 
covariates	that	we	hypothesized	would	influence	detection,	includ-
ing	how	the	count	was	obtained	(flushed	or	camera)	and	age	of	the	
brood.	However,	in	early	exploratory	models	we	found	little	support	
for	an	effect	of	either	of	these	covariates	on	detection.	As	such,	we	
chose	to	model	detection	as	a	constant	rate.

Brood	size	can	change	from	one	age	to	the	next	in	three	ways;	
chicks	can	die,	chicks	can	be	adopted	by	another	female,	or	chicks	
from	another	female	can	be	adopted	into	the	focal	female's	brood.	
From	an	observation	perspective,	we	could	only	observe	 losses	or	
additions	 in	 a	 focal	 brood	 and	 could	 not	 differentiate	 whether	 a	
chick	that	disappeared	was	adopted	by	another	female	or	if	the	chick	
died.	Nevertheless,	we	could	estimate	the	net	number	of	chicks	that	
survived	and	remained	with	their	original	mother	(were	not	adopted	
by	 another	 female)	 from	one	 age	 to	 the	next	(Nsurvival

i,a,k
)	 by	 estimat-

ing	apparent	survival	(�i,a,k ).	The	number	of	chicks	adopted	into	the	
brood 

(
N
adopt

i,a,k

)
	could	be	informed	by	observed	gains	in	the	brood.	If	a	

female	lost	all	of	her	brood,	we	assumed	she	would	not	adopt	chicks	
from	another	brood.	Thus,	the	model	statement	for	these	parame-
ters	was	as	follows:

where r	was	the	scale	parameter	of	 the	Negative	Binomial	and	�i,a,k 
was	the	mean	number	of	chicks	adopted	 in	the	 interval.	Female	be-
havior	was	an	additional	piece	of	information	that	we	used	to	estimate	
(�i,a,k ).	All	counts	began	while	the	female	should	have	been	brooding	
her	chicks	(i.e.,	before	sunrise).	At	this	time	of	day,	when	a	female	had	
a	brood	 (at	 least	one	chick),	 she	was	much	 less	 likely	 to	 flush	when	
an	observer	was	present.	If	a	female	with	a	brood	did	flush,	she	usu-
ally	 remained	 close	 to	 the	brood,	 often	 intentionally	making	herself	
visible,	 and	sometimes	performed	a	broken	wing	display	 (Patterson,	
1952).	When	a	female	did	not	have	a	brood,	she	typically	flushed	in	the	
presence	of	an	observer,	often	flying	long	distances,	and	never	made	
herself	visible	after	flushing.	Observers	would	rush	to	the	spot	where	
the	 female	 should	 have	 been	 brooding	 her	 chicks	 and	 searched	 for	
any	chicks	that	could	have	retreated	into	the	vegetation	for	cover.	If	
the	observer	found	no	chicks,	we	used	this	zero	count	in	combination	
with	the	female's	behavior	to	determine	whether	the	brood	had	been	
lost	entirely.	Early	within	the	first	year	of	the	study,	we	relocated	each	
female	the	following	morning	to	verify	that	the	brood	had	been	lost.	
We	found	that	we	were	able	 to	determine	whether	an	entire	brood	
had	been	lost	with	100%	certainty	and	eliminated	the	protocol	for	a	
follow-	up	check.	If	for	some	reason	the	observer	was	uncertain	about	
the	fate	of	the	brood,	a	recount	was	attempted	the	following	morning.	
The	most	common	reason	for	this	uncertainty	was	the	observers	arriv-
ing	after	sunrise	or	at	a	time	when	the	female	was	not	brooding.	We	
used	these	diagnostic,	consistent	behaviors,	in	combination	with	zero	
counts	to	discern	whether	females	had	a	brood.	We	took	advantage	of	
this	partially	observable	latent	state	(zi,a,k )	to	model	the	probability	that	
at	least	one	chick	survived	and	remained	with	the	original	female	sbrood

i,a,k
 ,	

known	in	the	literature	as	brood	survival	(Dzus	&	Clark,	1998;	Fields	
et	al.,	2006). zi,a,k	was	1	if	the	female	was	known	to	have	a	brood,	and	0	
if	we	determined	the	female	had	lost	her	brood	based	on	behavior.	We	
considered	zi,a,k	to	be	unknown	between	the	last	time	the	female	was	
located	with	a	brood	and	when	she	was	located	without	a	brood	or	if	
brooding	status	could	not	be	determined.	Brood	survival	was	linked	to	
apparent	chick	survival	as:

where Ai,a,k	 is	 the	probability	of	 adopting	at	 least	one	 chick	derived	
from	the	Negative	Binomial	distribution	as	 r

r+�i,a

r	with	the	parameters	
r	and	μ.

We	explored	hypotheses	about	apparent	chick	survival	 related	
to	weather	and	study	areas	as,	

(1)

Ni,a,k =Nsurvival
i,a−1,k

+N
adopt

i,a−1,k
, a=2,…, 42

Nsurvival
i,a−1,k

∼Binomial
�
𝜙i,a−1,k ,Ni,a−1,k

�
,

N
adopt

i,a−1,k
∼

⎧⎪⎨⎪⎩

NegativeBinomial(r, hi,a−1), Ni,a−1>0

0, Ni,a−1=0,

hi,a=
r

r+𝜇i,a

(2)
zi,a,k ∼

⎧
⎪⎨⎪⎩

Bernoulli
�
sbrood
i,a,k

�
, zi,a−1,k =1

0, zi,a−1,k =0,

sbrood
i,a,k

=1−
�
1−�

Ni,a−1,k

i,a,k
Ai,a,k

�
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where tmini,a	was	a	daily	minimum	temperature,	ppti,a	was	a	meas-
ure	of	daily	precipitation,	winteri	was	the	total	amount	of	precipita-
tion	that	 fell	between	December	1	and	March	1	at	each	nest	site,	
and	flushi,awas	a	matrix	with	a	1	 if	the	count	was	obtained	using	a	
video	camera,	and	0	if	it	was	by	an	observer.	All	the	weather	covari-
ates	were	downloaded	from	PRISM	at	a	4	km	resolution	(Daly	et	al.,	
1994).	We	modeled	additional	variation	associated	with	site	and	year	
as	a	random	deviation	from	a	normal	distribution	(��,k ∼ normal(0, �2

�
)

)	with	a	common	variance	�2
�
,	where	��	had	a	uniform	prior	distribu-

tion	between	0	and	5.	Because	females	with	broods	were	not	sta-
tionary	 on	 the	 landscape,	 the	 covariates	 became	 location-	specific	
indexed	by	 age.	Because	 females	were	 not	 located	 every	 day,	we	
assumed	that	 females	were	stationary	on	the	 landscape	until	 they	
were	located	again.

Because	 adoption	 occurred	 infrequently,	 we	 were	 limited	 by	
the	 data	 in	 the	 number	 of	 hypotheses	 we	 could	 test	 related	 to	
adoptions.	 We	 did	 model	 site	 and	 year	 variation	 in	 adoption	 as	
log(�i,a,k ) = ��,0 + ��,i,	where	��,i	were	random	deviations	from	a	nor-
mal	 distribution	 (��,i ∼ normal(0, �2

�
))	 with	 a	 common	 variance	 �2

�
,	

where ��	had	a	uniform	prior	distribution	between	0	and	5.	Ni,42,k	was	
the	number	of	chicks	born	to	each	female	that	survived	to	42	days	
and	were	not	adopted	out	of	the	brood	as	well	as	the	total	number	
of	chicks	that	each	female	adopted.	If	we	assume	that	our	marked	
hens	are	representative	of	the	entire	population,	then	an	 intuitive	
measure	of	true	survival	from	hatch	to	fledging	is	S42,k = Ni,42,k∕Ni,1,k.

The	estimated	parameters	requiring	prior	distributions	included	
�p , ��, ��, ��,	and	�r,	where	�	were	the	coefficients	of	a	linear	model	
associated	with	each	parameter:	p, �, �, �, r.	We	used	a	logit	link	to	
constrain	the	linear	model	for	p	and	�	to	be	between	0	and	1.	For	
the	prior	distributions	on	�p , ��	we	used	a	normal	distribution	with	
a	mean	of	0	and	a	variance	equal	to	1. 52(Northrup	&	Gerber,	2018). 
We	used	a	 log	 link	 to	 constrain	 the	 linear	model	 for	�,	�,	 and	 r to 
be	greater	than	0.	For	the	prior	distributions	on	��,0	and	��,winter,	we	

used	a	normal	distribution	with	a	mean	of	0	and	a	variance	equal	to	
1.52.	Because	adoption	of	sage-	grouse	occurred	infrequently	when	
measured	at	a	daily	interval,	we	constrained	the	prior	distribution	of	
��and	�0,r	to	a	normal	distribution	with	a	mean	of	−1	and	a	variance	
of	1.	Together,	these	priors	resulted	in	a	distribution	of	the	number	
chicks	being	adopted	into	a	brood	per	day	with	a	mean	of	0.6305,	
and	a	97.5%	quantile	of	4.	The	joint	Bayesian	posterior	distribution	
for	our	hierarchical	model	was

Models	were	run	with	3	chains,	with	a	total	of	60,000	iterations	
each	with	a	burn-	in	period	of	40,000	saving	every	other	 iteration	
using	JAGS	(Plummer	et	al.,	2003)	and	the	JAGsUI	package	(Kellner	
et	al.,	2019).	Convergence	of	the	parameters	was	assessed	using	the	
R̂	statistic,	as	well	as	visual	inspection	of	the	chains	(Gelman	et	al.,	
2013).	For	all	estimated	and	derived	parameters,	we	report	the	mean	
and	the	posterior	standard	deviation.	For	all	�	values	of	effect	size,	
we	report	the	proportion	of	the	posterior	greater	than	or	less	than	0	
(F)	and	consider	a	value	greater	than	0.95	to	be	a	meaningful	effect.

2.3  |  Data simulation

To	 assess	 model	 performance,	 we	 simulated	 data	 using	 Equation 
(3),	 with	 known	 parameter	 values	 representative	 of	many	wildlife	
applications	 and	 fit	 our	model	 of	 the	 number	 offspring	 born,	 off-
spring	 survival,	 adoption,	 and	 detection.	 The	 estimated	 posterior	
distributions	were	evaluated	to	determine	the	ability	our	model	to	
recover	the	generated	parameter	values	as	well	as	the	presence	of	
any	 bias.	We	 simulated	 96	 datasets,	 each	 containing	 100	 females	
with	offspring.	We	chose	to	use	parallel	processing	to	conduct	our	

logit(ϕi,a,k ) =�ϕ,0+�ϕ,age(agei,a)+�ϕ,winter(winteri)

+�ϕ,flush(flushi,a)+�ϕ,tmin(tmini,a)+�ϕ,ppt(ppti,a)

+�ϕ,tmin,age(tmini,a)(agei,a)+�ϕ,ppt,age(ppti,a)(agei,a)

+�ϕ,flush,age(flushi,a)(agei,a)+�ϕ,k

,

(3)

[N1,�, 𝛽𝜆, 𝜎
2
𝜆
,Na,N

survival
1,…,41
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2
𝜙
,N

adopt

1,…,41
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2
𝜇
, r,Z2,…,42,pa, 𝛽p|C1,C2,…,42]∝

n∏
i=1

A∏
a=ri

[C2,…,a|Nsurvival
1,…,41

,N
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1,…,41
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|𝜙i,a−1,Ni,a−1]×

[N
adopt

i,1,…,a−1
|r,𝜇i,a−1,Ni,a−1]

I{Ni,a−1>0} I

(
1−I{

N
adopt
i,a−1

=0
}
)

{Ni,a−1>0}
×

[zi,a|zi,a−1,𝜙i,a−1,N
survival
i,1,…,a−1
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adopt

i,1,…,a−1
, r,𝜇i,a]×

[�|𝛽𝜆, 𝜎2𝜆][𝜙|�𝜙, 𝜎
2
𝜙
][𝜇i,a|𝛽𝜇 , 𝜎2𝜇]×[

N1

]
[r]

[
�𝜆

][
𝜎2
𝜆

][
�𝜙

][
𝜎2
𝜙

][
�𝜇

][
𝜎2
𝜇

][
�p

]

Parameter Simulation Prior
Coverage 
(%)

Mean 
bias

s42 Ni,42

Ni,1

Ni,42

Ni,1

94 0.003

Ni,1 Poisson(6) lognormal(0, 1.5) 97 0

��,0 normal(1.6, 0.2) normal(0, 1.5) 96 0.007

��,age normal(0.05, 0.02) normal(0, 1.5) 84 0.004

� lognormal( − 1.4, 0.4) lognormal(0, 1.5) 89 −0.016

r lognormal( − 1, 0.2) lognormal(0, 1.5) 99 0.231

p uniform(0.8, 1) uniform(0, 1) 93 −0.006

Note: Coverage	is	the	percentage	of	times	that	the	known	value	is	within	the	95%	credible	intervals	
of	the	posterior	distribution.	For	the	normal	and	log	normal	distributions,	the	first	number	is	the	
mean,	and	the	second	number	is	the	standard	deviation.

TA B L E  1 Parameters	and	the	
distributions	used	to	generate	known	
values	to	simulate	96	different	datasets
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simulations.	We	decided	to	simulate	96	datasets	because	we	had	8	
computer	cores	available	to	conduct	the	simulation.	Thus,	each	core	
simulated	and	analyzed	12	datasets.	We	used	predetermined	distri-
butions	to	obtain	different	parameter	values	to	generate	each	data-
set	 (Table 1).	We	built	 four	 constraints	 into	 the	 simulations.	 First,	
we	 forced	daily	offspring	 survival	 to	be	high	and	 to	 increase	with	
age,	 thus	 logit

(
�i,t

)
= ��,0 + ��,age where ��,0	 was	 randomly	 drawn	

from	a	normal	distribution	with	a	mean	of	1.6	and	a	variance	of	0. 22 
and	��,age	was	drawn	from	a	normal	distribution	with	a	mean	of	0.05	
with	a	variance	of	0.02.	Second,	we	 forced	adoptions	 to	occur	 in-
frequently	and	range	from	1	to	5;	hence,	we	choose	to	simulate	the	
adoption	process	using	a	negative	binomial	distribution	with	a	small	
mean	(lognormal( − 1.4, 0.4))	and	a	small	rate	(lognormal( − 1, 0.4)). 
Third,	given	the	complexity	of	this	model,	we	limited	our	simulation	
to	have	high	detection	probabilities	 randomly	drawn	between	0.8	
and	1.	Lastly,	the	number	of	chicks	in	the	total	simulated	population	
at	42	days	of	age	could	not	exceed	the	number	of	chicks	born.	If	the	
simulated	dataset	violated	this	constraint,	it	was	discarded	and	a	new	
dataset	was	simulated	and	analyzed.	Patterns	in	the	simulated	data	
were	consistent	with	our	own	experience	and	that	of	others	(Gibson	
et	al.,	2017).	For	each	dataset	generated,	we	fit	our	model	and	evalu-
ated	the	proportion	of	times	the	95%	credible	intervals	overlapped	
the	true	parameter	values	 (Little,	2006;	Williams	&	Hooten,	2016) 
and	 calculated	mean	 bias	 (true	 parameter—	mean	 of	 the	 posterior	
distribution)	for	each	parameter.

3  |  RESULTS

3.1  |  Simulation results

Given	a	sample	size	of	100	parental	adults	and	a	weekly	sampling	
interval,	we	demonstrate	that	all	parameters	were	identifiable	with	
reasonable	 precision	 (Figure 2,	 Table 1).	 The	 simulated	 parameter	
values	were	recovered	by	the	estimated	posterior	distributions	for	
�,	��,0,	��,age,	�,	 r,	 and	p	 a	 high	proportion	of	 the	 time,	 resulting	 in	
an	unbiased	estimate	of	the	derived	parameter	of	true	survival	with	
high	 precision	 (Figure 2).	 This	 parameter	 ranged	 from	0	 to	 1,	 and	
these	results	suggest	that	our	model	will	work	well	for	a	variety	of	
applications.

3.2  |  Greater sage- grouse example

From	2013	to	2018,	we	monitored	279	sage-	grouse	broods,	hatched	
by	240	unique	females	across	3	study	sites.	Mean	brood	size	(�)	of	
Greater	Sage-	grouse	at	hatch	for	nests	experiencing	average	winter	
precipitation	was	6.448	(SD	=	0.028);	however,	we	found	evidence	
that	females	that	chose	nest	sites	with	higher	cumulative	winter	pre-
cipitation	hatched	smaller	broods	(Figure 3,	��,winter =	−0.051,	SD	= 
0.027,	F =	0.969).	After	hatch,	an	individual	chick	had	a	mean	prob-
ability	of	surviving	day	one	and	remaining	with	 its	original	mother	
(�a=1)	of	0.854	(SD	=	0.011),	if	there	was	no	precipitation.	If	it	rained	

or	snowed,	the	probability	of	a	chick	surviving	decreased	(Figure 4,	
�prcp = − 0.133,	 SD	=	0.048,	F =	0.996).	As	chicks	aged,	 they	sur-
vived	at	higher	rates	(�age =	0.052,	SD	=	0.004,	F =	1)	and	the	effect	
of	precipitation	diminished	(�prcp,age =	0.006,	SD	=	0.005,	F =	0.865).	
We	 found	 little	 evidence	 that	 temperature	 affected	 apparent	 sur-
vival	 (�temp =	0.075,	SD	=	0.051,	F =	0.928)	or	 interacted	with	age	
(�temp,age =	−0.012,	SD	=	0.005,	F = 0.991).

If	females	had	a	brood,	the	daily	probability	that	she	would	adopt	
at	 least	1	chick	was	 (0.155,	SD	=	0.015).	When	females	did	adopt	
chicks,	it	was	most	likely	a	small	number;	99.98%	of	adoption	events	
were	3	chicks	or	less	(Figure 5).	Adoptions	were	modeled	with	a	neg-
ative	binomial	distribution	and	a	constant	rate	estimated	to	be	0.306	
(SD	=	0.064),	resulting	in	the	mean	number	of	chicks	being	adopted	
per	day	of	0.226	(SD	=	0.024).

We	 observed	 additional	 variation	 not	 explained	 by	 covariates	
among	study	areas	and	years	in	both	apparent	survival	(�� =	0.228)	
and	the	probability	of	adoption	(�r =	0.31).	When	combined,	this	ran-
dom	variation	and	the	variation	due	to	weather	resulted	in	substan-
tial	variation	 in	the	ratio	of	chicks	fledged	to	the	number	hatched,	
that	is,	true	survival	accounting	for	adoption	(Figure 6).	Probability	
of	 a	 chick	 surviving	 from	hatch	 to	 fledging	 ranged	 from	0.047	on	
Sheldon	in	2017	to	0.77	on	Massacre	in	2014	(Table 2).

Detection	was	estimated	to	be	high	with	good	precision	0.945	
(SD	=	0.004),	most	likely	due	to	the	fact	that	counts	were	conducted	
early	 in	the	morning	to	ensure	that	females	were	brooding	chicks.	
When	we	assessed	whether	there	was	a	difference	in	apparent	sur-
vival	 due	 to	method,	we	 found	 evidence	 that	 flushing	 the	 female	
resulted	in	a	reduction	in	survival	of	0.165	(SD	=	0.033)	when	the	
brood	was	 1	 day	 of	 age,	 but	 this	 effect	 disappeared	 by	 the	 time	
chicks	reached	3	days	of	age.

4  |  DISCUSSION

We	present	a	novel	approach	to	data	collection,	and	modeling	de-
mographic	rates,	which	provides	estimates	of	survival	as	well	as	the	
adoption	 rate	 of	 unmarked	 juveniles.	When	 adoption	 occurs	 and	
is	 not	 accounted	 for	 when	 modeling	 survival	 and	 detection,	 sur-
vival	estimates	would	 likely	be	overestimated	(Lukacs	et	al.,	2004; 
Williams	et	al.,	2020),	and	may	result	in	overly	optimistic	population	
trajectories.

We	present	daily	rates	of	adoption	into	sage-	grouse	broods	that	
suggest	 that	 the	 average	 female	who	 successfully	 reared	 a	 brood	
adopted	at	least	one	juvenile	born	to	a	different	female	before	fledg-
ing	her	brood.	Females	displayed	risky	behavior	to	attract	predators	
to	themselves	rather	than	their	chicks.	Kin	selection	has	been	pro-
posed	as	a	hypothesis	 to	explain	this	seemingly	altruistic	behavior	
in	other	species	 (Eadie	et	al.,	1988;	Wong	et	al.,	2009).	Andersson	
(2018)	suggested	that	high	rates	of	female	philopatry	could	increase	
relatedness	of	sage-	grouse	in	an	area	sufficiently	that	kin	selection	
might	explain	the	adoption	of	apparently	unrelated	offspring.	Sage-	
grouse	 show	 high	 lek,	 nest,	 and	 brood	 site	 fidelity	 (Fischer	 et	 al.,	
1993;	 Gerber	 et	 al.,	 2019;	 Gibson	 et	 al.,	 1991),	 and	 Jahner	 et	 al.	
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(2016)	 found	a	high	degree	of	 relatedness	 among	 individuals	with	
similar	 space	 use,	 suggesting	 the	 feasibility	 of	Andersson	 (2018)'s	
hypothesis.	Alternatively,	adoptions	have	been	explained	as	a	mech-
anism	to	reduce	predation	risk	for	one's	own	young	(Lengyel,	2007),	
although	this	potential	benefit	could	be	traded	off	against	costs	to	
future	reproduction	for	adults	rearing	enlarged	broods	(Leach	et	al.,	
2019).	Regardless	of	 the	mechanism,	our	observation	method	and	
demographic	 model	 are	 the	 first	 that	 we	 know	 of	 to	 incorporate	
adoption	and	survival	into	the	same	likelihood	and	open	the	door	for	
exploration	of	tradeoffs	between	these	parameters.

Guttery	et	al.	(2013)	found	a	negative	association	among	winter	
droughts	and	survival	of	sage-	grouse	juveniles	during	the	following	
growing	 season.	 Similarly,	Gibson	et	 al.	 (2017)	 found	 that	 juvenile	
survival	was	negatively	associated	with	drought,	but	suggested	that	
females	might	be	able	to	partially	mitigate	these	negative	effects	by	
choosing	to	nest	in	areas	that	receive	more	precipitation	or	moving	
their	 broods	 to	 these	 areas	 after	 hatch.	 Conversely,	we	 found	 lit-
tle	support	for	a	negative	effect	of	cumulative	winter	precipitation	
on	 apparent	 survival.	We	were	 able	 to	 quantify	 a	 negative	 effect	
of	 daily	 precipitation	 on	 apparent	 survival	 when	 the	 chicks	 were	
young,	especially	when	it	was	cold.	The	cameras	allowed	us	to	ob-
serve	the	behavior	of	chicks	and	females	and	provide	some	insight	

into	a	mechanism	behind	the	effect	of	weather	(Figure 1,	Female	107	
link).	On	a	day	with	no	precipitation,	chicks	ventured	out	from	un-
derneath	the	brooding	female,	shortly	after	sunrise	and	immediately	
began	foraging.	In	contrast,	when	it	was	either	raining	or	snowing,	
the	 female	 continued	 to	 brood	 the	 chicks	 for	 hours	 after	 sunrise.	
If	 the	 chicks	 did	 venture	 out,	 they	 quickly	 returned	 to	 the	 safety	
of	the	brooding	female.	We	suspect	that	chicks	were	not	surviving	
because	they	were	exposed	to	harsh	environmental	conditions	and	
limited	foraging	time	preventing	them	from	meeting	their	energetic	
demands.

We	also	found	a	negative	effect	of	flushing	females	on	apparent	
survival	of	chicks	when	they	were	young.	When	a	female	is	flushed	
from	a	brood,	the	brood	has	to	regroup.	We	observed	sage-	grouse	
accomplishing	this	by	chicks	calling	to	the	female	with	distress	calls	
and	the	female	responding.	If	there	are	other	females	in	the	proxi-
mate	area,	they	may	respond	to	the	chick's	distress	calls	(Wallestad,	
1971).	Thus,	by	flushing	females,	observers	may	be	inducing	brood	
amalgamations	 that	 would	 not	 have	 occurred	 otherwise.	 Another	
reason	 flushing	hens	could	 result	 in	 lower	apparent	 survival	of	 ju-
veniles	is	that	the	chicks	did	not	regroup	with	the	female	and	died	
of	 exposure.	The	 interaction	between	age	and	 flushing	 forced	es-
timates	 of	 apparent	 survival	 to	 be	 similar	 to	 non-	flushed	 birds	 at	

F I G U R E  2 Results	from	96	data	
simulations	with	the	juvenile	survival	
model	fit	to	6	parameters.	�	is	the	mean	of	
a	Poisson	distribution	that	defines	clutch	
size	at	hatch.	p	is	a	constant	detection	
probability.	�0	and	�age	are	used	to	define	
an	age	specific	apparent	chick	survival	
rate.	�	and	rate	define	the	parameters	of	a	
negative	binomial	distribution	associated	
with	daily	adoptions	into	a	brood.	For	
each	graph,	the	simulations	were	sorted	
from	smallest	to	largest	based	on	the	true	
parameter	estimates	to	make	visualization	
easier

https://drive.google.com/file/d/1Le9LxCbtf5_doH-Xi5OPSJRPCB4Q56kY/view?usp=sharing
https://drive.google.com/file/d/1Le9LxCbtf5_doH-Xi5OPSJRPCB4Q56kY/view?usp=sharing
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3	days	of	age,	 after	which	estimates	of	 flushed	birds	were	higher.	
We	 believe	 the	 latter	 is	 an	 artifact	 of	 a	 linear	model	 with	 a	 logit	
transformation	with	estimates	close	to	the	boundary	of	1.	That	 is,	
after	3	days	all	daily	apparent	survival	rates	were	high.	We	suggest	
that	if	researchers	plan	to	flush	the	birds,	they	do	not	do	so	within	

3	days	of	hatch.	Lastly,	because	we	found	evidence	for	a	negative	
effect	of	flushing	females	on	apparent	juvenile	survival,	we	strongly	
discourage	future	investigators	from	flushing	females	and	surgically	
attaching	radio	transmitters	to	juveniles	within	the	first	days	of	life.

We	 provide	 an	 example	 that	 simultaneously	 estimates	 imper-
fect	 detection,	 survival,	 and	 adoption	 using	 counts	 of	 juveniles	 in	
a	brood.	Conceptually,	it	is	easy	to	conceive	of	multiple	possibilities	
for	how	a	count	could	change	or	stay	the	same	between	 intervals	
due	to	these	three	processes.	For	example,	if	a	brood	were	observed	
to	 contain	 6	 chicks	 at	 age	 1	 and	 also	 6	 chicks	 at	 age	 7,	 this	 does	

F I G U R E  3 Brood	size	at	hatch	as	a	function	of	cumulative	
precipitation	from	December	1	to	March	1	at	the	nest	site.	Points	
are	the	observed	brood	sizes	for	279	nests

F I G U R E  4 Daily	probability	of	a	chick	surviving	and	remaining	
with	the	same	female	(�),	based	on	the	weather	they	experienced	
and	their	age	in	days.	Precipitation	was	the	total	amount	for	each	
day.	The	blue	surface	is	the	mean	estimate,	while	the	transparent	
gray	surfaces	represent	the	95%	credible	intervals

F I G U R E  5 Daily	probabilities	of	adopting	the	number	of	
chicks	displayed	on	the	x-	axis.	These	estimates	were	informed	by	
observed	gains	to	a	brood	and	modeled	with	a	negative	binomial	
distribution

F I G U R E  6 Average	proportion	of	chicks	fledged	from	the	chicks	
hatched	for	females	at	each	site	and	year	combination.	These	
estimates	are	for	females	we	had	marked	given	the	weather	they	
experienced	during	that	year
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not	mean	that	survival	was	100%	and	that	no	adoptions	occurred;	
that	is	only	one	of	many	possible	ways	of	observing	6	chicks	during	
both	counts.	One	assumption	that	allows	these	parameters	to	be	es-
timated	is	that	all	of	these	processes	are	assumed	to	be	Markovian,	
that	is,	Nt	in	dependent	on	Nt−1.	Given	that	these	processes	are	being	
estimated	 simultaneously	 between	 counts,	 it	 is	 important	 to	 rec-
ognize	that	sampling	correlations	exist	between	the	estimates	and	
their	uncertainties.	That	is,	uncertainty	in	the	survival	process	also	
results	 in	 uncertainty	 in	 the	 adoption	 process	 as	well	 as	 our	 abil-
ity	to	accurately	count	the	brood.	These	three	processes	have	been	
estimated	together	 in	previous	 literature.	For	example,	 in	a	similar	
model,	Schmidt	et	al.	 (2015)	 followed	 radio-	marked	wolves	 to	ob-
tain	counts	of	unmarked	pack	mates	to	model	pack	dynamics.	What	
separates	 our	model	 from	 Schmidt	 et	 al.	 (2015)	 is	 the	 integration	
of	the	female's	behavior	to	aid	 in	the	estimation	of	apparent	 juve-
nile	 survival,	 adoption,	detection,	and	brood	survival,	 a	commonly	
reported	parameter	(Fields	et	al.,	2006;	Rotella	&	Ratti,	1992).	We	
show	through	simulation	that	all	of	our	parameters	are	identifiable	
and	recoverable	under	a	range	of	parameters	conceivable	for	brood	
dynamics	 and	 encourage	 future	 investigators	 to	 use	 the	 provided	
code	to	do	the	same.	We	build	on	a	growing	body	of	literature	for	
estimating	demographic	processes	informed	by	counts	of	unmarked	
individuals.

Like	 Royle	 (2004)'s	 N-	mixture	 model	 and	 Dail	 and	 Madsen	
(2011)'s	 extension	 to	 allow	 gains	 to	 the	 population,	 our	 model	

assumes	closure	between	replicated	counts	that	make	estimation	of	
detection	possible.	Conn	et	al.	(2018)	demonstrated	that	N-	mixture	
model	 parameter	 estimates	 are	 sensitive	 to	 violations	 of	 this	 as-
sumption.	Our	data	collection	method	ensures	that	this	assumption	
is	met,	because	counts	by	either	multiple	observers	or	cameras	were	
instantaneous	and	independent.	Another	assumption	of	our	model	
is	that	chicks	are	not	double	counted.	With	cameras,	we	ensure	that	
this	assumption	 is	completely	met.	When	females	are	 flushed,	 the	
brood	often	flushes	immediately	after	and	counts	have	to	be	made	
quickly	as	 the	birds	are	 flying	away	and	could	 result	 in	a	violation	
of	this	assumption.	This	problem	most	likely	occurred	when	count-
ing	large	broods	with	older	chicks	because	they	are	better	fliers	and	
flush	 from	 greater	 distances	 as	 observers	 approach.	We	 explored	
models	with	age	as	well	as	count	method	effects	on	detection	and	
adoption	and	found	little	evidence	for	an	effect	on	either	parameter.	
Thus,	we	believe	any	bias	caused	by	violation	of	this	assumption	to	
be	minimal.

Barker	et	 al.	 (2018)	 suggest	 collecting	 auxiliary	data	 to	mini-
mize	bias	when	estimating	demographic	parameters	from	counts	
of	unmarked	individuals.	We	used	two	pieces	of	auxiliary	data:	(1)	
all	 attending	 adult	 females	were	 radio	marked,	 so	we	 could	 fol-
low	 broods	 through	 time;	 (2)	 female	 behavior	 allowed	 us	 to	 de-
termine	whether	the	entire	brood	had	been	lost	or	if	at	least	one	
chick	was	 present.	 This	 parameter	 is	 often	 referred	 to	 as	 brood	
survival	(Fields	et	al.,	2006;	Rotella	&	Ratti,	1992).	By	themselves,	

TA B L E  2 Number	of	broods	(n)	marked	at	each	site	for	each	year

Site and year n �� SD �� SD S42 SD

Hart	2013 15 −0.261 0.139 −0.206 0.226 0.192 0.041

Hart	2014 34 0.272 0.140 0.021 0.158 0.818 0.077

Hart	2015 27 0.079 0.127 0.023 0.161 0.581 0.052

Hart	2016 11 0.163 0.149 −0.288 0.221 0.57 0.082

Massacre	2013 4 0.071 0.171 −0.179 0.307 0.452 0.174

Massacre	2014 21 −0.156 0.142 0.409 0.215 0.77 0.134

Massacre	2015 16 0.005 0.134 −0.201 0.225 0.291 0.07

Massacre	2016 15 −0.207 0.150 0.214 0.203 0.384 0.076

Massacre	2017 12 0.024 0.178 0.049 0.202 0.528 0.066

Massacre	2018 16 0.010 0.137 0.199 0.197 0.629 0.090

Sheldon	2013 8 −0.022 0.152 −0.212 0.267 0.466 0.151

Sheldon	2014 26 0.071 0.124 −0.134 0.166 0.546 0.052

Sheldon	2015 22 0.126 0.129 0.163 0.166 0.756 0.070

Sheldon	2016 13 0.199 0.146 −0.046 0.202 0.513 0.050

Sheldon	2017 11 −0.306 0.195 −0.228 0.246 0.047 0.030

Sheldon	2018 28 −0.040 0.130 0.323 0.183 0.525 0.049

N =	279 �
�

0
 =	1.65 �� =	0.228 �

�

0
 =	−1.491 �� = 0.310 �S42 =	0.504 �S

42 =	0.218

Note: Apparent	survival	(�)	was	modeled	as	a	linear	model	with	a	logit	link	and	an	intercept	of	��
0
.	This	intercept	was	representative	of	a	mean	

apparent	survival	rate	under	mean	weather	conditions	over	the	course	of	our	study.	��	was	the	random	deviation	from	the	fixed	effects	model	
of	weather	and	juvenile	age	on	apparent	survival	(�).	The	number	of	chicks	adopted	over	each	interval	was	modeled	with	a	Negative	Binomial	
distribution	with	the	mean	modeled	on	a	log	link	with	an	intercept	of	��

0
. ��	was	the	random	deviation	from	the	mean	adoption	size	for	each	site	and	

year	combination.	��	and	sigma�	were	the	random	error	modeled	for	apparent	survival	and	mean	adoptions	rates.	S42	was	mean	true	survival	modeled	
for	each	site	and	year	based	on	weather	experienced	by	the	marked	females	in	the	sample.	�s42	and	�S42	was	the	mean	true	survival	and	the	standard	
deviation	of	all	females	across	all	years	based	on	the	weather	they	experienced.
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estimates	of	brood	survival	provide	 little	 information	about	how	
many	new	 individuals	a	 female	 fledges.	We	also	monitored	daily	
true	survival	rates	as	defined	by	Flint	et	al.	(1995).	It	is	important	
to	recognize	that	these	rates	can	be	>1	for	broods	when	adoption	
occurs,	so	they	are	not	strictly	probabilities.	We	present	the	prod-
uct	of	these	rates	to	42	days	of	age	as	a	ratio	of	chicks	fledged	to	
those	hatched.	Under	the	assumption	that	the	adoption	of	chicks	
into	the	sample	population	balances	adoption	out	of	the	sample,	
the	 point	 estimate	 for	 this	 ratio	 should	 be	 ≤1.0	when	 averaged	
across	the	entire	sample.	 If	 investigators	find	this	point	estimate	
to	be	larger	than	1,	it	indicates	that	they	may	have	marked	a	biased	
sample	of	females	or	sample	size	was	small.

Our	 simulation	 revealed	 two	 issues	 that	 investigators	 should	
be	 aware	 of.	 First,	 when	 evaluating	 an	 age	 effect	 on	 offspring	
survival	 (��,age),	 we	 observed	 the	 lowest	 amount	 of	 overlap	 be-
tween	 the	 95%	 credible	 intervals	 and	 true	 simulated	 parameter	
value	with	 an	84%	 recovery	 rate.	When	we	evaluated	 the	point	
estimates	 of	 apparent	 survival	 (mean	 of	 the	 posterior)	 for	��,age,	
we	found	that	they	were	slightly	biased	high	(0.004).	One	contrib-
uting	factor	could	be	that	not	all	offspring	survive;	thus,	there	are	
fewer	data	at	the	end	of	the	time	frame	to	inform	this	parameter.	
Additionally,	if	offspring	do	survive	to	an	older	age,	then	their	sur-
vival	probability	 is	 close	 to	 the	boundary	of	1	and	may	 result	 in	
difficulty	estimating	 this	parameter	using	a	 logit	 transformation.	
Second,	when	estimating	the	number	of	adopted	chicks	with	the	
negative	binomial	distribution,	we	recovered	the	mean	with	89%	
overlap	 between	 the	 95%	 credible	 intervals	 and	 true	 simulated	
parameter	value,	but	no	apparent	bias	when	comparing	the	point	
estimate	 to	 the	known	value.	When	evaluating	the	rate	parame-
ter	associated	with	the	mean,	we	observed	almost	perfect	overlap	
99%,	 but	when	 comparing	 the	point	 estimate	 (mean	of	 the	pos-
terior)	it	appeared	to	be	biased	high	0.231.	This	is	entirely	due	to	
the	fact	that	this	parameter	was	always	close	to	the	boundary	of	
0	and	has	the	least	amount	of	data	to	inform	it;	thus,	the	resulting	
posterior	distribution	always	had	a	long	right	tail.	We	recommend	
inference	about	the	adoption	process	be	made	from	the	negative	
binomial	distribution	as	a	whole,	similar	to	Figure 5.	It	is	important	
to	note	 that	any	difficulties	 in	estimating	either	 the	daily	 appar-
ent	 survival	probabilities	or	 the	daily	adoptions	did	not	 result	 in	
any	 apparent	 difficulties	 or	 biases	 in	 estimating	 the	 true	 overall	
survival.	This	 is	a	parameter	that	has	been	of	primary	interest	to	
investigators	 for	decades	 (Flint	et	al.,	1995;	Lukacs	et	al.,	2004),	
and	currently	no	analytical	method	exists	to	provide	unbiased	es-
timates	for	sage-	grouse.

We	believe	the	observation	method	we	present	has	the	potential	
to	be	applied	to	other	species	with	dependent	offspring.	Regardless	
of	observation	method,	our	modeling	 framework	could	be	applied	
to	a	variety	of	species.	As	a	general	approach,	we	suggest	research-
ers	leverage	biology	of	the	species	of	interest	in	the	data	collection	
and	modeling	framework.	Hierarchical	models	provide	an	extremely	
flexible	tool	that	can	leverage	multiple	pieces	of	information	such	as	
radio	telemetry,	female	behavior,	and	counts	of	chicks	within	broods	
that	can	provide	novel	insights	into	ecological	processes.
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