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Although numerous studies have confirmed that the mechanisms of opiate addiction
include genetic and epigenetic aspects, the results of such studies are inconsistent.
Here, we downloaded gene expression profiling information, GSE87823, from the Gene
Expression Omnibus database. Samples from males between ages 19 and 35 were
selected for analysis of differentially expressed genes (DEGs). Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway and Gene Ontology (GO) enrichment analyses
were used to analyze the pathways associated with the DEGs. We further constructed
protein-protein interaction (PPI) networks using the STRING database and used 10
different calculation methods to validate the hub genes. Finally, we utilized the Basic
Local Alignment Search Tool (BLAST) to identify the DEG with the highest sequence
similarity in mouse and detected the change in expression of the hub genes in this
animal model using RT-qPCR. We identified three key genes, ADCY9, PECAM1, and
IL4. ADCY9 expression decreased in the nucleus accumbens of opioid-addicted mice
compared with control mice, which was consistent with the change seen in humans. The
importance and originality of this study are provided by two aspects. Firstly, we used a
variety of calculation methods to obtain hub genes; secondly, we exploited homology
analysis to solve the difficult challenge that addiction-related experiments cannot be
carried out in patients or healthy individuals. In short, this study not only explores
potential biomarkers and therapeutic targets of opioid addiction but also provides new
ideas for subsequent research on opioid addiction.

Keywords: opioid addiction, biomarker, nucleus accumbens, ADCY9, conditioned place preference

INTRODUCTION

Opioid abuse is currently a severe global epidemic problem for public health (Rudd et al., 2016;
Roxburgh et al., 2017). In 2015, data from the WHO database revealed 450,000 deaths due
to drug misuse globally. Among these deaths, 168,000 were due to opioid overdose. Indeed,
from 2000 to 2015, the mortality rates related to opioid overdose increased by 500%. Opioid
overdose-related deaths increased by 11% between 2014 and 2015 alone (Frauger et al., 2017;
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Schifano et al., 2019), posing massive public health costs. It is
therefore urgent to explore the mechanism of opioid addiction.

The impact of opioid abuse on the human body is a continuous
process. Drug addiction has been recognized as a chronic
relapsing disease of the brain, as drug abuse-induced addiction
has a significant impact on the central nervous system. Constant
exposure of the human brain to opioids results in changes at
the epigenetic, mRNA, neuropeptide, and protein levels (Kendler
et al., 2003; Agrawal and Lynskey, 2008; Nelson et al., 2013).
Furthermore, these factors can affect the next generation through
maternal drug abuse during pregnancy (Desai et al., 2015).
Although there is no specific gene that can be used as a biomarker
for an opioid use disorder, most current studies suggest that
opioid-induced gene changes play roles at many different levels,
directly affecting reward effects or drug metabolic pathways or
by affecting the body’s negative emotions. For example, OPRM1,
an essential nucleus in opioid addiction, can trigger opioid
addiction by participating in the orchestration of rewarding
effects and the desire to avoid withdrawal symptoms (Hearing
et al., 2018). The core and shell of the Nucleus accumbens
(NAc), respectively, create complex neuroprotection loops by
communicating with brain regions such as the prefrontal cortex,
hippocampus, and thalamus. A large number of studies have
proved that NAc is closely related to drug-induced reward,
psychological craving, reinforcement, and other effects (Cooper
et al., 2017; De Jong et al., 2019). Therefore, based on the
morphine-related conditioned reward memory animal model,
this study took the NAc brain region as the research object,
focusing on the regulation mechanism of the changes in the
expression level of related genes during the formation of
morphine addiction.

There are many risk factors for genetic and epigenetic changes
leading to the formation of opioid addiction, including gender
and age (Gwira Baumblatt et al., 2014; Kolodny et al., 2015;
Chartoff and Mchugh, 2016; Webster, 2017; Blanco and Volkow,
2019). Although addiction can start at any age, adolescents and
young people in their developmental stages are more likely to
try new things, which is one of the reasons why young people,
especially men, account for the majority of drug addicts (Santiago
Rivera et al., 2018). Few studies have focused on a specific age-
group or a single-sex group. Therefore, we hope that re-screening
addiction-related factors identified in relevant studies from the
existing community according to age and gender stratification
will reveal new insights. To identify transcriptome changes
caused by opioid addiction in the young male population and
to determine the mechanism of opioid addiction, we analyzed
their transcriptomes.

Up until now, most studies at the animal level have been
aimed at a specific age group or a single-sex animal group. Due
to ethical issues and the limitation of population differences, it
is challenging to study the mechanisms of drug-use disorders in
humans. Whether the results of animal studies can be applied
to humans is also a key question worth considering. If the
target molecules identified in animal studies are also highly
conserved in humans, then we will be more confident that the
results obtained from animals can more likely be applied to
human diseases.

Therefore, this study not only analyzed highly correlated
transcriptome changes in the young male population but also
established an opioid addiction model at the animal level through
homology analysis to validate these changes, providing a new
way of studying the mechanism of differentially expressed genes
(DEGs) in opioid addiction. Strategies that target specific genetic
and epigenetic factors and novel non-opioid medications hold
promise as future therapeutic interventions of opioid abuse.
We hope that successfully increasing treatment options in the
clinical toolbox will help break the historical pattern of recurring
opioid epidemics.

MATERIALS AND METHODS

Microarray Data and Groups
The gene expression profiling information GSE87823 was
collected from the Gene Expression Omnibus (GEO)1 database.
Samples derived from 22 heroin addicts and five control subjects
were examined in this array (Platform: GPL96). There were two
additional conditions for enrollment: male; 15–35 years old.

Data Retrieval and Preparation
The GEO2R tool2 was used to identify DEGs online. The
GEOquery and Limma packages of the R language were used to
control the high-latitude characteristics of the datasets according
to the false positive rate control method proposed by Benjamini
and Hochberg. For this process, raw datasets were filtered to
meet the cut-off criteria of | FC| > 2 and p < 0.01. Altered
genes were analyzed using the heat map tool utilizing the online
platform OmicShare3.

Processing of DEGs on the KEGG
Pathway and GO Platforms
Functional analyses of specific genes are often performed using
the Database for Annotation, Visualization, and Integrated
Discovery (DAVID)4. The DAVID platform was therefore
exploited to perform Gene Ontology (GO) analysis and
KEGG pathway enrichment analyses; p < 0.05 represented
statistical significance. These analyses revealed downregulated
and upregulated genes.

Design of a Protein-Protein Interaction
Network (PPI) and Performance of
Module Analyses for DEGs
Understanding the molecular and metabolic mechanisms
of addiction development requires knowledge regarding the
functional interactions among proteins involved in such
processes. The Search Tool for the Retrieval of Interacting
Genes (STRING)5 is an essential platform used to investigate the

1https://www.ncbi.nlm.nih.gov/geo/
2https://www.ncbi.nlm.nih.gov/geo/geo2r/
3http://www.omicshare.com/tools
4https://david.ncifcrf.gov/
5https://string-db.org/
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interaction among known and unknown (predicted) proteins
of multiple organisms. In this study, DEGs were analyzed using
this software and a PPI network was constructed to visualize
the results. An interaction score of 0.4 was set as the threshold.
Finally, the top 30 hub genes in the PPI network were identified
using 10 different calculation methods in the Cytoscape software
(Cytoscape_v3.7.1). Genes that overlapped in the calculations
using all 10 algorithms were considered for downstream analysis.

Sequence Similarity Analysis of Key
Genes Among Different Species
Sequence similarity analysis was carried out with the Basic
Local Alignment Search Tool (BLAST)6, searching the nucleotide
collection (nr/nt) in the database using Megablast (optimized for
highly similar sequences). Key genes with percentage identity
(Per. Ident) > 85% and query cover = 100% were selected
for detecting their expression changes in the NAc of opioid-
addicted mice.

Morphine-Induced Conditioned Place
Preference
The unbiased conditioned place preference (CPP) paradigm
was conducted as reported in a previous study (Golden et al.,
2016). Each mouse was handled for 15 min by the investigator
before the start of CPP. The experimental apparatus was made
of different floor textures (rough or smooth surface) and two
conditioning chambers (20 × 20 × 40 cm each) with different
stripes (horizontal or vertical), which provided two distinct
conditioning environments. On day 1 (Pre-test), mice moved
freely and explored the entire equipment for 15 min. During this
time, the duration of time the mice spent in each conditioning
chamber was recorded. Subsequently, the mice were assigned
into groups of approximately equal initial bias for the drug-
paired chambers based on the time spent in each chamber.
The conditioning test covered the period from 2 to 7 days. For
this experiment, mice of the control group were given saline
(i.h.) in both chambers while mice in the morphine group
were given saline in one chamber and morphine (10 mg/kg,
i.h.) in the other for 45 min. Each session was performed
6 h after the previous one and was performed by the same
experimenter. We used subcutaneous administration due to
morphine intraperitoneal administration of morphine reduced
the bioavailability compared to subcutaneous administration
(Handal et al., 2002). At the end of the test on day 8, the mice
were allowed to move freely in the chamber, and the duration
spent in each chamber was recorded. Preference scores (sec) were
determined as the difference in time spent in the drug-paired
chamber (Figure 6H).

Measurement of ADCY9 Expression
Using RT-PCR
Harvested NAc tissues were treated with RNAiso Plus (TAKARA
BIO INC) to isolate total RNA following the manufacturer’s
instructions. ABI Prism 7500 sequence detection system

6https://blast.ncbi.nlm.nih.gov/Blast.cgi

software was used for data analysis. mRNA levels of the ADCY9
gene were normalized to those of GAPDH. 5′–3′ nucleotide
sequences of primers are CCCTGCCCACCGTCCCTTC
(ADCY9 Reverse) and CGAGCCTAAGACCAGCACCAAG
(ADCY9 Forward). The GAPDH forward primer sequence
was AGCTGAACGGGAAGCTCACT, while the reverse primer
sequence was CAACGTAGGTCCACCACTGACACGTTG.

Data Analysis
All data are shown as means ± SEM. The t-test was used
to compare qPCR results between morphine-treated mice and
control mice for data with normally distributed data. p < 0.05
was considered to be significant. All statistical analyses were
performed using SPSS.

RESULTS

Identification of DEGs
The research flow chart is illustrated in Figure 1. The
age difference between the two groups was not statistically
significant (Supplementary Table 6, F = 0.067, p = 0.799).
We identified 289 DEGs in the nucleus accumbens (NAc) of
heroin addicts compared with normal control NAc, including 166
downregulated and 123 upregulated DEGs (Figure 2).

GO and KEGG Pathway Analysis
To reveal the roles of the DEGs, GO function enrichment
was analyzed using the DAVID database. The top 10 cellular
component, biological process, and molecular function (CC,
BP, and MF) terms are shown in Supplementary Table S1
and Figure 3A. In the BP group, the upregulated DEGs were
associated with phagosome acidification and maturation, cellular
response to organonitrogen and nitrogen compounds, and
transferrin transport. The downregulated DEGs were enriched in
smooth muscle cell chemotaxis positive and negative regulation,
fibroblast growth factor production, and regulation (Figure 3B).
In the CC group, the upregulated DEGs were enriched in the
terms vacuolar proton-transporting V-type ATPase complex, and
cytoplasm, and the downregulated DEGs were enriched in the
terms phagocytic cup and intracellular organelle (Figure 3C).
Moreover, in the MF group, the upregulated DEGs were
enriched in ATPase activity and the downregulated DEGs were
enriched in actin filament and chemokine binding (Figure 3D).
Pathway analysis revealed that upregulated DEGs were enriched
in morphine addiction, nicotine addiction, endocannabinoid
signaling, and GABAergic synapse pathways (Figure 4A) and
downregulated DEGs were enriched in protein absorption and
digestion, cell cycle, and cytokine-cytokine receptor interaction
Alzheimer disease pathways (Figure 4B). Details are shown in
Supplementary Table S2.

PPI Network Analysis and Screening for
Hub Genes
Network analysis using Cytoscape software and the STRING
database yielded 156 nodes, among which 90 represented DEGs
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FIGURE 1 | The flowchart of the bioinformatics analysis.

downregulated and 66 represented DEGs upregulated in heroin
addicts compared with control individuals (Figure 5A). Using
the plug-in CytoHubba in Cytoscape software, we determined
scores based on 10 methods to screen for hub genes in the

PPI network (Supplementary Table S3). We looked at the top
30 genes overlapping in each calculation and determined six
key genes: ADCY9, IL4, PECAM1, PRKAR2B, BUB1, and NDE1
(Figures 5B,C and Supplementary Table S4).
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FIGURE 2 | (A) Hierarchical-clustering heat map of the 269 differentially expressed genes. Red indicates upregulation, and green indicates downregulation.
(B) Volcano plot of the identified differentially expressed genes (DEGs) distribution in GSE87823. Red indicates DEGS with log2FC ≥ 2, and green indicates DEGs
with log2FC ≤ −2.

FIGURE 3 | GO functional enrichment analysis of up- and downregulated DEGs. The genes were ordered according to their logFC values setting gene (A). The top
10 terms of BP (B), CC (C), MF (D) by p-value. The gradual color represents the z-score.
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FIGURE 4 | KEGG enrichment analysis of the top 20 up-DEGs (A) and down-DEGs (B) pathways: the gradual color represents the p-value, the size of the spots
represents the gene numbers.

Validation of Key Genes in NAc of
Morphine-Addicted Mice
We determined integrated gene-disease, chemical-disease,
and chemical-gene interactions using the comparative
toxicogenomics database7 to predict novel associations and
create expanded networks (Davis et al., 2017). Using these
data, we analyzed the relationships between DEGs and opioid
addiction-related diseases. Our DEGs included one confirmed
opioid addiction gene marker, GABRA2 (Figure 6A), as well
as the genes ADCY9, IL4, and PECAM1, which we determined
to be “key genes” (Figure 6B). We used BLAST to calculate
the sequence similarity of six key genes between human
and mouse (Figures 6D,F) or human and other organisms
(Figures 6C,E,G). The plots are shown in Figures 6C–F were
created using Circoletto (Darzentas, 2010). Among these key
genes, the human ADCY9 sequence and the mouse ADCY9
sequence had the highest similarity (Figure 6D).

To examine whether the expression of ADCY9 would correlate
with morphine addiction in mice, we conducted morphine-
induced CPP, a wildly used morphine addiction model. Mice
developed a significant place preference after morphine injection
and these mice spent more time in the chamber where they
were administered compared to mice that received saline after
the conditioning phase. By contrast, the saline injection did not
induce this effect (Figure 6I). Morphine also increased ADCY9
mRNA expression in the mouse NAc, which was consistent with
our previous results in human NAc (Figure 6J).

DISCUSSION

The pathogenesis of opioid abuse, a complex and chronic
relapsing disease of the brain, remains unclear. Although
numerous studies have confirmed that the mechanisms of opiate

7http://ctdbase.org/

addiction include genetic and epigenetic aspects, the results
of such studies are inconsistent (Skupio et al., 2017; Zhang
et al., 2018). To our knowledge, our work is the first to use
10 different calculation methods, compared with the typical
three methods, to calculate the association score among the
DEGs for exploring novel hub genes. A recent study, GSE87823,
detected the expression of genes in heroin abusers and healthy
subjects. To minimize variability, we only enrolled samples
from this dataset corresponding to males between the ages of
19 and 35 years, and genes exhibiting significant differential
expression were identified using a variety of calculation methods.
Our study provides evidence for the association of ADCY9,
PECAM1, and IL4 with heroin addiction through stringent
bioinformatics analysis. The data presented here extend the
previously reported association of ADCY9, PECAM1, and IL4
with nicotine or alcohol addiction and psychiatric disorders. It
is well known that the pharmacodynamically active metabolites
of heroin include morphine, 6-diacetylmorphine, morphine 3-
glucuronide, and morphine 6-glucuronide (Rook et al., 2006).
In one study, five opioids were injected into heroin abusers,
and morphine was found to make them feel as though they
had received heroin (Comer et al., 2008). Moreover, there is
some direct evidence that there are genes related to both heroin
dependence and morphine dependence, such as OPRM1 (Davis
et al., 2019). Thus, we validated the transcriptional changes of
ADCY9 in a morphine addiction model in mice and found that
these were consistent with those in humans. This study also
provides evidence for the suitability of animal-level research
in this regard, bypassing the difficulties in establishing human
addiction models.

Our gene expression profiling identified pathways and key
genes related to opioid addiction, which may potentially be
therapeutic targets. Increased expression of ADCY9 transcription
is not only involved in the formation of a psycho-stimulant habit
(Sokolov et al., 2003) but also found in the frontal pole brain of
D2 mice after ethanol exposure (O’brien et al., 2018). A neuron
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FIGURE 5 | (A) Protein-protein interaction network for DEGs. Red, upregulated DEGs; blue, downregulated DEGs. The higher the degree value, the larger the node.
(B), the top 30 hub genes in the PPI network were identified by ten calculation methods and overlapped to obtain six key genes. (C) The PPI network of six key
genes.

is a special polarized cell type containing several synapses that
respond to various stimuli (Wallace et al., 1998; Guzowski et al.,
2001; Jones et al., 2001). The translation and transport of specific
mRNA species regulate activity-dependent synaptic plasticity
by modulating proteins that fine-tune neuronal responses to
particular stimuli (Sutton and Schuman, 2006; Hoogenraad et al.,
2007; Huang et al., 2017). We speculate that chronic opioid

exposure causes changes in the synaptic plasticity of neurons
by changing the transcription level of ADCY9 in the NAc,
thereby causing behavioral sensitization, which affects addictive
behaviors. Opioid exposure also results in prolonged activation
of N-methyl-D-aspartate (NMDA) receptors. NMDA inhibitor
is linked to enhanced neuronal apoptosis in the developing
rodent brain, and ADCY9 is involved in neuronal apoptosis
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FIGURE 6 | Validation of key genes in NAc of morphine-addicted mice. We found our DEGs by including one confirmed opioid addiction gene marker, GABRA2 (A),
and the results also included the genes ADCY9, IL4, and PECAM1, which we determined to be “key genes” (B). We used BLAST to calculate the sequence similarity
of 6 key genes between human and mouse (D,F) or human and other biological sequences (C,E,G). (H) The timeline about the establishment of morphine addicted
mice. (I) CPP induced by 10 mg/kg of morphine. The CPP score of (J), mRNA levels of the ADCY9 gene in morphine addicted mouse’s NAc. *p < 0.05, **p < 0.01
significant difference.

induced by NMDA receptor blockade in neonatal rats (Sutton
and Schuman, 2006; Hoogenraad et al., 2007; Huang et al., 2017).
Of particular interest, immunoblotting data reveals a marked
increase in GluN1 and GluN2B expression in three regions
(medial prefrontal cortex mPFC, Lateral prefrontal cortex LPFC,
and orbitofrontal cortex OFC) in men suffering from opioid
addiction (Daneshparvar et al., 2019), suggesting that ADCY9
may also be involved in changes to NMDA receptors in opioid
addiction. These changes may lead to behavioral sensitization and
the formation of addictive memory. Due to ethical limitations, we
cannot establish an opioid addiction model in humans to study
the mechanism of ADCY9. However, we found that the similarity
of the ADCY9 gene sequence between mice and humans was
more than 80%. By establishing a morphine addiction model in
mice and detecting the expression level of ADCY9 in the NAc, we
found that the expression of ADCY9 decreased. The expression
of ADCY9 in human opioid addiction showed the same trend.
Therefore, we have reason to believe that it is beneficial to study
the mechanism of ADCY9 in an opioid addiction mouse model.

IL4, an inflammatory factor, and PECAM1, platelet/
endothelial cell adhesion molecule 1, both participate in the
inflammatory reaction process of the body. Chronic morphine
treatment induces an increase of IL4 in spleen cells (Greeneltch
et al., 2005), and serum IL4 levels are also elevated in heroin
and cocaine addicts (Ríos-Olivares et al., 2006). We know that
the damage caused by opioid addiction is mostly related to
the immune response, and previous studies have confirmed

that an increase of PECAM1 in the blood-brain barrier of
cocaine-addicted rats causes an immune response in endothelial
cells, immune cells, and neuroendocrine cells, thus impairing the
function of the blood-brain barrier (Fiala et al., 1998). In mice,
IL4 and PECAM1 also cause neuroinflammation by recruiting
mast cells and upregulating the release of various mediators,
which may be involved in the formation of Parkinson’s disease
(Hong et al., 2018). In addition, changes in serum PECAM1
levels contribute to the occurrence and development of autism
and depression (Serebruany et al., 2005; Tsuchiya et al., 2007).
IL4 and PECAM1 might serve as the molecular and cellular basis
of neurological damage by opioid addiction.

In summary, investigating the specific genes regulating the
development of opioid addiction is an essential component of
early treatment of the disease. We provide evidence that ADCY9
may lead to behavioral sensitization and addictive memory
formation by altering the synaptic plasticity of NAc neurons,
while IL4 and PEAM1 may participate in neuroinflammation
caused by opioid addiction through immune responses. To
apply our research results to clinical treatment, we need further
research to verify this mechanism. We will focus on validating the
usefulness of these DEGs as diagnostic and/or prognostic markers
in a subsequent study. Our research expands our understanding
of the mechanism of opioid addiction and proposes possible
targets for addressing the symptoms of opioid addiction. These
results lay the foundation for further development of treatments
and related research.
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