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Abstract

The spinocerebellar ataxias (SCAs) are a group of dominantly inherited diseases

that share the defining feature of progressive cerebellar ataxia. The disease pro-

cess, however, is not confined to the cerebellum; other areas of the brain, in

particular, the brainstem, are also affected, resulting in a high burden of mor-

bidity and mortality. Currently, there are no disease-modifying treatments for

the SCAs, but preclinical research has led to the development of therapeutic

agents ripe for testing in patients. Unfortunately, due to the rarity of these dis-

eases and their slow and variable progression, there are substantial hurdles to

overcome in conducting clinical trials. While the epidemiological features of the

SCAs are immutable, the feasibility of conducting clinical trials is being

addressed through a combination of strategies. These include improvements in

clinical outcome measures, the identification of imaging and fluid biomarkers,

and innovations in clinical trial design. In this review, we highlight current

challenges in initiating clinical trials for the SCAs and also discuss pathways for

researchers and clinicians to mitigate these challenges and harness opportunities

for clinical trial development.

Introduction

The spinocerebellar ataxias (SCAs) comprise a group of

dominantly inherited cerebellar disorders that typically

begin in mid-life.1 The early ataxic symptoms of gait,

speech, and eye movement incoordination are often fol-

lowed by non-ataxic symptoms, which include cognitive

deficits, cranial nerve dysfunction, spasticity, rigidity, and

dystonia. For many patients, neurodegeneration occurs in

multiple brain regions including the brainstem, resulting

in significantly reduced lifespan.1–3 Though relatively rare

compared to other human neurodegenerative syndromes,

the SCAs produce significant long-term disability and

therefore place a significant burden on not just patients,

but also the overall health care infrastructure.

Forty-eight SCAs have been identified to date.3–5 The

SCAs are designated by the prefix SCA followed by a

number, which reflects the order in which that genetic

mutation was identified. The most common SCAs have

all likely been identified.6 While the genetic underpinning

of the SCAs are diverse, the most prevalent SCAs are

caused by expansion of CAG trinucleotide repeats, which

encode a polyglutamine tract in the protein product.

These include SCAs 1, 2, 3, 6, 7, 17, and a related ataxic

syndrome, dentatorubral-pallidoluyesian atrophy/DRPLA.7

The polyglutamine SCAs account for more than half of

the known SCAs and are the best characterized.

Six other ataxias—SCA8, 10, 12, 31, 36, and 37—are

also caused by nucleotide repeats, but in these diseases,

the repeats do not occur in the coding region of the

gene.7–9 Pathology here is thought to result from toxic

RNA species or a peptide product that results from a

non-canonical form of translation, termed repeat-

associated non-ATG initiated translation (RAN transla-

tion).10,11 These pathogenic mechanisms could also con-

tribute to the pathogenesis of the polyglutamine ataxias

which is an active area of study. The remaining SCAs are

caused by conventional mutations. These include point

mutations or deletions in the coding regions of the genes,

resulting in abnormal protein products.3

As one moves toward finding therapies, advances in

our understanding of these diseases at a mechanistic level

are proving to be crucial. For the polyglutamine repeat

SCAs in particular, research has benefited from knowledge
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gained from other polyglutamine repeat disorders, most

notably Huntington’s disease (HD), another autosomal

dominant disease caused by polyglutamine repeat expan-

sion. There appear to be clear commonalities among the

polyglutamine repeat disorders in pathogenic pathways at

a subcellular level. Polyglutamine expansion causes the

protein to misfold and accumulate in cells due to

impaired clearance by quality control mechanisms in the

cell, including proteasomal and autophagic clearance.12

The accumulated polyglutamine protein is thought to

exert its pathogenic effect mainly through a toxic gain of

function mechanism.12 A greater number of CAG repeats

is associated with earlier age of onset, faster progression,

and a broader spectrum of clinical symptoms.2,13 The

number of CAG repeats can increase over subsequent

generations due to meiotic instability, which influences

the disease severity in different family members. More

recently, it has been found that the CAG repeat length

can vary in different cells from somatic instability and

this could also modify the disease process.14,15

There are currently no disease-modifying treatments

for any of the SCAs and there are many challenges to be

overcome in clinical trial development (Fig. 1). Research

suggests that a promising strategy for at least the polyglu-

tamine SCAs lies in reducing the level of the toxic mutant

protein itself. This strategy is appealing since it does not

require a complete understanding of downstream patho-

genic pathways.16–18 Several high-throughput small-

molecule screens have revealed promising candidates that

may lower levels of the mutant protein.3,19,20 But perhaps

more exciting are recently developed approaches based on

newer RNA depleting or DNA editing tools.21 These

include small-interfering RNA (siRNA), micro-RNA

(miRNA), or antisense oligonucleotide (ASO)-based

approaches to target RNA species, as well as CRISPR-

based approaches to target RNA or DNA.3,22,23 Many of

these strategies have been validated in animal models of

SCAs.3,24,25 Similar approaches are further along in Hunt-

ington disease (HD), a more common polyglutamine dis-

ease, where ASOs targeting the mutated huntingtin

protein are already being tested in clinical trials.26,27 The

hope is that the results of the HD trials will inform work

in the SCAs.

In addition to targeting the mutant protein itself, other

strategies are aimed at addressing down-stream targets

that contribute to disease pathogenesis. Pharmacologically

addressable deficits include repleting neurotrophic factors

such as brain-derived neurotrophic factor (BDNF) and

vascular endothelial growth factor (VEGF), ameliorating

ion channel dysfunction, or addressing consequences of

mitochondrial damage including the generation of reac-

tive oxygen species.28–33 Lastly, a less targeted approach

to therapeutic development is to repurpose or modify

drugs used for other neurodegenerative disorders. For

instance, an ongoing trial is testing whether an analogue

of riluzole provides symptomatic benefit for patients with

polyglutamine SCAs.34,35 Drugs used to treat non-

neurologic diseases can be repurposed as well. For exam-

ple, the tyrosine kinase inhibitor nilotinib, which is used

to treat chronic myelogenous leukemia, is under active

clinical investigation for the SCAs.36–38

Many of the potential treatment strategies outlined

above could potentially be neuroprotective, meaning that

these strategies could halt or slow disease progression.

This also raises the exciting possibility that new treat-

ments could be tested in pre-manifest individuals to

potentially prevent development of manifest disease.

Given the autosomal dominant inheritance pattern of the

SCAs, the children of affected individuals carry a 50% risk

of inheriting an SCA mutation. It is important to recruit

these at-risk individuals to identify the earliest and most

sensitive clinical signs of disease. For example, mutation

carriers have been shown to have mild coordination defi-

cits and brain abnormalities that gradually increase before

the onset of clinically evident ataxia.39 Furthermore, with

recent advancements in imaging techniques like MRS and

diffusion MRI, it is feasible to detect brain abnormalities

in the pre-symptomatic period.40,41

Despite the lack of currently available treatments for

the SCAs, promising treatment agents are entering the

pipeline (Fig. 2). This review will provide an overview of

the current challenges facing clinical trial development in

the SCAs and the approaches being taken to overcome

these challenges.

Challenges To Clinical Trials

Low disease prevalence and phenotypic
variability

The first challenge to clinical trials for the SCAs is the

rarity of these disorders. The global prevalence of the

known SCAs is estimated to be between 1 and 6 per

100,000.1,3,12 The low prevalence of the SCAs makes it

difficult to recruit sufficient patients for any given

trial.1,42

Another constraint to clinical trial development is the

significant clinical heterogeneity of the SCAs. Because of

the genetic heterogeneity of this group of disorders,

patient recruitment must take into account the specific

SCA subtype. Even for the polyglutamine SCAs, which

share a common mutational mechanism, clinical features

differ. This clinical heterogeneity is true not just for dis-

ease severity but also for the range of symptoms and the

rate of disease progression. SCA6, for instance, tends to

have a relatively pure cerebellar syndrome, is milder in
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severity, and more protracted in course, while SCAs 1, 2,

3, and 7 are associated with brainstem dysfunction with

variable involvement of the basal ganglia, cortex, and

spinal cord.1,3,43 There are other peculiarities of the SCAs:

SCAs 1, 2, and 3 are often accompanied by peripheral

neuropathy, while SCA7 is more prone to result in retinal

degeneration and blindness.39,44–46

Even more problematic is the variability within a par-

ticular SCA subtype. There is substantial individual vari-

ability in terms of disease penetrance, age at presentation,

and rate of symptom progression, which complicates

attempts to monitor disease progression and response to

potential therapies. For example, the age of onset of the

SCAs is highly variable, with one study reporting the

Figure 1. Schematic summary of challenges facing clinical research in the spinocerebellar ataxias and proposed elements that are critical to

support clinical trial readiness.

Figure 2. Schematic summary of major therapeutic agents being tested for the SCAs. Major agents that have been successful in preclinical

disease models are summarized, including gene silencing strategies, neurotrophic agents, and ion channel modifiers. Current agents being tested

in active clinical trials in the United States were identified from clinicaltrials.gov.
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onset of symptoms in SCA1, SCA2, and SCA3 ranging

from the first to the seventh decade of life in all three dis-

orders.47 A major source of the variability in the polyglu-

tamine SCAs arises from the length of the CAG

expansion—the longer the repeat, the earlier the symptom

onset and the worse the severity.13,39,45 Longer expansions

are also accompanied by more extracerebellar involve-

ment.7,48 Therefore, at least for the polyglutamine SCAs,

CAG repeat length is one method by which patients can

be stratified in terms of suspected disease severity.

Additional causes of variability likely arise from genetic

and environmental variables. There are hints that the size

of repeats in other genes could contribute to disease,

while other studies suggest that ethnicity might play a

role.49–52 It is also likely that genes that play a role in

DNA repair also modulate disease phenotype through

effects on somatic instability, as has been described for

HD.53 From a clinical trial standpoint, all these factors

influencing the disease phenotype require a sufficient

number of patients of each SCA subtype to be recruited

to prevent confounding variables that might interfere with

the interpretation of interventional studies.

Efforts Toward Clinical Trial
Readiness

Pre-clinical data have identified several exciting potential

treatments for the SCAs. This includes both symptomatic

agents as well as neuroprotective treatment strategies. Sev-

eral strategies are being pursued to translate the informa-

tion learned from pre-clinical models into fruitful and

productive clinical trials. These include: (1) improvements

in clinical rating scales to provide robust and precise out-

come measures with less variability; (2) development of

biomarkers to provide additional objective measures to

monitor neurodegeneration; and (3) clinical trial design

and statistical innovations to allow for optimization of

the small number of patients recruited for these trials.

Improvements in clinical measures: rating
scales

Ataxia, like most movement disorders, is difficult to char-

acterize in an objective and accurate manner. For this rea-

son, several rating scales have been developed to serve as

instruments to capture ataxia severity.

The most widely used ataxia rating scales are the Inter-

national Cooperative Rating Scale (ICARS)54 and the

Scale for the Assessment and Rating of Ataxia (SARA)

scale.55 The ICARS, the first of the two to be developed,

has 19 items with four subdomains assessing posture and

gait, kinetic function, speech, and oculomotor function.56

The SARA scale is shorter, with only 8 items, and

includes common clinical exam maneuvers that are fre-

quently performed as part of routine assessments for evi-

dence of cerebellar impairment.57 It is similar to the

ICARS, with several items removed in order to reduce

redundancy. It also differs from the ICARS in that it does

not test for eye movement abnormalities. Other scales

include the Modified ICARS (MICARS), the Brief Ataxia

Rating Scale (BARS), and the Neurological Examination

Score for Spinocerebellar Ataxia (NESSCA).58 None of

these scales are meant to address non-ataxic symptoms,

for which additional scales have been developed. These

additional scales include the Inventory of Non-Ataxia

Signs, which rates several neurological signs including

spasticity, tremor, and dystonia, and the Cerebellar Cog-

nitive Affective Syndrome Scale (CCAS), which is a dedi-

cated cognitive scale to identify cognitive deficits in the

context of cerebellar decline.59

The ataxic rating scales are being combined with other

quantifiable performance tests. These include the SCA

Functional Index, which combines measures on an 8-

Minute Walk Test, a Nine-Hole Peg Test, and a measure

of the number of syllables that a patient can repeat in

10 sec; and the Composite Cerebellar Functional Severity

Score (CCFS), which combines a click test of alternate

tapping on two keys at a fixed distance with the Nine-

Hole Peg Test.60,61

Some of these rating scales and performance measure

are already being used in natural history studies. The rat-

ing scales are relatively reliable in their ability to detect

disease, and can detect conversion from pre-manifest to

manifest disease over a period of 4–8 years.13,47,62 They

do, however, have their limitations. They are non-linear

scales, with different weights given to different ataxic

symptoms. They have floor and ceiling effects, making

them not very effective when the symptoms are either

very mild or very severe. Furthermore, there is still some

unavoidable subjectivity in scoring.57 And finally, patient

performance may fluctuate for a variety of reasons,

including energy levels and the time of the day when

patients are evaluated.

In a clinical trial, disease progression will likely be

influenced by age of onset, repeat length, and age at trial

inclusion.47,62 For the most rapidly progressive polyglu-

tamine SCA, namely SCA1, estimates suggest that approx-

imately 142 patients would need to be recruited to power

two arms of a clinical study to detect a 50% reduction in

progression of the SARA score in a 1-year trial.3 The nec-

essary recruitment numbers for other SCA subtypes for

which there is natural history data are 172 patient for

SCA2, 202 for SCA3, and 602 for SCA6.47 Clearly, such

long duration studies with large cohorts are difficult to

conduct because of limitations in patient recruitment,

patient attrition, comorbid conditions, and expense.
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Efforts are, therefore, ongoing to use new technological

innovations to capture objective longitudinal data on

patient symptoms in order to remove any bias from a

human rater, and to provide additional objective data

points assessing patients’ symptoms over time. These

include the use of wearable sensors or smartphones to

capture movements, allowing for remote long-term

tracking of patients’ movements so as to more accurately

capture the full range and variability of symptoms on a

day-to-day basis. Given that ataxia symptoms are known

to fluctuate based on a variety of environmental factors,

longitudinal wearable sensors may provide a more accu-

rate representation of symptom burden, as opposed to

intermittent clinical assessments. Similar technologies are

being studied for other neurological diseases such as

PD.63,64 It is likely that advances in this arena will pro-

vide more precise and accurate rating scales for the SCAs

that will improve statistical power in clinical trials.

Potential downsides to wearable sensor technologies

include patient inconvenience or discomfort as well as

technical difficulties with device use or with data storage

and interpretation.

While clinical rating scales and wearable devices allow

us to assess ataxia and other neurologic symptoms, it is

also important to keep in mind that the clinical changes

measured must be clinically relevant. Therefore, from

both a regulatory standpoint as well as from a patient

advocacy standpoint, it will be important to incorporate

quality of life metrics as well as other patient-reported

outcome (PRO) measures as a critical outcome in clinical

trial design. This will ensure that any potential treatment

interventions produce clinically relevant improvements

for patients.

Identification of imaging and fluid
biomarkers

Biomarkers are defined as “objectively-measured charac-

teristics that serve as indicators of normal biological

processes, pathogenic processes or pharmacologic

responses to therapeutic interventions.”65 Strictly speak-

ing, the motor performance measures described above

could also be considered biomarkers. However, for the

purposes of this review article, we focus our discussion

of biomarkers on neuroimaging findings associated with

disease state (Table 1) and biochemical markers obtained

from body fluids (Table 2). The expectation is that,

when validated, biomarkers for the SCAs could be used

singly or in combination to provide effective ways to

monitor disease onset, progression, or response to treat-

ment, with less variability and more objectivity than

clinical rating scales.

Imaging biomarkers

Candidate imaging biomarkers have arisen from our

understanding of findings garnered from neuroimaging

performed on patients in the clinic (Table 1).41,66–95 Focal

degeneration can be quantified structurally using region

of interest (ROI)-based analysis. Structural abnormalities

are accompanied by disturbances in white matter tracts as

demonstrated by diffusion tensor imaging (DTI), with

abnormalities discernible not just in the cerebellum and

cerebellar peduncles but also in the brainstem and cere-

bral white matter.3,96,97 These imaging abnormalities align

Table 1. Current state of imaging biomarkers in the SCAs.

Brain imaging

MRI: brain volume changes

↓Cerebellum and brainstem volume in SCA1, SCA2, SCA3,

SCA6, and SCA1766–68

↓White matter and gray matter volume in cerebellum and

brain stem in SCA1, SCA2, and SCA369–72

↓Spinal cord, basal ganglia, and cerebellar vermis size in SCA3

and SCA669,73

↓ Caudate size in SCA6 and SCA1769,74

MRS: chemical changes

↓[Glu], [NAA], [NAAG], [tNAA], [Cho/Cr] ratio, and [Glu/Gln]

ratio in SCA1, SCA2, SCA3, and SCA675–78

↑ [Glc], [Gln], [mI], [Tau], [tCr], and [Glc+Tau] in SCA1, SCA2,

and SCA375–78

↓[GABA] in SCA641

↓ [NAA/Cho], [NAA/Cr] in SCA1, SCA2, SCA3, SCA6, and

SCA1775–78

PET: metabolic changes

[18F]FDG, [11C]dMP, and [11C]MP4P: ↓metabolism in different

brain regions in SCA1, SCA2, SCA3, SCA6, and SCA1781–86

SPECT: functional and metabolic changes

SCA2

[99mTc]TRODAT-1 SPECT:↓striatal DAT binding87

[123I]b-CIT SPECT:↓striato-cerebellar ratio88

[123I]IBZM SPECT:↓striato-frontal IBZM binding ratio88

[123I]FP-CIT SPECT:↓uptake in caudate and putamen89

SCA3

[99mTc]TRODAT-1 SPECT:↓nigrostriatal ratio90

[99mTc]HMPAO SPECT:↓perfusion in cerebellar hemispheres,91

inferior,91 and superior91 frontal lobe,91 lateral temporal

lobe,91 parietal lobe, and vermis91

[99mTc]ECD SPECT:↓perfusion in bilateral cerebellum92 and

vermis92

[123I]iomazenil SPECT:↓binding in cerebellum,93 cerebral

cortex,93 thalamus,93 and striatum93

SCA6

[99mTc]ECD SPECT:↓perfusion in cerebellar hemisphere94 and

cerebral vermis94

SCA17

[99mTc]TRODAT-1 SPECT:↓striatal DAT binding87

Table is modified from Meng-LingChen et al.95

ª 2021 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association 1547

S. M. Brooker et al. Spinocerebellar Ataxia Clinical Trials



closely with clinical rating scales, and indeed can help

identify pre-manifest abnormalities and predict pheno-

typic conversion.25,98,99

Structural changes visible on MRI are accompanied by

functional changes as well. While resting state functional

MRI shows a few abnormalities, a more promising strat-

egy is magnetic resonance spectroscopy (MRS). In MRS-

specific neurochemical, abnormalities are identified by

comparing spectroscopic peaks corresponding to different

metabolites. Up to 15 metabolites are measured with cur-

rent MRS technologies. The most useful so far are N-

acetylaspartate (NAA, a marker of neuronal density and

function) and glutamate that are altered with neuronal

degeneration.41,98,100 Furthermore, the glial marker

myoinositol has been shown to increase with gliosis.100

Other metabolites that can be monitored include the

metabolic marker creatine/phosphocreatine and the

membrane marker choline. MRS abnormalities are influ-

enced by the specific SCA subtype, and they are even

more sensitive to progression and phenotypic conversion

than structural MRI.3,101–103

Other imaging modalities are also being tested. These

include positron emission tomography (PET) and single-

photon emission computed tomography (SPECT). In

both modalities, tracers are used to interrogate specific

circuit dysfunction, such as dopamine transmission.103

The current data on imaging biomarkers in the SCAs are

summarized in Table 1. There are many pros and cons to

the different modalities available including variable sensi-

tivity and specificity, and the use of certain technologies

may be challenging in resource-limited settings. While

these efforts are still in their infancy, the hope is that sev-

eral imaging modalities used together could produce a

multimodal imaging signature to track disease onset and

progression.

Fluid biomarkers

Fluid biomarkers are biomolecules or metabolites in the

blood or cerebrospinal fluid (CSF) that correlate with an

underlying pathological process. For the SCAs, the pur-

pose is not to identify a biomarker for diagnosis, since

diagnosis is achievable by genetic testing alone. Rather,

the goal is to identify markers that predict phenoconver-

sion (from the asymptomatic to symptomatic condition),

or provide objective evidence of disease progression.

While no fluid biomarkers have yet been validated for

the SCAs, there are some promising candidates

(Table 2).104–118 The first candidate is the mutant protein

itself in the case of the polyglutamine SCAs. In all these

ataxias, the protein tends to accumulate and aggregate.

Following the levels of the mutant polyglutamine protein

would be analogous to following the levels of other pro-

teins in the more common neurodegenerative pro-

teinopathies: Ab42 and tau (including phosphorylated

tau) in AD, alpha synuclein in PD, and huntingtin pro-

tein in HD.119–122

The comparison with HD is particularly apt since, as a

polyglutamine disorder, it serves as an exemplar that can

provide important insight into what we might observe in

the polyglutamine SCAs. Levels of mutant huntingtin pro-

tein have been found to be elevated in the CSF of patients

with HD, and importantly, the level correlates with

diminished cognitive and motor function in HD

patients.123,124 Huntingtin levels are also being followed

in clinical trials attempting huntingtin reduction by ASOs

to show target engagement of the ASOs.26 Techniques to

detect mutant huntingtin in the CSF have required tech-

nical advances in antibody-mediated detection, and simi-

lar approaches are being developed for the polyglutamine

Table 2. Current state of fluid biomarkers in the SCAs.

Fluid biomarkers

Poly-Q expanded ataxin-3

↑ in plasma and CSF of SCA3 104,105

Oxidative stress markers

↑ in serum of SCA3106

Carboxyl terminus of Hsp70-interacting protein

↑ in serum and CSF of SCA3107

Oxidation of 20,70-dichlorofluorescein diacetate (DCFH-DA)

↑ in serum of SCA3108

Glutathione peroxidase activity

↓ in serum of symptomatic SCA3108

IGFBP-1 and IGFBP-3

↑ in serum of SCA3109

Insulin

↓ in serum of SCA3109

Neuron-specific enolase

↑ in serum of SCA3110,111

Neurofilament light chain

↑ in serum and CSF of SCA1112 and SCA3112–114

Phosphorylated neurofilament heavy chain

↑ in serum of SCA3112

miRNA

↑ miR-34b,114 miR-7014115 in serum, and CSF of SCA3

Differential expression of seventy one miRs in plasma of

SCA712

↓miR-25,114 miR-29a,114 miR-125b,114 and miR-7014115 in

serum/plasma of SCA3

Different expression of various exosomal miRs in plasma and

CSF of SCA3115

S100B

↑ in serum of SCA3 111

Tau

↑ in CSF of SCA2 117

Valine, leucine, and tyrosine

↓ in plasma of SCA7 118
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SCAs.125 For instance, a recent strategy for monitoring

ataxin-3 levels in blood has been identified, although it is

still unclear the extent to which blood levels of ataxin-3

reflect the levels in the central nervous system.105

In addition to biomarkers based on the biology of the

specific disease, there are candidate fluid biomarkers that

are more broadly applicable to diverse neurodegenerative

disorders. The most promising of these are the neurofila-

ment proteins, which are constituents of the neuronal

cytoskeleton that leak out of damaged neurons. These

proteins are showing considerable promise as a general

marker of neuroaxonal damage in a wide range of neuro-

logical disorders, including HD, and can be detected not

just in CSF but also in blood.126–128 Neurofilament light

chain (NFL) and a phosphorylated form of neurofilament

heavy chain (pNFH) have been the most thoroughly stud-

ied to date.128 In HD, for instance, the level of NFL in

blood correlates with disease severity as assessed by stan-

dardized functional capacity scoring, brain atrophy on

imaging, and CAG-repeat length.121

While not all SCAs have been evaluated for NFL levels,

in SCA3, serum levels of NFL are significantly elevated in

patients compared to controls. Importantly NFL levels

correlate with disease severity as measured via clinical

SARA scores.104,112,113 NFL is also elevated in genetic car-

riers who have not yet developed ataxia.104 Pilot studies

suggest that NFL proteins are likely to be elevated in

other SCA subtypes as well.112,117

Biomarkers are also being identified by additional

candidate-based approaches focusing on neurotrophic fac-

tors, cytokines, or markers of oxidative stress that are

known to be affected in preclinical models of the dis-

ease.108,129 There is also the possibility of using unbiased

biomarker discovery approaches such as mass-spectroscopy

techniques, which have the advantage of accelerating the

identification of biomarkers since multiple potential candi-

dates can be screened in parallel. These large-scale screens

need not be confined to proteins. For instance, metabolites

could be identified using dedicated metabolomic or lipido-

mic approaches as is being done for other neurodegenera-

tive diseases.130,131 RNA molecules could be detected by

RNA isolation from leukocytes or exosomes (including

microRNA and mRNA).132,133 Clearly, the identification

and validation of a biomarker signature in the blood or

CSF could be an invaluable tool in evaluating the response

to any investigational drug, especially when used in

conjunction with clinical rating scales and imaging

biomarkers.

Innovations in clinical trial design

Unlike the more prevalent neurodegenerative disorders,

clinical trial implementation for rare diseases such as the

SCAs can pose unique challenges. However, in many

respects, ataxia researchers are going over well-ploughed

terrain based on the lessons learned from other neurode-

generative diseases, most notably HD. In the HD field,

there have been large-scale biomarker studies such as

TRACK-HD that have helped establish the optimal out-

come measures for tracking clinical trial results.134 Clini-

cal trials of antisense oligonucleotide therapies to inhibit

HTT messenger RNA are now underway, along with bio-

marker monitoring of mutant HTT to monitor target

engagement and neurofilament light chain to measure

neurodegeneration.22,26,135 Successful strategies used in

HD can hopefully translate to the SCA field.

To recruit sufficient patients for clinical trials, setting up

collaborations and patient registries is critical. Fortunately,

SCA registries are already in place in the United States and

Europe and efforts are ongoing for global initiatives. Mul-

tiple successful international research cohorts have been

developed (Table 3).2,47,62,97,136,137 For instance, In the

United States, there is a large consortium for the SCAs

called the Clinical Research Consortium for Spinocerebel-

lar Ataxias (CRC-SCA), while in Europe, the Ataxia Study

Group has organized multiple international collaborative

research projects including the European Integrated Pro-

ject on Spinocerebellar Ataxia (EuroSCA) and the Euro-

pean Spinocerebellar Ataxia Type 3/Machado-Joseph

Disease Initiative (ESMI). Looking forward, there are on-

going global initiatives like SCA Global, which aims to

accelerate biomarker discovery and treatment development

via standardization of research procedures and expansion

of research efforts around the world.138

For the SCAs, it is important that manifest patients as

well as asymptomatic individuals at risk are recruited for

both biomarker development and clinical trials. Recruited

patients should have a confirmed diagnosis of a genetic

ataxia based on standardized genetic testing. It is impor-

tant that in global patient registries both genetic and phe-

notypic information be catalogued closely since trials of

treatments aimed largely at symptomatic improvement

would require that patient symptomatology be a major

inclusion criteria and that those with minimal symptoms

be excluded. On the other hand, trials aimed at assessing

neuroprotective strategies could recruit patients with

manifest disease but could also potentially assess pre-

manifest individuals with known SCA mutations to deter-

mine if progression to manifest disease can be halted.

Due to the constraints in patient recruitment, innova-

tions in clinical design are likely to play a role especially

for the rarer SCAs. One recourse is for experimental drugs

to be compared to historical controls rather than a pla-

cebo arm, but this is not ideal given the role of placebo

effects. Therefore, an alternative approach would be to test

multiple drugs against a single placebo arm.139,140 This
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arm would serve as a control for multiple interventions,

thus reducing the number of patients necessary for

recruitment. Such an approach may also be appealing to

patients who may prefer the increased likelihood of being

randomized to an experimental arm. Another approach

that eliminates the need for a dedicated placebo cohort is

a cross-over design in which individuals could be placed

on an experimental drug for a certain duration of time,

then given time for the drug to wash out. The disease pro-

cess can be observed in both conditions, with the process

of cross-over repeated (if necessary) to document whether

the patient did in fact improve on the drug.140,141

Trials could also be run to demonstrate non-

effectiveness rather than effectiveness. Such studies are

similar to establishing non-inferiority of experimental

interventions in other diseases and require fewer patients.

By paring down candidate therapies through an early

rejection of candidates, fewer patients will be tied down

in non-productive trials and more patients will be avail-

able to participate in trials testing drugs that are found to

Table 3. Summary of international SCA research cohorts.

Research consortium

Genetic

ataxia

Biomarker

sample

type

Imaging

studies

Target

sample

size Participating countries and funding sources

Time

period

Clinical Research Consortium for

Spinocerebellar Ataxias (CRC-

SCA)97

SCA1 Blood MRI/MRS

at 4 sites

800 Country: USA 2010-

presentSCA2 Funding: National Ataxia Foundation; National

Institute of Neurological Disorders and Stroke

(NINDS) of the National Institute of Health (NIH)

SCA3

SCA6

SCA7

SCA8

SCA10

European Integrated Project on

Spinocerebellar Ataxias

(EUROSCA)2,47

SCA1 Blood MRI 1255 Countries: Germany, Spain, France, Italy, UK,

Netherlands, Belgium, Poland, Hungary

2005–

2016

SCA2 Urine Funding: European Union Sixth Framework

Programme FP-6SCA3

SCA6

European Spinocerebellar Ataxia

Type 3/Machado-Joseph Disease

Initiative (ESMI)136

SCA3 Blood MRI 800 Countries: Germany, UK, Portugal, Netherlands 2016-

presentCSF Funding: EU Joint Programme –

Neurodegenerative Disease Research (JPND);

German Ministry of Education and Research;

Medical Research Council (MRC, United

Kingdom); Fundac�~ao para a Ciência e a

Tecnologia (FCT; Portugal); Netherlands

Organisation for Health Research and

Development

Individuals at Risk for SCA

(RISCA)62
SCA1 Blood MRI at 8

sites

480 Countries: France, Austria, Germany, Hungary,

Italy, Poland, Spain

2009-

present

SCA2 Urine Funding: European Research Area Network for

Research Programmes on Rare Diseases, Polish

Ministry of Science and Higher Education,

Italian Ministry of Health, European

Community’s Seventh Framework Programme

SCA3

SCA6

Clinical trial Readiness for SCA1

& SCA3 (READISCA)97
Early-

stage

SCA1

and

SCA3

Blood MRI/MRS

at 6 sites

in 3

countries

200 Countries: USA, Germany, France, UK, Poland,

Hungary, Italy, Austria, Belgium, Portugal,

Spain, Netherlands, Norway, Denmark, Serbia,

Egypt, Morocco

2018-

present

Funding: National Institute of Neurological

Disorders and Stroke (NINDS) of the National

Institute of Health (NIH); National Ataxia

Foundation

SCA3 Biomarkers and Genetic

modifiers in a Study pre- and

post-symptomatic carriers

(BIGPRO)137

SCA3 Blood Not

applicable

95 Countries: Brazil, Germany 2017–

2020Funding: CAPES Foundation

1550 ª 2021 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association

Spinocerebellar Ataxia Clinical Trials S. M. Brooker et al.



be more likely to show efficacy after this initial screening

process. Other statistical techniques include Bayesian

methods where information from natural history studies

could be borrowed to make prior distributions about

expected endpoints and clinical outcomes.142

Another challenge in clinical trial development that needs

to be addressed is financial. Clinical research to be sure is

expensive, and funds are especially hard to come by for rare

disorders. Creative and collaborative approaches, therefore,

need to be employed to raise support for these disorders

from philanthropic sources, government agencies, and the

pharmaceutical industry. Fortunately government regulatory

agencies in the United States and Europe have set up mecha-

nisms to help accelerate the development of drugs for rare

disorders. In particular, in 1983, the Orphan Drug Act was

passed in the United States with the help of advocacy groups

such as the National Organization for Rare Disorders

(NORD). This legislation helped promote and accelerate

drug development for rare disorders by providing financial

incentives such as tax credits and a period of market exclu-

sivity, as well as the establishment of a grant support pro-

gram. Such support is critical for helping to develop

effective clinical trials for these rare disorders.

Conclusion

This review summarizes the major challenges to clinical tri-

als in the SCAs. But we would like to end on an optimistic

note. As outlined above, these challenges are being

addressed by substantial technological advancements along

several fronts, and new therapies are on the horizon.

Some of the biggest operational hurdles for clinical tri-

als have already been accomplished. Collaborative consor-

tia have been established and patients are being recruited

in registries throughout North America and Europe. Nat-

ural history studies, rating scale optimization, and bio-

marker development are ongoing at an active pace. We

are also gaining important information from clinical trials

in other neurodegenerative diseases, most notably Alzhei-

mer’s disease, Parkinson’s disease, and perhaps most rele-

vant, Huntington’s disease. For each of these diseases,

researchers have had to work through similar steps of

infrastructure development and clinical trial readiness,

and we can therefore learn from the steps taken in these

disorders. But perhaps most importantly, the anticipation

of truly groundbreaking protein lowering strategies is cre-

ating opportunities for pharmaceutical companies to

attempt to test novel treatments for the SCAs. This is

providing the incentives to provide further funding for

clinical trials in the years ahead. These are exciting times

for SCA research with emerging optimism that treatments

will soon be brought to bear on these otherwise incurable

diseases.
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