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We propose a methodology based on reservoir computing for mapping local

proprioceptive information acquired at the level of the leg joints of a simulated quadruped

robot into exteroceptive and global information, including both the ground reaction forces

at the level of the different legs and information about the type of terrain traversed

by the robot. Both dynamic estimation and terrain classification can be achieved

concurrently with the same reservoir computing structure, which serves as a soft sensor

device. Simulation results are presented together with preliminary experiments on a real

quadruped robot. They demonstrate the suitability of the proposed approach for various

terrains and sensory system fault conditions. The strategy, which belongs to the class of

data-driven models, is independent of the robotic mechanical design and can easily be

generalized to different robotic structures.

Keywords: legged robot, echo state network, ground reaction forces, terrain classification, neural reuse

1. INTRODUCTION

Legged robots complement wheeled machines because of the potential capability of the former to
explore complex unstructured terrains. However, their effective use in practical environments has
not become common because of several problems that are yet to be addressed. One primary issue
is locomotion. Although several efficient control strategies have already been introduced in the
literature (He et al., 2019), their main drawbacks are the lack of efficient high-performance sensing
devices and processing techniques for obtaining the terrain characteristics in real-time. From this
perspective, haptic feedback is a primary information source for achieving reliable locomotion in
legged robots, especially in uneven terrains where real-time gait adaptation and attitude control are
needed. The interaction with the terrain is commonly sensed through force sensors that estimate
the ground reaction forces (GRFs) acting on the individual legs. Since the first reliable applications
of locomotion control strategies in legged robots (Righetti and Ijspeert, 2008), multidimensional
force sensors have been installed on robot feet to sense the ground reaction forces for closing the
loop with neighboring ground locations. In Montes and Armada (2016), several strategies for force
control were discussed. These strategies rely on signal acquisition from force sensors integrated
within themechanical structure of the robot feet without the use of expensive and bulky commercial
sensors. In Bledt et al. (2018), a combination of impedance control and model predictive control
was used to perform impressive tasks such as back-flips in a quadruped robot. These control
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methods require an accurate model of the terrain-leg interactions
through contact force sensing or reliable estimation. In legged
locomotion, ground reaction sensing at the individual foot level
involves repetitive impacts with the terrain, which can easily
affect and degrade the reliability of the device. Moreover, force
signals detected by GRF sensors often suffer from multiple false
detections, especially on uneven terrain.

For these reasons, researchers are increasingly studying
reliable sensorless techniques to estimate the ground-foot contact
information. In Karatsidis et al. (2016), a method to predict
the GRFs in humanoid walking was presented. The method
uses only kinematic information from a fully ambulatory inertial
motion capture (IMC) system based on a large number of
inertial motion units distributed over the body of the humanoid
structure. Therefore, the enhanced accuracy of the force sensors
comes at the expense of having many alternative sensor units.
The force information can be obtained directly or indirectly
from signals already available in the structure. The GRFs can
be indirectly estimated from their inertial effects on the robotic
structure, for example, from the torques or currents of the
motors actuating the robot legs. In Bosworth et al. (2015),
a classical approach involving the robot Jacobian matrix was
used to estimate the foot force from the joint torques, which
were in turn estimated from the leg actuator currents. Other
approaches are based on Kalman filtering techniques or other
methodologies derived from observations (Chan et al., 2013; Hu
and Xiong, 2018). In Chenkun et al. (2015), a dynamic model
of the leg structure was used for sensor estimation. The authors
were aware that accurate parameter estimation is difficult to
achieve. To match the actual robot results with the simulations,
the unknown parametric uncertainties were identified through
a learning process based on the actual data. In particular, radial
basis function networks were used. Recently, a new method
to estimate the force at the foot contacts was presented in
Hu and Xiong (2018). The method is based on designing a
generalized momentum observer for the robot force disturbances
caused by the foot contacts on the ground. This method requires
information on the joint positions and the applied control
torques. The method is used to implement impedance control,
in which the accuracy of the ground contact force is essential,
especially soon after contact events, where the signals show
large impulse-like variations. The methodology applied requires
accurate knowledge of the system parameters, the most critical
of which are concentrated on the robot structure and mass
distribution. These parameters affect the estimation of the center
of gravity motion. A deviation from the nominal parameter
values can thus affect the overall performance of the method.
For this reason, an additional neural network approach was used
to compensate for errors due to inaccurate parametric modeling
and dynamic effects. GRF estimation in legged machines has
also attracted interest because of its potential applications in
designing efficient prosthetic devices. In Fakoorian et al. (2016),
the GRF was estimated on a leg prosthetic system using a
Kalman filtering approach. Impedance control methods are
often adopted to estimate the contact forces from trajectory
tracking errors. In Xin et al. (2020), this strategy was applied
as haptic feedback for teleoperation. The main hypothesis is

to assume that the model error is much smaller than the
disturbances.

All these approaches show that legged machines are
complicated structures involving the concurrent motion of
multiple bodies, each of which has its own inertial effects
on the overall structure. Traditional approaches based on
dynamic equations are thus not completely sufficient for accurate
modeling. Moreover, in general, the classical approach is
dependent on the particular robot structure used. Because of the
extremely large variety of different legged machines described
in the literature, tailored for specific tasks and applications,
extracting accurate dynamic models for sensor estimation is
a time-consuming and often complex task that is further
complicated by the difficulty of accurately identifying the relevant
parameters. Therefore, it is useful to employ a data-driven, neural
network-based learning approach that accurately estimates the
GRF sensor signals independently of the particular dynamic
robot structure and acts as a reliable soft sensor device that can
also cope with leg malfunctions. In Hwangbo et al. (2019), a
strategy to train a neural network policy in simulation and then
transferring it to a legged robot is presented. Specific attention
was devoted to model the robot actuators. They are modeled
through a data-driven approach, mapping the joint state and
position error history into the torque signals provided to the
simulated robot.

In our work, we explore the application of a family of
recurrent networks to estimate the GRFs using proprioceptive
local information acquired at the level of the leg joints.
The underlining nonlinear dynamical model is defined after
a learning process by extracting the temporal dependencies
between the input data. The input data are projected into
a pool of interconnected neurons called reservoirs in which
both space and time-relevant information can be stored in an
internal memory generated through recurrent connections. This
methodology, usually referred to as reservoir computing (RC),
represents an interesting approach for designing data-driven
models in robotic applications involving nonlinear dynamic
behaviors. Among the different architectures in the RC field,
we selected the echo state network (ESN), which is commonly
employed in various applications ranging from handwriting
recognition (Bunke and Varga, 2007) to time series forecasting
(Wang et al., 2019).

The concept of reservoir computing has been further extended
in literature, from a pure algorithmic solution to include the
physical device in the computational effort, realizing a physical
reservoir computing system (Tanaka et al., 2019; Nakajima,
2020). An interesting demonstration was provided in Nakajima
et al. (2015) where a soft silicone arm was adopted for real-
time computation exploiting the intrinsic characteristics of the
system including nonlinearity, memory, and potentially infinitely
many degrees of freedom. Similarly, in Caluwaerts et al. (2014) a
Reservoir Compliant Tensegrity Robot hardware prototype was
presented; it was considered as a part of the computational system
used to generate a set of desired oscillatory motor signals starting
from a Matsuoka oscillator. The idea to use the robot dynamics
to generate an embodied control system has been applied to a
quadruped robot in Degrave et al. (2015). The main result of that
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work was to demonstrate that a memoryless feedback controller
can generate a stable trot by learning the desired nonlinear
relation between the input and the output signals.

A key advantage of ESNs compared with other neural
structures is the simplicity of the learning process. The limitation
of the learning process to only the output weights, called
the readout map, significantly reduces the learning time. The
increase in dimensionality due to the information transfer from
the input to the hidden neurons, which present recurrent
connections, produces multiple combinations of dynamics that
can be exploited through the readout map depending on the
task to be fulfilled. Moreover, the ESN approach is particularly
advantageous over the other approaches mentioned above
because it is a black-box identification model that avoids the
need to implement model-based strategies that, in any case,
would need to be refined with data-based learning algorithms.
Our approach has additional advantages when dealing with joint
faults. Adapting classical methods to handle such occurrences
would be extremely complicated, whereas a learning-based
technique based on recurrent ESNs allows the faults to be handled
efficiently and provides information on the estimated GRF even
when there is serious damage in the sensory system at the
level of the joint legs. Similar capabilities were demonstrated in
Antonelo et al. (2007) where a reservoir network was applied to
a problem of robot localization and map creation, showing good
performance also in presence of limited sensory information.

The use of ESNs also contributes to building an internal
memory that is particularly useful for handling time-varying
signals. An additional important issue typical in reservoir
computing networks results from the characteristics of the
dynamics processing in the reservoir layer. The latter utilizes a
sparse representation of the input signals in a high-dimension
dynamical projection space, whereas the readout maps constitute
only a low-dimension projection space, defined after the learning
phase, that maps specific aspects of the input features. In
principle, any set of information consistent with a given input
signal can be extracted from a given reservoir lattice in parallel
through the addition of other readout maps. This is a typical
example of neural reuse (Anderson, 2010; Arena et al., 2013). In
this work, a clear application of these characteristics is presented,
and another readout neuron is added to the same neural lattice
used for GRF estimation to classify the type of terrain traversed
by the robot (i.e., flat, downhill, uphill).

There are different approaches in the literature related to the
design of solutions for terrain classification in legged robots in
particular, in relation to the material type. In Hoffmann et al.
(2012), a sensory-motor classification of different terrains was
presented for a quadruped robot. The role of the action context
to further improves the discrimination capabilities was also
demonstrated. Techniques based on extreme learning machines
and reservoir computing were analyzed in Degrave et al. (2013) to
demonstrate the effectiveness of a limited combination of tactile
and proprioceptive joint sensors for terrain classification. These
studies can be framed within the embodied cognition framework:
the idea is to find the emergence of proto-cognitive behaviors
letting the robot extracting regularities in the sensory-motor
space and exploit them for action generation (Hoffmann, 2014).

To analyse the flow of information in sensorimotor networks,
tools from information theory were adopted in Schmidt et al.
(2013). The results demonstrate the possibility to create a
primitive body schema identifying structures in the sensorimotor
space.

In our work we are presenting a unique network able to
provide both the GRF distribution on the legs and the terrain
slope with high classification accuracy. This information could
be used, for example, to select the most appropriate locomotion
gait for the application. Preliminary experimental results, carried
out on a real quadruped robot, demonstrate the effectiveness of
the proposed approach. Furthermore, although the embedded
hardware implementation is not within the scope of this work,
the authors identified potential solutions to develop embedded
ESN structures.

A first attempt is reported in Huang et al. (2019) where a
scalable RC-ESNs hardware generator for embedded computing
is presented. The strategy consists of a high-level synthesis in
conjunction with design automation to automatically transform
an offline-trained ESN algorithm into an embedded hardware
accelerator for FPGA applications. Problems related to efficiency
in terms of power, performance, and occupied area were also
considered and addressed. This approach is in line with another
recent example that follows this hardware-oriented strategy
(Huang et al., 2020): here an automatic holistic energy-aware
design methodology is proposed and applied to a multilayer
perceptron designed to be embedded in proactive brain-machine
interface edge devices based on FPGA. Another interesting
direction for hardware implementation is related to the open-
source Neural Network framework called Neural Network
on Microcontroller (NNoM)1, for implementing (recurrent)
neural networks on a microcontroller. It provides a user-
friendly interface and supports state-of-the-art neural model
structures. However, the chip market is rapidly changing and
new opportunities (e.g., System-on-a-chip, tensor computers,
and neuromorphic hardware) will be more and more available
in the next years.

The remainder of this paper is organized as follows: The
methodology employed in the paper is introduced in section 2,
in which the robotic structure and the ESN structure used for the
sensor signal estimation are also presented. Simulation results for
both the GRF estimation and terrain classification are reported in
section 3. The application of the ESN for GRF estimation to a real
robot is discussed in section 4. The work is concluded and some
perspectives are provided in section 5.

2. METHODOLOGY

The aim of this study is to employ reservoir computing structures
to predict external signals, such as the leg ground reaction forces,
using internal data such as the joint torques in a quadrupedal
robot structure. All the data to be analyzed were acquired on
a simulated robot moving in a dynamic simulation framework
named CoppeliaSim, which has been duly extended in Rohmer
et al. (2013). The framework provides an accurate dynamic

1https://github.com/majianjia/nnom.
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simulation environment that is particularly useful for complex
robotic structures. The simulation approach becomes essential
when sophisticated learning-based control techniques, which
involve time-consuming runs, have to be applied to the structure
before obtaining reliable results. To achieve the aim of the study,
the training phase of the methodology introduced here was first
performed in the dynamic simulation before implementation
on the actual robot prototype. The simplified foot structures in
several-legged robots do not allow the inclusion of GRF sensors,
which are useful for developing adaptive locomotion control
strategies. One example is the Lilibot robot, which is a small-
sized robot developed for research and education purposes (Sun
et al., 2020). The first attempt to solve the GRF acquisition
problem adopted a simple parametric model utilizing the current
through the servo motors at the knee joints as the input signal;
the current was found to be positively correlated with the GRF.
Our work extends this approach, which is based on a static
model, by developing a dynamic structure that can utilize the
time evolution of signals relevant to the joints, in particular the
torque signal of a subset of joints, to estimate the GRF. The
linear relationship between the joint torques and motor currents
ensures that the proposed model can be applied in the robot
to easily acquire information on the currents absorbed by each
motor. Moreover, a significant improvement over the model in
Sun et al. (2020) is the development of a unique network that
utilizes the information coming from all four legs to estimate
the GRF signals. This approach allows local faults within the
joint sensory acquisition system to be handled and provides a
good reconstruction of the GRF associated with a leg even if
the corresponding joint signals are not available. The additional
update is made possible by using the same reservoir lattice to

provide information about the type of terrain the robot is actually
walking on.

2.1. Lilibot Robot
Lilibot is a small, lightweight, robust, open-source, and sensor-
rich quadruped robot (Sun et al., 2020) (Figure 1). Each leg is
characterized by three joints comprising two hips and a knee, as
shown in Figure 1. The flexible configuration of the robot leg
allows extensive rotation at the level of the joints and results
in large workspaces due to the small dimensions of the robot.
This makes the structure an ideal platform for studying adaptive
locomotion strategies. An algorithm capable of estimating the
GRF for each leg of the actual robot through the knee currents
was also provided in the paper referenced above. In the present
study, torques were used instead of currents for GRF estimation
because of the lack of information on the actuator currents in
the robot simulator. To demonstrate the reliability of the results
obtained, different simulations were performed with varying
characteristics of the ground the simulated robot walked on. Data
were acquired not only for a flat surface but also for an uphill
surface and a downhill surface. We focused on measuring the
joint torques and the leg GRFs.

The robot operating system (ROS) was used to create
a communication channel between the controller and the
simulated robot. The locomotion controller is an adaptive neural
controller written separately from the simulation environment.
It communicates with the simulated robot through specific
channels called topics which are provided by the ROS.
CoppeliaSim allows some robot parameters such as the leg joint
torques and the leg GRFs to be monitored. The simulation was
constructed such that it almost perfectly reflected the behavior

FIGURE 1 | Overview of the 12 DoF quadruped Lilibot. Lilibot has a software framework with a modular design. The framework is based on the robot operating

system (ROS) and can be connected to a joystick and a remote computer for manual control and robot state monitoring/recording. The simulated and physical

versions of Lilibot are identical. A control mechanism can be first tested on the simulated robot and then directly transferred to the actual robot. Further details are

reported in Sun et al. (2020).
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of a real robot (Sun et al., 2020). The adopted locomotion
control system is a central pattern generator (CPG) which can be
adapted to generate different locomotion gaits through a series
of parameters. In the following simulations, the robot walked at
a fixed speed with a trot gait in which two opposite legs were in
phase at each moment while the other two legs were 180◦ out of
phase.

The CPG was devoted to low-level locomotion control,
whereas the high-level ESN structure was implemented for
GRF estimation and terrain classification. Therefore, the next
step consisted of configuring the ESN where a different set of
parameters was used to find themost reliablemodel that provided
the best results. Different architectures were used based on the
number of legs and type of joints tested during the analysis. In
the following step, the robustness against faults was analyzed to
train a model that can reliably react to sudden faults affecting the
leg joint sensory system.

2.2. Echo State Network Overview
An echo state network proposed in the early 2000s (Jaeger, 2001)
was used to predict the GRF of each leg joint torque reading.
This specific neural architecture falls within the field of reservoir
computing, which is a collection of methodologies useful for
training recurrent neural networks. A reservoir computing
system consists of a reservoir that maps input signals into a high-
dimensional space and a readout map for pattern matching from
the high-dimensional states in the reservoir to an output target.
A simple scheme for this architecture is presented in Figure 2.

The advantage of reservoir computing ESNs is that, whereas
the reservoir layer (which corresponds to the hidden layer
in feedforward networks) has random fixed weights, only the
readout is trained with simple methods consisting of, for
example, the recursive least square (RLS) algorithm. Thus, the
major advantage of reservoir computing compared to other
recurrent neural networks is fast learning, which results in low
training costs (Tanaka et al., 2019; Patanè and Xibilia, 2021). This
study aims to show how powerful and lightweight an ESN can
be in the development of a soft sensor for robotic applications.
The reservoir can be conceived as a bucket of neurons, each
of which is sparsely connected to other internal neurons. The

output neurons are all connected to individual reservoir neurons,
whereas the input neurons are sparsely connected to the reservoir
neurons. Each connection is described by a uniformly sampled
random weight value. However, during the training phase, only
the readout weights are trained to improve the model accuracy
(Lukoševičius and Jaeger, 2009). This is the main characteristic
that allows the ESN to be lightweight. In the absence of feedback
from the output to the reservoir, the time evolution of the
neuronal states in the reservoir is given by Jaeger (2001).

xxx(n) = λfff (Winuuu(n)+Wresxxx(n− 1))+ (1− λ)xxx(n− 1) (1)

where n denotes the discrete time, xxx(n) the state vector of the
reservoir units, uuu(n) the input vector, Win the weight matrix for
the input-reservoir connections, and Wres the weight matrix for
the recurrent connections in the reservoir. Function f represents
the element-wise activation function of the reservoir units and λ

∈ [0, 1] is the leak term, adopted when leaky integrator neurons
are considered. In our case study, we chose the hyperbolic
tangent as the activation function. The output is given by a linear
combination of neuronal states:

yyy(n) = Woutxxx(n) (2)

where yyy(n) is the output vector, andWout is the weight matrix in
the readout. In supervised learning, this weight matrix is trained
to minimize the difference between the network output and the
desired output for a certain time period (Lukoševičius and Jaeger,
2009).

An ESN is characterized by a set of parameters that
are directly connected to its behavior. We tested different
parameters to determine the model with the best accuracy.
We provide the values of the key network parameters in
Table 1 that summarizes the relevant characteristics of the
proposed architecture and the hyperparameters adopted. The
selection of these hyperparameters was driven by the indications
available in literature (Bengio, 2012; Dasgupta, 2015; Dasgupta
et al., 2015) and by preliminary experiments. Therefore, it
was performed through a trial-and-error procedure based on a

FIGURE 2 | Echo state network structure comprising an input layer, a reservoir layer, and an output layer. Only the W res weights are subject to learning.
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TABLE 1 | Echo State Network parameters which provided the best accuracy.

Parameter Value

Reservoir neurons 100

Learning method RLS

Leak 0.3

Learning rate 1.0

Input sparsity 20%

Network sparsity 50%

Spectral radius 0.95

Reservoir function Tanh

Readout function Linear

Washout 100

Noise bias 0.001

combination of expert knowledge to identify a searching domain,
and a grid search performed on the reduced subspace of the
hyperparameters to identify the best configuration in terms of
prediction accuracy on the validation dataset. As a result, the
reservoir neurons were set to 100 based on our previous analysis
(Dasgupta et al., 2015) and grid search. The leak parameter,
defining how much a single neuron in the network depends
on the actual net input it receives, was analyzed in Dasgupta
(2015) and Dasgupta et al. (2013) and here set to 0.3 based
on the analysis. Note that a smaller value will lead to less leak
of the information, i.e., larger temporal memory storage while
a larger value will lead to high leak of the information, i.e.,
smaller temporal memory storage. The input sparsity defines
the probability of connections from the input to the network
which was empirically set to 20%. This provides robustness to
the network and less input dependent compared to a higher
sparsity value (Dasgupta, 2015). The network sparsity defines the
connection probability between reservoir neurons. It is typically
set to 10–50% (Dasgupta, 2015). Here it was empirically set to
50%. The spectral radius parameter (or network scaling factor)
was analyzed in Dasgupta et al. (2015) and Dasgupta et al. (2013).
Based on the spectral radius analysis, the parameter was set here
to 0.95 such that the spontaneous network dynamics is in a
stable regime and achieves the best performance of the chosen
network size. The constant noise bias (i.e., 0.001) is applied to
the hidden recurrent neurons of the network. The bias term is
set based on Rungruangsak-Torrissen and Manoonpong (2019)
and used in order to provide a small input for the hidden
neurons to constantly activate them, thereby maintaining the
neurodynamics. The other parameters, like learning rate and
washout, were set with respect to the standard setup of the ESN
learning (Bengio, 2012; Dasgupta et al., 2013, 2015).

Other hyperparameter optimization methods, based on
genetic algorithms and different bio-inspired approaches, have
been applied in recent works and can be considered as further
searching strategies (Tian, 2020).

A particular point of interest is the choice of the learning
method (here, the RLS) and the spectral radius. The spectral
radius is related to the Echo State Property, an important

property that guarantees the stability of the network that is able to
forget its inputs after a given time behaving as a fading memory.
The spectral radius is usually kept below 1 to maintain the echo
properties for zero input reservoirs. This constraint is usually
enough for a large reservoir (Caluwaerts et al., 2013), although,
in some application, the possibility to explore the range above
1 could be useful to improve the network generation capability
of chaotic signals (Sussillo and Abbott, 2009). In presence of
input-driven reservoirs, temporal and statistical properties of the
driving input can be related to the spectral radius that may exceed
the previous mentioned limit by continuing to hold the echo
state property (Manjunath and Jaeger, 2013). As stated above,
the training of an ESN is relatively faster than that of standard
recurrent neural networks (Hochreiter and Schmidhuber, 1997;
Mandic and Chamber, 2002).

We considered a standard ESN architecture to demonstrate
the effectiveness of our strategy. However, further investigations
to improve the proposed model performance could consider the
introduction of the intrinsic plasticity rule to adapt the reservoir
internal parameters using an unsupervised mechanism based on
the maximization of the transferred information (Dasgupta et al.,
2013, 2015; Dasgupta, 2015; Patanè and Xibilia, 2021).

3. SIMULATIONS AND EXPERIMENTAL
RESULTS

The first step consists of data acquisition. The simulation was run
for several minutes on perfectly flat ground. The robot walked
at a fixed speed and gait. Both joint torques and the GRF of
each leg were recorded with a sampling interval of 50 ms. The
same operations were performed on both downhill and uphill
ground with slopes of ±5◦ to verify the ability of the network
to generalize the GRF prediction independently of the ground
shape. After collecting all the data, a pre-processing stage was
implemented. The final step was to train and test the model,
followed by data analysis, which led to the results reported below.
Because the focus was to obtain a good estimation of the leg GRF,
we analyzed what proprioceptive information should be used to
achieve the most reliable results. The analysis was performed
systematically by using different sets of joint torques in the input
layer. Each round of analysis was performed by first training the
model on 80% of samples measured on flat ground and then
testing the model on the remaining 20% of the flat ground dataset
together with the complete uphill and downhill datasets, which
were not shown to the model during the learning phase. The size
of the entire dataset was∼25, 000 samples when the sampling rate
was 20 Hz. The variables were normalized into the range [0, 1].
We measured the mean squared error (MSE) and its normalized
version (NMSE), according to the set of joints provided to the
model and the different tested surfaces. Figure 3 depicts the ESN
performance in the two cases when all 12 joint torque signals were
provided in the input, and when the input layer was reduced to
only 8 signals (i.e., only the Hip 2 and Knee joints). The statistical
results obtained indicate that the information from the Hip 1
joint is not relevant to the analysis. This result can be explained
by the leg kinematics shown in Figure 1. Here, the Hip 1 joint
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FIGURE 3 | NMSE obtained from the ESN for different terrain types. The role of the input signals was investigated considering four different cases: all (three torque

signals for each leg for a total of 12 inputs), Hip 2 and Knee (8 inputs), Knee (4 inputs), and Hip 2 (4 inputs).

FIGURE 4 | Predicted GRFs of front right leg when the model learnt to predict all GRFs and a fault was introduced over 200 samples (gray area from 300 to 500) in

both of the front right leg joints. The training set consisted of data measured using perfectly working sensors.

is required only for steering or attitude controlling maneuvers,
whereas the other two joints are involved in generating the stance
and the swing trajectory on the sagittal plane during forward
walking. A further reduction of the input signals to only one
single-joint signal for each leg produces a drastic increase in
the reconstruction error. This indicates that the optimal network

configuration should include a total of 8 inputs consisting of the
torque signals for the Knee and Hip 2 joints of all the legs. The
outcomes of the test phase are very similar for all the terrain
configurations, even when the model was trained using only data
acquired on the flat surface. Thus, our model can be generalized
to generate predictions for different terrain characteristics.
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Another relevant characteristic of the proposed architecture
that we investigated is its robustness against random faults in
the torque sensors. The idea is to verify whether the model can
handle the partial omission of some input signals and show a
gradual performance degradation instead of an abrupt drop. The
acceptability of the predicted quantities depends on the predicted
error.

We first introduced faults during the test phase. The faults
affected both the Knee and the Hip 2 sensors in the front right
leg for 200 consecutive samples, which corresponds to ∼6 steps.
A comparison between the actual and predicted GFR for the front
right leg subjected to the fault is shown in Figure 4.

As can be seen, the test performance in the presence of the
sensor faults is very poor; therefore, our next step consisted of
finding a solution to avoid or at least limit the performance
degradation. We thus evaluated the behavior of our final model
trained in the presence of faults to find a good strategy to improve

TABLE 2 | Mean and standard deviation of MSE in testing evaluated on all legs

when the training and testing phase is performed in presence of faults as

discussed in the text.

Trained with fault Tested with fault MSE R

No No 0.0036 ± 0.0015 0.98

No Yes 0.0175 ± 0.0229 0.67

Yes No 0.0056 ± 0.0004 0.96

Yes Yes 0.0074 ± 0.0031 0.93

The Pearson correlation coefficient (R) is also reported.

the accuracy of the predictions. One of the functions of the
reservoir layer is to create hidden time correlations between
the input joint signals, which can then be exploited by forcing
the net to estimate the GRF of a leg even in the absence of
torque signals from that leg. This can be achieved if the network
learns the correlation between the corresponding leg joints and
their involvement in the output prediction. The presence of a
correlation between the joint torques of a leg and the GRFs of
the other legs is reasonable because the robot is moving with a
fixed gait. Therefore, we introduced artificial faults in each leg
during the training phase. Each fault lasted for 100 samples and
occurred in the Knee and the Hip 2 signals of each leg once every
500 samples. Situations involving faults in two or more legs at the
same time were not considered.

Table 2 summarizes a statistical analysis of the prediction
performance of the ESN-based model when the training and
test phases were carried out with and without faults. The
network can be forced to create cross relations between
sensory information by introducing faults during training to
significantly improve its fault-handling performance through
the support of the available sensory signals coming from the
other legs. This effect is obtained at the cost of a slight
degradation of the prediction performance in the absence of
faults.

Figure 5 shows the improvement obtained for the GRF
prediction of the faulty leg with the new training compared with
the results previously reported in Figure 4.

These results can be analyzed in detail by considering the
prediction error obtained for each output variable (i.e., each
leg). Figure 6A shows the effect of a fault on both joints of the
front right leg compared with the MSE obtained when all the

FIGURE 5 | Predicted GRFs of front right leg when a fault was introduced in both front right leg joints over 200 samples (gray area from 300 to 500). The training set

consisted of data that included the faults.
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FIGURE 6 | Comparison of prediction errors between samples with and without faults for the four GRF signals predicted as output of the ESN. The model was trained

using only data from normal working conditions (A), and using data in which artificial faults were introduced in all the legs during the training phase (B).

sensory information was provided in the input. The degradation
is evident and concentrated on the corresponding leg. The effect
of the same fault on the model trained with faulty signals is
shown in Figure 6B. Here, all the legs cooperated in predicting
the four outputs, improving the robustness in the presence
of faults.

Similar conclusions can be drawn when a fault occurs on
only one joint of a leg, given that the model was trained
against faults occurring in the Hip 2 and Knee of each leg.
Figure 7 shows how the NMSE behaves differently when the
faults occur on Hip 2, Knee, and on both front right leg joints

during the test over 200 consecutive samples. The error was
computed as the average of all four legs. The brighter bar
shows the measured error when the model was trained without
artificial faults, whereas the darker one was obtained from a
model trained with artificial faults. It is clear that the mean
error is generally much lower if the model has learnt how to
deal with faults. Figure 8 also shows how the error behaves
over time when the faults occur on a specific joint. This result,
combined with the previously analyzed results, suggests that
there is a weak relationship between the leg knee torque and
its GRF.
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FIGURE 7 | Behavior of GRF prediction NMSE when the fault occurred on Hip 2, Knee, or both front right leg joints. The error was computed as the average of all four

legs. The brighter bar shows the measured error when the model was trained without artificial faults, whereas the darker one was obtained from a model trained with

artificial faults.

3.1. Terrain Classification
The results reported in this section show one of the most
intriguing features of ESNs. As described above, the dynamics
that emerge within the reservoir lattice do not depend on the
target to be mapped; rather, they spontaneously arise as a result
of the input signals and the random sparse arrangements of
the connections and weights. Once these factors are fixed, the
high-dimensional dynamics within the neuron lattice can be
mapped according to an arbitrary assignment imposed by the
target signals. This feature can be exploited to allow the use of a
given dynamical arrangement to create many arbitrary mappings
of the same input space for the realization of other readout
maps. The example reported here uses the same dynamical
input signals to obtain, in addition to the time-dependent GRF
signals, a classification of the type of terrain traversed by the
robot (i.e., flat, uphill, or downhill). This application exploits the
relationship between the average slope of the climbed terrain
and the interplay between the complex inertial effects caused
by multibody motion and the motor torque distribution among
the robot legs. Once the former ESN is trained, it is no longer
necessary to run the entire network again. It is sufficient to add
another readout map and exploit the output of the reservoir
lattice to perform the desired mapping by training only the added
map. Therefore, the terrain classification step was performed
using the same network configuration and parameters used in the
previous task. The new readout is extremely simple: it comprises
only one output neuron that provides, as output, the three terrain
types considered. This approach falls within the psychological
paradigm of neural reuse (Anderson, 2010) recently adopted for

neuro-inspired structures (Arena et al., 2013): neurons, because
of their interconnectivity, organize in networks that can cope
with different tasks concurrently. In our case, the same ESN
network can generate multiple parallel signals from a single set of
input signals previously adopted for robotic applications ranging
from time-dependent GRF estimation signals to static labels
that account for the type of terrain currently being traversed
Figure 9 depicts the augmented ESN structure, which includes
the terrain classifier. The reservoir layer is the same layer as that
for the GRF estimation, and only the additional readout map is
trained.

The target for each class is a constant value: 0 for
downhill terrain, 0.5 for flat terrain, and 1 for uphill
terrain. In the last case, a low-pass filter was adopted at
the output stage to provide a smooth signal. In particular,
the output of the ESN was processed using a 5th-order
Butterworth filter with a cutoff frequency of 0.5 Hz. The
introduction of nonlinearities in the output layer will be
investigated in future works to avoid the presence of an
external filter.

The classification was performed by considering the average
output over a time window of 100 samples. The average error
between the network output and the three target signals was
computed, and the class with the smallest error was selected
for the current window. As stated above, the ESN with the
same topology as that in Table 1 was considered. In addition,
different datasets were considered in evaluating the capability
of the network to classify the terrain when there was missing
information in the input signals. When all the input information
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FIGURE 8 | Absolute error between actual and predicted GRF of the front right leg over time when a fault occurred on a specific joint (gray area) and the learning was

performed without (A) and with faults (B). The error signal was filtered using a sliding window of 20 samples to facilitate comparison.

is available the classification accuracy is 100%. However, the
classification solution cannot easily handle sensory fault events.
In fact, if the torque signals of one leg are missing, the
performance decreases, and the accuracy is reduced to 76.6%.
Similar to the GRF estimation discussed above, to improve the
network prediction performance in the presence of faults, the
learning dataset was modified to include faults. The resulting
accuracy of the network when faults were present on both the
Hip 2 and Knee joints of a single leg reached the high value
of 97.6%.

The confusion matrices obtained during the testing phase
for the three different cases considered here are reported in
Figure 10. A total of 124 time windows were analyzed. The
filtered output of the network is compared with the actual
class in Figure 11. The classification accuracy is considerably
reduced when the presence of faults results in multiple
incorrect predictions. The addition of faulty conditions in
the training dataset for the learning procedure improves the
network performance and drastically reduces the number of
incorrect predictions.
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FIGURE 9 | Echo state network structure extended to include the terrain classification task. The input layer includes eight torque signals coming from the Hip 2 and

the Knee joints for all the legs, and the output layer contains two readout maps which are respectively dedicated to estimating the GRF in the four legs and classifying

the terrain type into three categories (flat ground, uphill, and downhill). In this last case, a low-pass filter was adopted.

FIGURE 10 | Confusion matrices obtained for different data configurations: (A) learning without faults and testing without faults, (B) learning without faults and testing

with faults, and (C) learning with faults and testing with faults. The configuration learning with faults and testing without faults was characterized by a perfect

classification and is equivalent to the confusion matrix in (A).

3.2. Real Robot Experiments
The proposed approach for GRF estimation was particularly
effective on the simulated quadruped robot. To further assess
the ESN-based strategy, an experimental set-up was considered
to properly acquire the needed data from the Lilibot robot,
as the current robot setup does not include GRF sensors
(Sun et al., 2020). The experimental setup adopted consists
of a custom-designed force plate platform for legged robots
(see Supplementary Material). The Lilibot quadruped robot
was monitored on the platform while moving forward using
a trot gait. Data coming from the force plate platform were
acquired at 20 Hz and synchronized with those ones acquired
from the robot, in particular the joint motor currents, used as
inputs for the network. The whole dataset acquired through
a series of experimental trials on the robot is composed of
3,000 patterns properly divided between learning (80%) and
test (20%). The idea to directly use the network previously
trained in simulation with the newly acquired robot data was
not pursued due to the differences in terms of input variables
(i.e., motor currents instead of joint torques) and the actual set-
up of the robot that has some differences if compared with the
dynamic model from several aspects, for instance, the stepping
frequency and the weight. Therefore, a new ESN was trained
to design a soft sensor for GRF estimation. We considered a

reduced network with 15 neurons in the reservoir to estimate the
GRF associated to the front right leg, starting from the motor
currents acquired from the Knee and Hip 2 joint motors of the
same leg. The other hyperparameters adopted have remained
unchanged from the Table 1. To filter out high-frequency noise
in the motor currents, a 5th-order Butterworth filter with a
cutoff frequency of 1.5 Hz was adopted. Figure 12 shows the
normalized motor currents provided as input to the ESN, and
the obtained GRF compared with the signals acquired from
the force plate platform, applying a Z-score normalization. The
GRF estimation for the first three steps is quite satisfactory, in
fact, the testing performance obtained reports an MSE equal to
0.5 and a Pearson correlation coefficient (R) equal to 0.72. The
behavior highlighted in the last step needs a brief explanation.
The experiment here considered, as illustrated in the video
of the robot walking on the sensorized platform included as
Supplementary Material, reveals that the robot makes a slight
turning to the right toward the end of the experimental trial.
This change of direction affects the positioning of the legs as
demonstrated in Figure 13 where a series of snapshots extracted
from the robot experiment is reported. In the last picture of
the sequence, the front right leg tip is placed on the boundary
of two measurement units in which the force plate could not
properly identify the GRF. The effect of this event is the
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FIGURE 11 | Comparison between the filtered predicted output and the target signal obtained for different data configurations: learning without faults and testing

without faults (A), learning without faults and testing with faults (B), and learning with faults and testing with faults (C). The fault consists of the unavailability of the

sensory signals coming from the front right leg (Hip2 and Knee joints) for 2,000 samples (gray area).
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FIGURE 12 | Input and output signals for the ESN trained to predict the GRF of the front right leg of the Lilibot quadruped robot: (A) the trend of the filtered motor

currents on the Hip 2 and Knee robot joints; (B) the comparison between the estimated and actual GRF acquired from the real robot during the testing phase; (C) the

prediction error where the presence of an unexpected situation is highlighted by the increased values in the error signal.

missing of the GRF information as shown in Figure 12 after
the time sample 80. In this case, the ESN network is still
able to predict the GRF and the increment of the prediction
error can be used as an indicator of a possible anomaly in

either the sensing system or the robot behavior. This effect can
be exploited thinking to a robot equipped with GRF sensors.
The ESN model would represent an internal model capable of
producing an efferent copy on which to evaluate the discrepancy
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FIGURE 13 | Snapshot of the Lilibot walking on the force plate. The blue circles indicate the stance feet touching on a single measurement unit while the red circle

indicate the feet (i.e., right front foot) touching on the boundary of two measurement units in which the force plate could not identify the GRF acted on the foot (i.e.,

right front foot).

between expectations and real conditions to identify anomalous
situations.

Legged structures are good testbed to evaluate performance
of neural models trying to estimate relevant information also
acting as afference copy to be used to identify unforeseen
situations like faults. A methodology for mapping local
proprioceptive information (e.g., joint torque) into exteroceptive
global information (e.g., GRFs) has been here presented.
This methodology is based on reafference principle (Latash,
2021). The possibility to use recurrent neural networks
(e.g., ESNs) to exploit their neurodynamics as well as
embedded internal memory for robust state estimation (e.g.,
when missing input information) is another relevant aspect
here addressed.

The obtained results demonstrate that the proposed approach
is suitable to estimate the GRF in real quadruped robots
walking on flat terrains. The differences between the real and
simulated setups allow to conclude that the approach can
be easily applied to different robot parametric configurations
when input and output data can be acquired for the network
training.

4. CONCLUSIONS

The methodology presented in this paper demonstrates the
versatility of reservoir computing networks and exploits the
ability of the reservoir to concurrently provide different analyses
of the same input data and perform different static and dynamic
mappings. This allows a dynamical layer constituting a high-
dimensional sparse coding of the input features to be provided
independently of the target output. The dynamical layer can
be read out in many different ways concurrently. Moreover,
the approach presented here is a clear example of a virtual
sensor design. In fact, one of the functions of the ESN is
to substitute actual force sensors with their estimated values
using soft sensors. In addition, the structure does not use
models that require analytical models of the robot, which
can sometimes be complicated owing to the complexity of
legged machines. In any case, the analytical representations
can seldom take into account all the nonlinearities arising

from the dynamic interplay between the different bodies in
motion. The data-driven approach here is easy to implement
and requires only data that can be acquired easily either
in simulations or in simple experimental setups with the
actual robot. Preliminary experiments carried out with the
Lilibot quadruped demonstrate the effectiveness of the proposed
approach in estimating the GRF of a leg starting from joint
motor signals.

The possibility of adding multiple readout maps to extract
the required information from the reservoir with simple
and effective learning strategies demonstrated by the GRF
and terrain classification is of great interest. It opens the
way to the implementation of the proposed networks on
dedicated hardware where high-level synthesis techniques, in
conjunction with design automation allow the transformation of
an offline-trained ESN algorithm into an embedded hardware
accelerator. The next step in the further development of
the proposed approach would be to evaluate the ESN
for the estimation of the actual GRF signals and terrain
classification recorded on the actual Lilibot robot in more
complex scenarios.
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