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Abstract
Population growth and fitness are typically most sensitive to adult survival in long-
lived species, but variation in recruitment often explains most of the variation in fit-
ness, as past selection has canalized adult survival. Estimating juvenile survival until 
age of independence has proven challenging, because marking individuals in this age 
class may directly affect survival. For Greater Sage-grouse, uniquely marking juveniles 
in the first days of life likely results in adverse effects to survival, detection of juve-
niles is not perfect, and females adopt juveniles from other parents. These challenges 
are encountered by researchers studying avian and mammalian species with similar 
life histories, yet methods do not exist that explicitly estimate all these components 
of the recruitment process. We propose a novel data collection method and demo-
graphic model to simultaneously estimate rates of detection, survival, and adoption of 
juvenile individuals. Using multiple cameras to film the beginning of juvenile activity 
on specific days, we obtained counts of juveniles associated with marked females. 
Increases of juveniles to broods provided information that enabled us to estimate 
rates of adoption that can be applied at the population level. Losses from broods in-
formed apparent survival. These losses could be attributed to death, or they could be 
chicks that were adopted by other females. We found evidence that apparent survival 
of juveniles was influenced by localized weather patterns when chicks were young. 
Similarly, we found that young chicks were more susceptible to the adverse effect of 
attending females being flushed by an observer. Both of these patterns diminished 
quickly as chicks aged. We provide the first-ever estimates of interval-specific adop-
tion rates. Our results suggest that researchers should be cautious when designing 
studies to estimate juvenile survival. More importantly, they provide insight into 
adoption, a behavior that has been known to exist for decades.
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1  |  INTRODUC TION

A common goal of basic and applied research is to identify vital 
rates important to fitness and the persistence of populations. 
Understanding how a species' life history has evolved can assist in-
vestigators when predicting how populations will respond to chang-
ing environments (Cooch et al., 2001; Doherty et al., 2004; Rotella 
et al., 2012). In a given species, some life-history traits evolve to be 
robust to environmental variation (Boyce et al., 2006; Pfister, 1998), 
whereas other traits evolve to be plastic in the face of environmental 
variation (Koons et al., 2009). Through natural selection, the combi-
nation of these traits results in phenotypes that maximize fitness, 
even though they may not enhance population persistence (Stearns, 
1989). When selective pressure changes, the plasticity of these vital 
rates determines whether the population will persist.

For long-lived species with slow generation times, variation in 
adult survival is generally minimal compared with the variation in 
reproduction (Rotella et al., 2012). If finite population growth rate 
for phenotypes is a reasonable surrogate for fitness, population ma-
trix models allow researchers to explore hypotheses about selective 
pressure on life-history strategies (Caswell, 2006). Doherty et al. 
(2004) demonstrate that these models do not always support gen-
eral hypotheses based on life-history theory. If erroneous estimates 
of vital rates are used, or if important vital rates are not considered, 
then these types of studies are inadequate to predict how popula-
tions will respond to environmental variation.

Estimation of survival from birth to parental independence and 
ultimately recruitment into the breeding population has been a focus 
of population biologist for decades (Mayfield, 1961; Williams et al., 
2020). Methods to estimate survival in this age class often rely on 
individually marked juveniles (Gregg & Crawford, 2009). For many 
species, however, marking young individuals is not feasible because 
marks can negatively impact survival (Hastings et al., 2009), or it 
is difficult to apply marks that allow for growth. An alternative to 
marking individual juveniles is to count the offspring dependent on 
uniquely identifiable parents to estimate survival (Flint et al., 1995; 
Lukacs et al., 2004; Williams et al., 2020). The analytical methods 
available to estimate survival from these types of data either assume 
that offspring can be observed perfectly (Flint et al., 1995; Manly & 
Schmutz, 2001) or that the number of offspring do not increase after 
the initial count (Lukacs et al., 2004; Williams et al., 2020).

In some species, if the cost of parental care per sibling is low, 
alloparental care may arise if it is beneficial to the survival of off-
spring of the adopting parent (Eadie et al., 1988; MacLeod & Lukas, 
2014). Riedman (1982) documented alloparental care and adoption 
of young in 120 mammalian species and 150 avian species. Avian 
species classified as Galliformes and Anatidae share an ancient an-
cestry in the clade Galloanserae (Hackett et al., 2008; Winkler et al., 
2015), and many species exhibit alloparental care. Offspring from 
both groups are precocial, and the cost of adoption to the survival 
of attending parents is low compared with altricial species, although 
there may be costs associated with future reproductive attempts 
(Leach et al., 2019). Adoption has been documented in several 

species of Galliformes, including Northern Bobwhites (Faircloth et al., 
2005), rock and white-tailed ptarmigan (Wong et al., 2009), and is 
common in waterfowl (Beauchamp, 1997; Eadie et al., 1988; Manly & 
Schmutz, 2001). These adoptions violate the assumption of closure 
required by current analytical methods.

We use Greater Sage-grouse (Centrocercus urophasianus, here-
after sage-grouse) as an example of a novel approach for estimating 
apparent pre-fledging survival and the rate of adoption into broods. 
Survival estimates of sage-grouse chicks from hatching to indepen-
dence are substantially less frequent than estimates of nest success 
(Gibson et al., 2015; Smith et al., 2019) even though pre-fledging sur-
vival may be more variable than nest success. In years with more fall 
and winter precipitation, evidence suggests sage-grouse lay larger 
clutches (Blomberg et al., 2014). Chick survival may also be higher in 
years with more cumulative winter precipitation because the herba-
ceous understory responds positively to more moisture, and sage-
grouse rely on grasses and forbs for energetic demands as well as 
for cover (Gibson et al., 2017; Wann et al., 2020). We suggest that, 
as a result of the relative lack of attention to this vital rate, the role 
of pre-fledging survival in population dynamics and individual fitness 
has been under-appreciated in sage-grouse (Dahlgren et al., 2016; 
Taylor et al., 2012) and other species with precocial young (Acevedo 
et al., 2020; Cooch et al., 2001).

Estimation of juvenile survival has been hampered by three main 
constraints (1) chicks are too small to uniquely mark without affect-
ing survival (Davis et al., 2016; Gregg & Crawford, 2009); (2) chicks 
cannot be detected with a probability of one (Gibson et al., 2016; 
Riley & Conway, 2020; Riley et al., 2021); (3) brood amalgamation 
makes it impossible to follow unmarked or marked chicks through 
space and time, even when the identity of the attending parent is 
known (Dahlgren et al., 2010). Marking chicks requires capturing 
them and often, performing surgery to implant or attach the trans-
mitter with sutures, resulting in uncertainty about whether death 
in the first days of life was due to the handling process or environ-
mental factors (Burkepile et al., 2002; Dahlgren et al., 2010; Davis 
et al., 2016; Gregg & Crawford, 2009). An additional challenge is that 
an observer has to be within a few hundred meters of a brood to 
detect a signal from micro-transmitters attached to chicks, and as a 
result, many chick's fates are unknown. Chicks with unknown fates 
could have either lost their transmitter, died, or been adopted by 
another female. Dahlgren et al. (2010) attempted to follow marked 
chicks every 1–2 days. Despite this sampling effort, roughly 18% of 
the chicks had unknown fates. Nevertheless, the authors observed 
gains of unmarked chicks in nearly half of all focal broods, and 21% 
of marked chicks were adopted by another female. One alterna-
tive method including plasticine-filled bands requires recapture of 
marked individuals and reduces the survival of juveniles (Amundson 
& Arnold, 2010), while passive integrated transponders (PIT tags) 
require being within about a meter of an antenna (Nicolaus et al., 
2008), which is impractical for free-ranging broods.

We developed a generalizable Bayesian hierarchical model de-
signed to estimate juvenile survival and rates of adoption when 
detection is imperfect. In addition, we developed a novel data 



    |  3 of 12STREET et al.

collection technique that used multiple observers equipped with 
remote video cameras (Figure 1) to improve the observation pro-
cess. We collected data that allowed for the estimation of detec-
tion, apparent survival, and adoption while minimizing disturbance 
to the brood, based on a count-based metapopulation model (Dail 
& Madsen, 2011). Like many precocial species, behavior of the at-
tending sage-grouse female changes when the entire brood is lost 
(Patterson, 1952). Brooding females are less likely to flush than non-
brooding females, and often perform displays to attract predators 
to themselves rather than their chicks. We use this information in 
our model to help differentiate zero counts resulting from imperfect 
detection, from a true zero count. This model allows investigators 
to examine hypotheses about factors influencing survival, including 
environmental as well as individual variation. We present the first-
ever estimates of adoption controlled for detection and survival of 
offspring.

2  |  METHODS

2.1  |  Study area

We collected sage-grouse reproduction data from three study areas 
within the Great Basin, Northern Nevada and Southern Oregon, 
USA, from 2013 to 2018. Hart and Sheldon are National Wildlife 
Refuges created with the goal to preserve wildlife for future gen-
erations. The last study area, Massacre, is managed for multiple use, 
including livestock and feral horse grazing. Gridded annual precipi-
tation and mean temperature data downloaded from the Climate 
Engine online interface (Abatzoglou, 2013; Huntington et al., 2017) 
were similar for the three study areas. Mean annual precipitation 

from 1979 to 2019 was 332, 334, and 268 mm for Hart, Massacre, 
and Sheldon, respectively, while mean temperature was 7.01, 7.57, 
and 6.93°C. Precipitation occurred primarily during winter and 
spring months followed by a dry summer period.

2.2  |  Clutch size, chick survival, and adoption

We captured female sage-grouse by spotlighting (Giesen et al., 1982) 
during the breeding season from mid-March through early May. 
Females were also captured in the fall (August through November) 
to supplement spring captures. All captured sage-grouse received a 
metal band with a unique identifying number and were fitted with 
a 22 g VHF radio-collar. After release, we monitored females until 
death or collar failure. From March to June, we located females 
twice a week by ground telemetry to determine nesting status. We 
checked females on nests twice a week until the fate of the nest 
could be determined: hatched, depredated, or abandoned.

For each female that successfully hatched a nest resulting a 
brood (i), we counted the number of hatched eggs (ci,a=1,k) with de-
tached membranes to estimate how many chicks were present at 
hatch Ni,a=1,k when their age (a) was equal to day 1. If the number 
of hatched eggs was not clear, then this value was considered un-
known. To model these unknown values, mean brood size at hatch (λ) 
was modeled for each female, as Ni,a=1,k ∼ Poisson

(
�i,k

)
. If the number 

of hatched eggs could be reliably determined (ci,a=1,k), we assumed 
there was no error in the count ci,a=1,k = Ni,1,k. To assess weather 
effects, we fit a linear model as log

(
�i,k

)
= ��,0 + ��,winter

(
winteri

)
+ ��,k, 

where winter was the total amount of precipitation that fell between 
December 1 and March 1 at each nest site and ��,k was the devia-
tion from the weather model intended to assess ecological effects 

F I G U R E  1 Example of camera setup to obtain counts of chicks. It is important to place cameras so that video is recorded from different 
angles to obtain a different field of view when conducting the counts. For example videos view https://doi.org/10.5061/dryad.0zpc8​670w. 
The videos in the links have been shortened for smaller file size and ease of viewing. The cameras started recording before sunrise to ensure 
that the female was brooding her clutch. These two videos were chosen as an example of how a juvenile could have been missed using a 
video count. They are recordings of the same female and brood simultaneously, as described in the methods. Female 107 is an example of 
a female experiencing unfavorable weather conditions with newly hatched chicks. This video starts just after sunrise, as snow is beginning 
to fall. This first part of the video is a time-lapse over ∼4 h as snow falls on a brooding hen. During this time period, the juveniles would be 
foraging if weather conditions were favorable. One juvenile comes out for a short period of time, but returns underneath the female. The 
video is played in real time once the female stops brooding

https://doi.org/10.5061/dryad.0zpc8670w
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associated with year and site. Each site and year (k) were consid-
ered to be discrete random variables with 16 different categories. 
Each brood was assigned to one site–year category (e.g., Hart 2015; 
Sheldon 2014). We modeled these as random deviations from a 
normal distribution (��,k ∼ normal(0, �2

�
)) with a common variance �2

�
, 

were �� had a uniform prior distribution between 0 and 5.
We hypothesized that chick survival would be lowest within the 

first week. To help assess this hypothesis, we attempted to get an 
additional count of chicks within three days of hatch, after which, we 
attempted to obtain a count every week. To minimize disturbance 
of the brood and maximize detection of chicks, we devised a novel 
observation method using remotely placed video cameras (Figure 1). 
Observers worked in teams of two to track radio-marked females 
just before sunrise to ensure that the females were brooding their 
chicks. Observers then attempted to get a visual location without 
flushing the bird. If successful, a camera was placed where we first 
obtained a visual of the female and recording was started. Observers 
then placed a second camera so that it recorded the female from a 
different angle. Observers left cameras in place and retreated to a 
location that was perceived to be no longer detectable by females. 
Observers monitored the female from a distance using radio telem-
etry and retrieved cameras after females and chicks had left the lo-
cation. Counts of chicks associated with each female were obtained 
from videos. Observers reviewed the video the day of the count to 
make sure a count was captured by the video. Video was recorded 
at a minimum resolution of 720  p by multiple makes of cameras. 
We recommend a minimum of a 40× optical zoom. If a brooding fe-
male was accidentally flushed while trying to obtain a visual loca-
tion, observers independently counted the number of chicks before 
they dispersed. We stored counts in an array (ci,a,j,k ), where i was the 
unique female, a was age of the brood, j indexed either the camera 
or observer involved in the multiple count, and k was the site and 
year the female was monitored. We modeled detection probability 
(pi,a) for each observer, as ci,a,j,k ∼ Binomial(pi,a,Ni,a,k ). There were two 
covariates that we hypothesized would influence detection, includ-
ing how the count was obtained (flushed or camera) and age of the 
brood. However, in early exploratory models we found little support 
for an effect of either of these covariates on detection. As such, we 
chose to model detection as a constant rate.

Brood size can change from one age to the next in three ways; 
chicks can die, chicks can be adopted by another female, or chicks 
from another female can be adopted into the focal female's brood. 
From an observation perspective, we could only observe losses or 
additions in a focal brood and could not differentiate whether a 
chick that disappeared was adopted by another female or if the chick 
died. Nevertheless, we could estimate the net number of chicks that 
survived and remained with their original mother (were not adopted 
by another female) from one age to the next (Nsurvival

i,a,k
) by estimat-

ing apparent survival (�i,a,k ). The number of chicks adopted into the 
brood 

(
N
adopt

i,a,k

)
 could be informed by observed gains in the brood. If a 

female lost all of her brood, we assumed she would not adopt chicks 
from another brood. Thus, the model statement for these parame-
ters was as follows:

where r was the scale parameter of the Negative Binomial and �i,a,k 
was the mean number of chicks adopted in the interval. Female be-
havior was an additional piece of information that we used to estimate 
(�i,a,k ). All counts began while the female should have been brooding 
her chicks (i.e., before sunrise). At this time of day, when a female had 
a brood (at least one chick), she was much less likely to flush when 
an observer was present. If a female with a brood did flush, she usu-
ally remained close to the brood, often intentionally making herself 
visible, and sometimes performed a broken wing display (Patterson, 
1952). When a female did not have a brood, she typically flushed in the 
presence of an observer, often flying long distances, and never made 
herself visible after flushing. Observers would rush to the spot where 
the female should have been brooding her chicks and searched for 
any chicks that could have retreated into the vegetation for cover. If 
the observer found no chicks, we used this zero count in combination 
with the female's behavior to determine whether the brood had been 
lost entirely. Early within the first year of the study, we relocated each 
female the following morning to verify that the brood had been lost. 
We found that we were able to determine whether an entire brood 
had been lost with 100% certainty and eliminated the protocol for a 
follow-up check. If for some reason the observer was uncertain about 
the fate of the brood, a recount was attempted the following morning. 
The most common reason for this uncertainty was the observers arriv-
ing after sunrise or at a time when the female was not brooding. We 
used these diagnostic, consistent behaviors, in combination with zero 
counts to discern whether females had a brood. We took advantage of 
this partially observable latent state (zi,a,k ) to model the probability that 
at least one chick survived and remained with the original female sbrood

i,a,k
 , 

known in the literature as brood survival (Dzus & Clark, 1998; Fields 
et al., 2006). zi,a,k was 1 if the female was known to have a brood, and 0 
if we determined the female had lost her brood based on behavior. We 
considered zi,a,k to be unknown between the last time the female was 
located with a brood and when she was located without a brood or if 
brooding status could not be determined. Brood survival was linked to 
apparent chick survival as:

where Ai,a,k is the probability of adopting at least one chick derived 
from the Negative Binomial distribution as r

r+�i,a

r with the parameters 
r and μ.

We explored hypotheses about apparent chick survival related 
to weather and study areas as, 

(1)

Ni,a,k =Nsurvival
i,a−1,k

+N
adopt

i,a−1,k
, a=2,…, 42

Nsurvival
i,a−1,k

∼Binomial
�
𝜙i,a−1,k ,Ni,a−1,k

�
,

N
adopt

i,a−1,k
∼

⎧⎪⎨⎪⎩

NegativeBinomial(r, hi,a−1), Ni,a−1>0

0, Ni,a−1=0,

hi,a=
r

r+𝜇i,a

(2)
zi,a,k ∼

⎧
⎪⎨⎪⎩

Bernoulli
�
sbrood
i,a,k

�
, zi,a−1,k =1

0, zi,a−1,k =0,

sbrood
i,a,k

=1−
�
1−�

Ni,a−1,k

i,a,k
Ai,a,k

�
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where tmini,a was a daily minimum temperature, ppti,a was a meas-
ure of daily precipitation, winteri was the total amount of precipita-
tion that fell between December 1 and March 1 at each nest site, 
and flushi,awas a matrix with a 1 if the count was obtained using a 
video camera, and 0 if it was by an observer. All the weather covari-
ates were downloaded from PRISM at a 4 km resolution (Daly et al., 
1994). We modeled additional variation associated with site and year 
as a random deviation from a normal distribution (��,k ∼ normal(0, �2

�
)

) with a common variance �2
�
, where �� had a uniform prior distribu-

tion between 0 and 5. Because females with broods were not sta-
tionary on the landscape, the covariates became location-specific 
indexed by age. Because females were not located every day, we 
assumed that females were stationary on the landscape until they 
were located again.

Because adoption occurred infrequently, we were limited by 
the data in the number of hypotheses we could test related to 
adoptions. We did model site and year variation in adoption as 
log(�i,a,k ) = ��,0 + ��,i, where ��,i were random deviations from a nor-
mal distribution (��,i ∼ normal(0, �2

�
)) with a common variance �2

�
, 

where �� had a uniform prior distribution between 0 and 5. Ni,42,k was 
the number of chicks born to each female that survived to 42 days 
and were not adopted out of the brood as well as the total number 
of chicks that each female adopted. If we assume that our marked 
hens are representative of the entire population, then an intuitive 
measure of true survival from hatch to fledging is S42,k = Ni,42,k∕Ni,1,k.

The estimated parameters requiring prior distributions included 
�p , ��, ��, ��, and �r, where � were the coefficients of a linear model 
associated with each parameter: p, �, �, �, r. We used a logit link to 
constrain the linear model for p and � to be between 0 and 1. For 
the prior distributions on �p , �� we used a normal distribution with 
a mean of 0 and a variance equal to 1. 52(Northrup & Gerber, 2018). 
We used a log link to constrain the linear model for �, �, and r to 
be greater than 0. For the prior distributions on ��,0 and ��,winter, we 

used a normal distribution with a mean of 0 and a variance equal to 
1.52. Because adoption of sage-grouse occurred infrequently when 
measured at a daily interval, we constrained the prior distribution of 
��and �0,r to a normal distribution with a mean of −1 and a variance 
of 1. Together, these priors resulted in a distribution of the number 
chicks being adopted into a brood per day with a mean of 0.6305, 
and a 97.5% quantile of 4. The joint Bayesian posterior distribution 
for our hierarchical model was

Models were run with 3 chains, with a total of 60,000 iterations 
each with a burn-in period of 40,000 saving every other iteration 
using JAGS (Plummer et al., 2003) and the JAGsUI package (Kellner 
et al., 2019). Convergence of the parameters was assessed using the 
R̂ statistic, as well as visual inspection of the chains (Gelman et al., 
2013). For all estimated and derived parameters, we report the mean 
and the posterior standard deviation. For all � values of effect size, 
we report the proportion of the posterior greater than or less than 0 
(F) and consider a value greater than 0.95 to be a meaningful effect.

2.3  |  Data simulation

To assess model performance, we simulated data using Equation 
(3), with known parameter values representative of many wildlife 
applications and fit our model of the number offspring born, off-
spring survival, adoption, and detection. The estimated posterior 
distributions were evaluated to determine the ability our model to 
recover the generated parameter values as well as the presence of 
any bias. We simulated 96 datasets, each containing 100 females 
with offspring. We chose to use parallel processing to conduct our 

logit(ϕi,a,k ) =�ϕ,0+�ϕ,age(agei,a)+�ϕ,winter(winteri)

+�ϕ,flush(flushi,a)+�ϕ,tmin(tmini,a)+�ϕ,ppt(ppti,a)

+�ϕ,tmin,age(tmini,a)(agei,a)+�ϕ,ppt,age(ppti,a)(agei,a)

+�ϕ,flush,age(flushi,a)(agei,a)+�ϕ,k

,

(3)

[N1,�, 𝛽𝜆, 𝜎
2
𝜆
,Na,N

survival
1,…,41

,𝜙a, 𝛽𝜙, 𝜎
2
𝜙
,N

adopt

1,…,41
,𝜇a, 𝛽𝜇 , 𝜎

2
𝜇
, r,Z2,…,42,pa, 𝛽p|C1,C2,…,42]∝

n∏
i=1

A∏
a=ri

[C2,…,a|Nsurvival
1,…,41

,N
adopt

1,…,41
, pi,a]×

[Nsurvival
i,1,…,a−1

|𝜙i,a−1,Ni,a−1]×

[N
adopt

i,1,…,a−1
|r,𝜇i,a−1,Ni,a−1]

I{Ni,a−1>0} I

(
1−I{

N
adopt
i,a−1

=0
}
)

{Ni,a−1>0}
×

[zi,a|zi,a−1,𝜙i,a−1,N
survival
i,1,…,a−1

,N
adopt

i,1,…,a−1
, r,𝜇i,a]×

[�|𝛽𝜆, 𝜎2𝜆][𝜙|�𝜙, 𝜎
2
𝜙
][𝜇i,a|𝛽𝜇 , 𝜎2𝜇]×[

N1

]
[r]

[
�𝜆

][
𝜎2
𝜆

][
�𝜙

][
𝜎2
𝜙

][
�𝜇

][
𝜎2
𝜇

][
�p

]

Parameter Simulation Prior
Coverage 
(%)

Mean 
bias

s42 Ni,42

Ni,1

Ni,42

Ni,1

94 0.003

Ni,1 Poisson(6) lognormal(0, 1.5) 97 0

��,0 normal(1.6, 0.2) normal(0, 1.5) 96 0.007

��,age normal(0.05, 0.02) normal(0, 1.5) 84 0.004

� lognormal( − 1.4, 0.4) lognormal(0, 1.5) 89 −0.016

r lognormal( − 1, 0.2) lognormal(0, 1.5) 99 0.231

p uniform(0.8, 1) uniform(0, 1) 93 −0.006

Note: Coverage is the percentage of times that the known value is within the 95% credible intervals 
of the posterior distribution. For the normal and log normal distributions, the first number is the 
mean, and the second number is the standard deviation.

TA B L E  1 Parameters and the 
distributions used to generate known 
values to simulate 96 different datasets
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simulations. We decided to simulate 96 datasets because we had 8 
computer cores available to conduct the simulation. Thus, each core 
simulated and analyzed 12 datasets. We used predetermined distri-
butions to obtain different parameter values to generate each data-
set (Table 1). We built four constraints into the simulations. First, 
we forced daily offspring survival to be high and to increase with 
age, thus logit

(
�i,t

)
= ��,0 + ��,age where ��,0 was randomly drawn 

from a normal distribution with a mean of 1.6 and a variance of 0. 22 
and ��,age was drawn from a normal distribution with a mean of 0.05 
with a variance of 0.02. Second, we forced adoptions to occur in-
frequently and range from 1 to 5; hence, we choose to simulate the 
adoption process using a negative binomial distribution with a small 
mean (lognormal( − 1.4, 0.4)) and a small rate (lognormal( − 1, 0.4)). 
Third, given the complexity of this model, we limited our simulation 
to have high detection probabilities randomly drawn between 0.8 
and 1. Lastly, the number of chicks in the total simulated population 
at 42 days of age could not exceed the number of chicks born. If the 
simulated dataset violated this constraint, it was discarded and a new 
dataset was simulated and analyzed. Patterns in the simulated data 
were consistent with our own experience and that of others (Gibson 
et al., 2017). For each dataset generated, we fit our model and evalu-
ated the proportion of times the 95% credible intervals overlapped 
the true parameter values (Little, 2006; Williams & Hooten, 2016) 
and calculated mean bias (true parameter—mean of the posterior 
distribution) for each parameter.

3  |  RESULTS

3.1  |  Simulation results

Given a sample size of 100 parental adults and a weekly sampling 
interval, we demonstrate that all parameters were identifiable with 
reasonable precision (Figure 2, Table 1). The simulated parameter 
values were recovered by the estimated posterior distributions for 
�, ��,0, ��,age, �, r, and p a high proportion of the time, resulting in 
an unbiased estimate of the derived parameter of true survival with 
high precision (Figure 2). This parameter ranged from 0 to 1, and 
these results suggest that our model will work well for a variety of 
applications.

3.2  |  Greater sage-grouse example

From 2013 to 2018, we monitored 279 sage-grouse broods, hatched 
by 240 unique females across 3 study sites. Mean brood size (�) of 
Greater Sage-grouse at hatch for nests experiencing average winter 
precipitation was 6.448 (SD = 0.028); however, we found evidence 
that females that chose nest sites with higher cumulative winter pre-
cipitation hatched smaller broods (Figure 3, ��,winter = −0.051, SD = 
0.027, F = 0.969). After hatch, an individual chick had a mean prob-
ability of surviving day one and remaining with its original mother 
(�a=1) of 0.854 (SD = 0.011), if there was no precipitation. If it rained 

or snowed, the probability of a chick surviving decreased (Figure 4, 
�prcp = − 0.133, SD = 0.048, F = 0.996). As chicks aged, they sur-
vived at higher rates (�age = 0.052, SD = 0.004, F = 1) and the effect 
of precipitation diminished (�prcp,age = 0.006, SD = 0.005, F = 0.865). 
We found little evidence that temperature affected apparent sur-
vival (�temp = 0.075, SD = 0.051, F = 0.928) or interacted with age 
(�temp,age = −0.012, SD = 0.005, F = 0.991).

If females had a brood, the daily probability that she would adopt 
at least 1 chick was (0.155, SD = 0.015). When females did adopt 
chicks, it was most likely a small number; 99.98% of adoption events 
were 3 chicks or less (Figure 5). Adoptions were modeled with a neg-
ative binomial distribution and a constant rate estimated to be 0.306 
(SD = 0.064), resulting in the mean number of chicks being adopted 
per day of 0.226 (SD = 0.024).

We observed additional variation not explained by covariates 
among study areas and years in both apparent survival (�� = 0.228) 
and the probability of adoption (�r = 0.31). When combined, this ran-
dom variation and the variation due to weather resulted in substan-
tial variation in the ratio of chicks fledged to the number hatched, 
that is, true survival accounting for adoption (Figure 6). Probability 
of a chick surviving from hatch to fledging ranged from 0.047 on 
Sheldon in 2017 to 0.77 on Massacre in 2014 (Table 2).

Detection was estimated to be high with good precision 0.945 
(SD = 0.004), most likely due to the fact that counts were conducted 
early in the morning to ensure that females were brooding chicks. 
When we assessed whether there was a difference in apparent sur-
vival due to method, we found evidence that flushing the female 
resulted in a reduction in survival of 0.165 (SD = 0.033) when the 
brood was 1  day of age, but this effect disappeared by the time 
chicks reached 3 days of age.

4  |  DISCUSSION

We present a novel approach to data collection, and modeling de-
mographic rates, which provides estimates of survival as well as the 
adoption rate of unmarked juveniles. When adoption occurs and 
is not accounted for when modeling survival and detection, sur-
vival estimates would likely be overestimated (Lukacs et al., 2004; 
Williams et al., 2020), and may result in overly optimistic population 
trajectories.

We present daily rates of adoption into sage-grouse broods that 
suggest that the average female who successfully reared a brood 
adopted at least one juvenile born to a different female before fledg-
ing her brood. Females displayed risky behavior to attract predators 
to themselves rather than their chicks. Kin selection has been pro-
posed as a hypothesis to explain this seemingly altruistic behavior 
in other species (Eadie et al., 1988; Wong et al., 2009). Andersson 
(2018) suggested that high rates of female philopatry could increase 
relatedness of sage-grouse in an area sufficiently that kin selection 
might explain the adoption of apparently unrelated offspring. Sage-
grouse show high lek, nest, and brood site fidelity (Fischer et al., 
1993; Gerber et al., 2019; Gibson et al., 1991), and Jahner et al. 
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(2016) found a high degree of relatedness among individuals with 
similar space use, suggesting the feasibility of Andersson (2018)'s 
hypothesis. Alternatively, adoptions have been explained as a mech-
anism to reduce predation risk for one's own young (Lengyel, 2007), 
although this potential benefit could be traded off against costs to 
future reproduction for adults rearing enlarged broods (Leach et al., 
2019). Regardless of the mechanism, our observation method and 
demographic model are the first that we know of to incorporate 
adoption and survival into the same likelihood and open the door for 
exploration of tradeoffs between these parameters.

Guttery et al. (2013) found a negative association among winter 
droughts and survival of sage-grouse juveniles during the following 
growing season. Similarly, Gibson et al. (2017) found that juvenile 
survival was negatively associated with drought, but suggested that 
females might be able to partially mitigate these negative effects by 
choosing to nest in areas that receive more precipitation or moving 
their broods to these areas after hatch. Conversely, we found lit-
tle support for a negative effect of cumulative winter precipitation 
on apparent survival. We were able to quantify a negative effect 
of daily precipitation on apparent survival when the chicks were 
young, especially when it was cold. The cameras allowed us to ob-
serve the behavior of chicks and females and provide some insight 

into a mechanism behind the effect of weather (Figure 1, Female 107 
link). On a day with no precipitation, chicks ventured out from un-
derneath the brooding female, shortly after sunrise and immediately 
began foraging. In contrast, when it was either raining or snowing, 
the female continued to brood the chicks for hours after sunrise. 
If the chicks did venture out, they quickly returned to the safety 
of the brooding female. We suspect that chicks were not surviving 
because they were exposed to harsh environmental conditions and 
limited foraging time preventing them from meeting their energetic 
demands.

We also found a negative effect of flushing females on apparent 
survival of chicks when they were young. When a female is flushed 
from a brood, the brood has to regroup. We observed sage-grouse 
accomplishing this by chicks calling to the female with distress calls 
and the female responding. If there are other females in the proxi-
mate area, they may respond to the chick's distress calls (Wallestad, 
1971). Thus, by flushing females, observers may be inducing brood 
amalgamations that would not have occurred otherwise. Another 
reason flushing hens could result in lower apparent survival of ju-
veniles is that the chicks did not regroup with the female and died 
of exposure. The interaction between age and flushing forced es-
timates of apparent survival to be similar to non-flushed birds at 

F I G U R E  2 Results from 96 data 
simulations with the juvenile survival 
model fit to 6 parameters. � is the mean of 
a Poisson distribution that defines clutch 
size at hatch. p is a constant detection 
probability. �0 and �age are used to define 
an age specific apparent chick survival 
rate. � and rate define the parameters of a 
negative binomial distribution associated 
with daily adoptions into a brood. For 
each graph, the simulations were sorted 
from smallest to largest based on the true 
parameter estimates to make visualization 
easier

https://drive.google.com/file/d/1Le9LxCbtf5_doH-Xi5OPSJRPCB4Q56kY/view?usp=sharing
https://drive.google.com/file/d/1Le9LxCbtf5_doH-Xi5OPSJRPCB4Q56kY/view?usp=sharing
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3 days of age, after which estimates of flushed birds were higher. 
We believe the latter is an artifact of a linear model with a logit 
transformation with estimates close to the boundary of 1. That is, 
after 3 days all daily apparent survival rates were high. We suggest 
that if researchers plan to flush the birds, they do not do so within 

3 days of hatch. Lastly, because we found evidence for a negative 
effect of flushing females on apparent juvenile survival, we strongly 
discourage future investigators from flushing females and surgically 
attaching radio transmitters to juveniles within the first days of life.

We provide an example that simultaneously estimates imper-
fect detection, survival, and adoption using counts of juveniles in 
a brood. Conceptually, it is easy to conceive of multiple possibilities 
for how a count could change or stay the same between intervals 
due to these three processes. For example, if a brood were observed 
to contain 6 chicks at age 1 and also 6 chicks at age 7, this does 

F I G U R E  3 Brood size at hatch as a function of cumulative 
precipitation from December 1 to March 1 at the nest site. Points 
are the observed brood sizes for 279 nests

F I G U R E  4 Daily probability of a chick surviving and remaining 
with the same female (�), based on the weather they experienced 
and their age in days. Precipitation was the total amount for each 
day. The blue surface is the mean estimate, while the transparent 
gray surfaces represent the 95% credible intervals

F I G U R E  5 Daily probabilities of adopting the number of 
chicks displayed on the x-axis. These estimates were informed by 
observed gains to a brood and modeled with a negative binomial 
distribution

F I G U R E  6 Average proportion of chicks fledged from the chicks 
hatched for females at each site and year combination. These 
estimates are for females we had marked given the weather they 
experienced during that year
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not mean that survival was 100% and that no adoptions occurred; 
that is only one of many possible ways of observing 6 chicks during 
both counts. One assumption that allows these parameters to be es-
timated is that all of these processes are assumed to be Markovian, 
that is, Nt in dependent on Nt−1. Given that these processes are being 
estimated simultaneously between counts, it is important to rec-
ognize that sampling correlations exist between the estimates and 
their uncertainties. That is, uncertainty in the survival process also 
results in uncertainty in the adoption process as well as our abil-
ity to accurately count the brood. These three processes have been 
estimated together in previous literature. For example, in a similar 
model, Schmidt et al. (2015) followed radio-marked wolves to ob-
tain counts of unmarked pack mates to model pack dynamics. What 
separates our model from Schmidt et al. (2015) is the integration 
of the female's behavior to aid in the estimation of apparent juve-
nile survival, adoption, detection, and brood survival, a commonly 
reported parameter (Fields et al., 2006; Rotella & Ratti, 1992). We 
show through simulation that all of our parameters are identifiable 
and recoverable under a range of parameters conceivable for brood 
dynamics and encourage future investigators to use the provided 
code to do the same. We build on a growing body of literature for 
estimating demographic processes informed by counts of unmarked 
individuals.

Like Royle (2004)'s N-mixture model and Dail and Madsen 
(2011)'s extension to allow gains to the population, our model 

assumes closure between replicated counts that make estimation of 
detection possible. Conn et al. (2018) demonstrated that N-mixture 
model parameter estimates are sensitive to violations of this as-
sumption. Our data collection method ensures that this assumption 
is met, because counts by either multiple observers or cameras were 
instantaneous and independent. Another assumption of our model 
is that chicks are not double counted. With cameras, we ensure that 
this assumption is completely met. When females are flushed, the 
brood often flushes immediately after and counts have to be made 
quickly as the birds are flying away and could result in a violation 
of this assumption. This problem most likely occurred when count-
ing large broods with older chicks because they are better fliers and 
flush from greater distances as observers approach. We explored 
models with age as well as count method effects on detection and 
adoption and found little evidence for an effect on either parameter. 
Thus, we believe any bias caused by violation of this assumption to 
be minimal.

Barker et al. (2018) suggest collecting auxiliary data to mini-
mize bias when estimating demographic parameters from counts 
of unmarked individuals. We used two pieces of auxiliary data: (1) 
all attending adult females were radio marked, so we could fol-
low broods through time; (2) female behavior allowed us to de-
termine whether the entire brood had been lost or if at least one 
chick was present. This parameter is often referred to as brood 
survival (Fields et al., 2006; Rotella & Ratti, 1992). By themselves, 

TA B L E  2 Number of broods (n) marked at each site for each year

Site and year n �� SD �� SD S42 SD

Hart 2013 15 −0.261 0.139 −0.206 0.226 0.192 0.041

Hart 2014 34 0.272 0.140 0.021 0.158 0.818 0.077

Hart 2015 27 0.079 0.127 0.023 0.161 0.581 0.052

Hart 2016 11 0.163 0.149 −0.288 0.221 0.57 0.082

Massacre 2013 4 0.071 0.171 −0.179 0.307 0.452 0.174

Massacre 2014 21 −0.156 0.142 0.409 0.215 0.77 0.134

Massacre 2015 16 0.005 0.134 −0.201 0.225 0.291 0.07

Massacre 2016 15 −0.207 0.150 0.214 0.203 0.384 0.076

Massacre 2017 12 0.024 0.178 0.049 0.202 0.528 0.066

Massacre 2018 16 0.010 0.137 0.199 0.197 0.629 0.090

Sheldon 2013 8 −0.022 0.152 −0.212 0.267 0.466 0.151

Sheldon 2014 26 0.071 0.124 −0.134 0.166 0.546 0.052

Sheldon 2015 22 0.126 0.129 0.163 0.166 0.756 0.070

Sheldon 2016 13 0.199 0.146 −0.046 0.202 0.513 0.050

Sheldon 2017 11 −0.306 0.195 −0.228 0.246 0.047 0.030

Sheldon 2018 28 −0.040 0.130 0.323 0.183 0.525 0.049

N = 279 �
�

0
 = 1.65 �� = 0.228 �

�

0
 = −1.491 �� = 0.310 �S42 = 0.504 �S

42 = 0.218

Note: Apparent survival (�) was modeled as a linear model with a logit link and an intercept of ��
0
. This intercept was representative of a mean 

apparent survival rate under mean weather conditions over the course of our study. �� was the random deviation from the fixed effects model 
of weather and juvenile age on apparent survival (�). The number of chicks adopted over each interval was modeled with a Negative Binomial 
distribution with the mean modeled on a log link with an intercept of ��

0
. �� was the random deviation from the mean adoption size for each site and 

year combination. �� and sigma� were the random error modeled for apparent survival and mean adoptions rates. S42 was mean true survival modeled 
for each site and year based on weather experienced by the marked females in the sample. �s42 and �S42 was the mean true survival and the standard 
deviation of all females across all years based on the weather they experienced.
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estimates of brood survival provide little information about how 
many new individuals a female fledges. We also monitored daily 
true survival rates as defined by Flint et al. (1995). It is important 
to recognize that these rates can be >1 for broods when adoption 
occurs, so they are not strictly probabilities. We present the prod-
uct of these rates to 42 days of age as a ratio of chicks fledged to 
those hatched. Under the assumption that the adoption of chicks 
into the sample population balances adoption out of the sample, 
the point estimate for this ratio should be ≤1.0 when averaged 
across the entire sample. If investigators find this point estimate 
to be larger than 1, it indicates that they may have marked a biased 
sample of females or sample size was small.

Our simulation revealed two issues that investigators should 
be aware of. First, when evaluating an age effect on offspring 
survival (��,age), we observed the lowest amount of overlap be-
tween the 95% credible intervals and true simulated parameter 
value with an 84% recovery rate. When we evaluated the point 
estimates of apparent survival (mean of the posterior) for ��,age, 
we found that they were slightly biased high (0.004). One contrib-
uting factor could be that not all offspring survive; thus, there are 
fewer data at the end of the time frame to inform this parameter. 
Additionally, if offspring do survive to an older age, then their sur-
vival probability is close to the boundary of 1 and may result in 
difficulty estimating this parameter using a logit transformation. 
Second, when estimating the number of adopted chicks with the 
negative binomial distribution, we recovered the mean with 89% 
overlap between the 95% credible intervals and true simulated 
parameter value, but no apparent bias when comparing the point 
estimate to the known value. When evaluating the rate parame-
ter associated with the mean, we observed almost perfect overlap 
99%, but when comparing the point estimate (mean of the pos-
terior) it appeared to be biased high 0.231. This is entirely due to 
the fact that this parameter was always close to the boundary of 
0 and has the least amount of data to inform it; thus, the resulting 
posterior distribution always had a long right tail. We recommend 
inference about the adoption process be made from the negative 
binomial distribution as a whole, similar to Figure 5. It is important 
to note that any difficulties in estimating either the daily appar-
ent survival probabilities or the daily adoptions did not result in 
any apparent difficulties or biases in estimating the true overall 
survival. This is a parameter that has been of primary interest to 
investigators for decades (Flint et al., 1995; Lukacs et al., 2004), 
and currently no analytical method exists to provide unbiased es-
timates for sage-grouse.

We believe the observation method we present has the potential 
to be applied to other species with dependent offspring. Regardless 
of observation method, our modeling framework could be applied 
to a variety of species. As a general approach, we suggest research-
ers leverage biology of the species of interest in the data collection 
and modeling framework. Hierarchical models provide an extremely 
flexible tool that can leverage multiple pieces of information such as 
radio telemetry, female behavior, and counts of chicks within broods 
that can provide novel insights into ecological processes.
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