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Manganese and iron deficiency in Southern Ocean
Phaeocystis antarctica populations revealed through
taxon-specific protein indicators

Miao Wu'2€, J. Scott P. McCain'®, Elden Rowland', Rob Middag® 3, Mats Sandgren® 2,
Andrew E. Allen® %> & Erin M. Bertrand® '

Iron and light are recognized as limiting factors controlling Southern Ocean phytoplankton
growth. Recent field-based evidence suggests, however, that manganese availability may also
play a role. Here we examine the influence of iron and manganese on protein expression and
physiology in Phaeocystis antarctica, a key Antarctic primary producer. We provide taxon-
specific proteomic evidence to show that in-situ Southern Ocean Phaeocystis populations
regularly experience stress due to combined low manganese and iron availability. In culture,
combined low iron and manganese induce large-scale changes in the Phaeocystis proteome
and result in reorganization of the photosynthetic apparatus. Natural Phaeocystis populations
produce protein signatures indicating late-season manganese and iron stress, consistent with
concurrently observed stimulation of chlorophyll production upon additions of manganese or
iron. These results implicate manganese as an important driver of Southern Ocean pro-
ductivity and demonstrate the utility of peptide mass spectrometry for identifying drivers of
incomplete macronutrient consumption.
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haeocystis antarctica (Prymnesiophyceae) grows in coastal

regions of the Southern Ocean and can dominate the

phytoplankton community; in the Ross Sea, Phaeocystis
can comprise >95% of the total phytoplankton biomass!-3.
Understanding the factors controlling Phaeocystis growth and
distributions is important because it differs considerably from
other phytoplankton types (e.g., diatoms) in biogeochemical and
ecosystem function!*°. For example, Phaeocystis takes up mac-
ronutrients in different ratios than other dominant plankton
types!, and is a key source of the dimethylsulfoniopropionate,
which can be converted into volatile dimethylsulfide, a key cli-
mate gas®. As such, Phaeocystis plays key roles in connecting the
ocean and atmosphere via carbon and sulfur cycles.

Phaeocystis thrives under conditions of low temperature and
variable iron (Fe) and light levels’8. Fe demand for photo-
synthesis is high®%, and can be elevated under low
irradiance! 12, In the Southern Ocean, surface water-dissolved Fe
concentrations are sub-nanomolar and can limit phytoplankton
growth!3-15, Previous studies examining the response of Phaeo-
cystis to low Fe observed decreased chlorophyll a, cell volume,
and altered colony formation®121617, although all these respon-
ses are variable across strains. There is a clear Fe-light-interactive
effect on growth rate and chlorophyll a in Phaeocystis'2, similar
to other phytoplankton!8,

Although it has received less attention as a productivity-
controlling nutrient, manganese (Mn) is an essential cofactor in
the oxygen-evolving complex, supplying electrons to the reaction
center of photosystem II'l. Mn can be a cofactor for enzymes
with superoxide dismutase activity, scavenging reactive oxygen
species (ROS) generated during photosynthesis, especially under
Fe-deficient conditions!'®. Indeed, interactions between Mn and
Fe demand have been reported for phytoplankton including
diatoms as well as cyanobacteria, suggesting an increased bio-
chemical requirement for Mn under low Fe availability20-24,

Like Fe, dissolved Mn concentrations in Southern Ocean can
be extremely low due to limited atmospheric input and high rates
of biological uptake!>2°. While Mn limitation may not be as
prevalent as Fe limitation26-27, cells experiencing low Fe in the
Southern Ocean will likely also encounter low Mn?8. Indeed, co-
limitation of Southern Ocean phytoplankton by Fe and Mn has
been suggested by several field studies?8-39, Given this and the
known biological interactions between these metals, Mn has the
potential to influence primary productivity in Southern Ocean,
particularly in concert with low Fe availability. Despite this, there
have been no studies examining molecular-level responses to Fe
limitation under low Mn concentrations in Antarctic
phytoplankton.

The importance of multi-nutrient interactions, for example,
Mn and Fe, remain poorly understood due to scarce experiments
and methodological limitations3!. Proteomic techniques offer
insights into such interactions as they enable quantification of
organisms’ or communities’ biochemical responses to multi-
nutrient stresses. In this study, we conduct culture-based
experiments to explore the effects of low Fe and Mn on P. ant-
arctica physiology and protein expression, examining the
hypothesis that low Mn availability will have important con-
sequences for Phaeocystis under low Fe. Additionally, we examine
Phaeocystis protein expression patterns along a time series in the
coastal Ross Sea, uncovering evidence of late-season Mn and Fe
deprivation in coastal Southern Ocean assemblages of
Phaeocystis.

Results
Cultured P. antarctica physiological responses. Phaeocystis was
grown semi-continuously under low light (25 umol photons/m?/s)
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Fig. 1 Phaeocystis antarctica physiological changes. Physiological response of
P. antarctica to variability in light, Mn, and Fe. High light (HL) was 230 puE/
m2/s!, intermediate (IL) was 70 pE/mz/s and low (LL) was 25 pE/mZ/s.
Each dot represents the value measured in one biological replicate for either
chlorophyll per cell, Fv/Fm, growth rate, or forward side scatter—a flow
cytometry-derived parameter that scales with cell size. Differences
between physiological response were analyzed via analysis of variance
(ANOVA) and Tukey's HSD (honestly significant difference) post hoc tests.
Letters denote significant differences in two separate tests: metal replete
with different light levels (italics, gray, columns 1, 2, 3), and low light with
different metal concentrations (columns 4, 5, 6, 7). If the ANOVA indicated
significant differences in means across treatments, pairwise differences
were tested for and visualized with different letters above each treatment:
treatments that have the same letter are not significantly different. n=3
biologically independent samples per treatment. Source data are provided
as a Source Data File

in a factorial matrix of high and low Fe and Mn concentrations, as
well as under conditions of intermediate (70 pmol photons/m?/s)
and high (230 ymol photons/m?/s!) irradiance with replete metal
availability. In the low irradiance treatments, P. antarctica grew
faster under high (+Fe + Mn: 0.33d1; +Fe —Mn: 0.36d~!) vs.
low Fe availability (—Fe+ Mn: 0.20d~!; —Fe — Mn: 0.26 d~1)
(Fig. 1). The cells tended to be smaller under low irradiance
(HL + Fe 4+ Mn vs. LL 4 Fe + Mn) and in response to combined
low Fe and Mn availability (—Fe—Mn vs. +Fe — Mn; —Fe—Mn
vs. +Fe + Mn), while Mn deficiency alone did not induce changes
in cell size (Fig. 1). Chlorophyll a decreased with increasing light
availability and declined under low trace metal availability at low
light. Both single and combined Mn and Fe deprivation sig-
nificantly lowered chlorophyll a content in P. antarctica cells
(Fig. 1). Similarly, the photosynthetic efficiency (Fv/Fm) of
P. antarctica cells was also drastically reduced by low Fe avail-
ability. When Fe was replete, Mn deficiency led to a 30%
reduction in Fv/Fm (Fig. 1).

Culture-based protein identification and expression analysis.
An isobaric labeling proteomics approach was applied to inves-
tigate shifts in global protein expression in P. antarctica asso-
ciated with Fe and Mn deprivation and changes in irradiance
(Supplementary Fig. 1). In total, 1568 unique proteins were
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Fig. 2 Proteomic response of Phaeocystis antarctica to variability in light, Mn, and Fe. a Hierarchical clustering (Pearson’s correlation, average linkage) of
samples using the expression patterns of proteins detected in all samples. b Hierarchical clustering (Pearson'’s correlation, average linkage) of the 60 most
abundant proteins differentially expressed in metal comparisons (standard scores shown). Source data are provided in Supplementary Data 1 (A) and the

Source Data File (B)

identified based on 122,640 and 116,320 spectra from MS run 1
and run 2 datasets (Supplementary Table 1). Two hundred and
eighty proteins were observed in all tandem mass tag (TMT)
channels, and were included in further analysis of differential
expression. Sequence ID, abundance scores, and annotation
information for these proteins are summarized in Supplementary
Data 1. The abundance scores were assigned after three nor-
malization steps; the results from each step are summarized in
Supplementary Fig. 2. A complete list of identified proteins and
peptides is given in Supplementary Data 2.

Hierarchical clustering of protein expression patterns in each
sample (Fig. 2a) illustrates that consistent treatment-based
responses to Fe and Mn deficiency and changes in irradiance
were detected in our proteome analysis. This analysis also
revealed that samples from Fe-replete cultures tended to be
clustered and separated from Fe-deficient samples: Fe was the
determinant of the first cluster node separation. Light and Mn
availability also drove sample clustering, secondary to Fe
availability. This demonstrates that Fe was the primary driver
of Phaeocystis protein expression changes. Differential expression
analysis revealed that Mn deficiency alone did not induce any
significant protein expression changes relative to the replete
cultures (Supplementary Figs. 3, 4). In contrast, Mn deficiency
combined with Fe deficiency induced a large number of protein

expression changes relative to Fe deprivation alone (Supplemen-
tary Figs. 3, 4). The Mn- and Fe-deficient cells displayed the most
dramatic protein expression changes relative to metal-replete
cells, suggesting that metabolic changes at the protein level
induced by combined low Fe and low Mn were larger and
different from the ones under low Fe alone (Supplementary
Figs. 3, 4). Increased irradiance (both intermediate and high light)
induced significant protein expression changes. More than half of
these changes are common to both intermediate light and high
light conditions relative to low light (Supplementary Figs. 3, 5).
Phaeocystis responses to low Fe have been investigated
in numerous previous culture studies; the vast majority of
these examine the impact of low Fe under replete Mn
conditions!7-32-34, Given that there are known interactive effects
between Fe and Mn use, combined low Fe and low Mn could have
a substantially different effect on the cells when compared to low
Fe alone. As shown in Figs. 2b and 3, photosynthetic apparatus
protein expression patterns were impacted by both irradiance and
metal availability. Most photosystem proteins quantified here
were repressed under low Fe availability at low light (Fig. 3), as
observed previously for P. antarctical’ and other photoauto-
trophs3>. While cytochrome c6 and ferredoxin proteins were
included in the protein reference database used here, they
were not detected in this study or in previous proteomic
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Fig. 3 Protein expression patterns in Phaeocystis antarctica photosystems. Expression patterns are shown under changing metal availability, with Phaeocystis
grown at an irradiance level of 25 pmol photons/m?2/s. Mean standard (Z) scores shown for each detected protein involved in photosynthesis under replete,
low iron (Fe), low manganese (Mn), and combined low Mn and low Fe conditions. These are displayed within a schematic representation of the photosystem
shown with the number of metal ions per macromolecule®'0. Treatments significantly different to replete treatments are indicated with black asterisks;
proteins differentially expressed between the low Fe vs. the low Mn and low Fe treatment are noted with a gray star. PsaA was detected and quantified using
modified search and quantification procedures as described in Methods. Full protein names and source data are shown in the Source Data File. Significant
differences were determined using empirical Bayes quasi-likelihood F test (with edgeR), where n=3 biologically independent samples per treatment

investigations!”. An examination of the peptides predicted to be
produced upon tryptic digestion of these proteins suggests that
they are amenable to mass spectrometry (MS) detection and are
likely to be identified in targeted analyses with lower limits of
detection such as selected reaction monitoring. Photosystem II
(water splitting complex) and cytochrome b6f complex (plasto-
cyanin reductase) proteins were detected and repressed by low Fe
at low light, consistent with Fv/Fm results (Fig. 1), and decreased
their expression levels with increasing light. Photosystem I
protein PsaA (detected using modified search and quantification
procedures as described in Methods) was repressed by low Fe and
showed decreased expression with increasing light level. Light-
harvesting and chlorophyll-binding proteins displayed variable
responses, with a subset being more highly expressed under low
Fe, some being highly expressed under low light, independent of
metal nutritional status, and the majority being repressed under
low Fe. Notably, one light-harvesting complex protein was highly
expressed under low Fe, but repressed under the combined low Fe
and low Mn condition. This protein, possibly belonging to the
LHCx4 clade, is also highly expressed under the high light
condition (Supplementary Data 1). No photosystem proteins
were significantly differentially expressed under low Mn alone;
only three photosynthetic proteins responded significantly to low
Mn when coupled to low Fe: the aforementioned light-harvesting
complex protein, flavodoxin, and cytochrome f of the b6f
complex. A limited response of photosystem proteins to changes

in Mn availability is consistent with previous work in cyano-
bacteria?2 and Chlamydomonas°.

Strikingly, flavodoxin levels are elevated and significantly
different from the replete treatments when cultures were
experiencing low Fe and high Mn, not when they experienced
low Fe and low Mn combined. In contrast, another Fe-starvation
indicator and replacement for Fe-containing electron shuttles,
plastocyanin, has expression levels that are significantly different
from the replete treatments and elevated under low Fe regardless
of Mn availability (Figs. 3 and 4). Both appeared to be insensitive
to irradiance (Fig. 4). These flavodoxin and plastocyanin
proteins were also shown to be Fe responsive in a previous
study, although their responses to Mn were not examined!”.
Flavodoxin expression, and its replacement of the iron-containing
electron carrier ferredoxin, has been used as a marker for
cellular responses to low Fe for decades, leading to key advances
in our understanding of the role of iron in global primary
production37-3°. While flavodoxin continues to be effectively
used to trace Fe nutritional status, especially in marine
cyanobacteria?®, there have been numerous nuances recently
added to our understanding of what flavodoxin expression
reveals about eukaryotic phytoplankton and their growth status.
For instance, flavodoxin has been duplicated in many diatom
genomes; only a subset, belonging to a distinguishable clade, is Fe
responsive, suggesting that one type of flavodoxin can replace
ferredoxin under low Fe conditions and another type plays a role
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Fig. 4 Plastocyanin and flavodoxin abundance. In Phaeocystis cultures,
plastocyanin levels are elevated under —Fe regardless of Mn availability,
while flavodoxin levels are elevated under —Fe only when cultures are Mn
replete, possibly reflecting flavodoxin's role in reactive oxygen species
(ROS) management. The expression of both proteins does not change
significantly as a function of irradiance level. Protein expression values
scaled from O to 1. Source data are provided in the Source Data File

unrelated to iron?l. Additionally, it is clear that in select
cyanobacteria and transgenic plants, flavodoxin responds to and
protects from other types of stress, not just low Fe availability; it
has been suggested that this can be explained by an additional
antioxidant role for flavodoxin#2. Our observation that under low
Mn, flavodoxin expression is not significantly elevated upon Fe
deprivation contributes another layer to this more nuanced
understanding of flavodoxin. This observation bears similarity to
previous work in cyanobacteria showing that in combined low Fe
and low Mn treatments, isiA, which is co-transcribed with the
flavodoxin gene isiB, is repressed relative to low Fe alone?3.

In the face of low iron availability, a key difference between
Mn-sufficient and -deficient conditions may be electron flux
through the photosystems?!. Under Mn sufficiency, water
splitting is maintained, allowing electron flow through photo-
systems; flavodoxin is upregulated and could pass on reducing
power through the electron transport chain eventually onto
reduced form of nicotinamide adenine dinucleotide phosphate
(NADPH) (or thioredoxin). This prevents excess reducing power
from being delivered to oxygen, preventing ROS generation*2, In
contrast, under Mn insufficiency in the low Fe condition,
photosynthetic electron flow is restricted, flavodoxin upregulation
may not be triggered, and overall NADPH production may be
reduced. The sustained electron flux under Mn sufficiency seems
to allow continued light-independent reactions, whereas under
Mn starvation it may not: downregulation of the Calvin-Benson
cycle enzyme phosphoglycerate kinase was only observed under
low Fe and low Mn (Supplementary Discussion, Supplementary
Fig. 6).

An inevitable consequence of electron flow through the
photosynthetic electron transport chain is the production of
ROS. Under high electron flux, we expect higher ROS production
rates, as in —Fe+ Mn compared with —Fe — Mn. Yet, our
proteomic data indicate that under —Fe — Mn, when we expect
electron flux to be lowest, oxidative stress appears to be highest.
We observed three signs of oxidative stress: (1) a nucleoredoxin-
like protein was upregulated under —Fe — Mn, which has been
observed to restore reducing power to antioxidant enzymes*3, (2)
an Hsp70 protein (DnaK) was upregulated under —Fe — Mn,
which prevents oxidative damage to unfolded proteins#4, and (3)

the antioxidant and regulatory protein peroxiredoxin was
upregulated under —Fe — Mn*>. Thus, it appears that there was
a mechanism to handle ROS production associated with electron
flux under Mn-replete conditions that may not function under
Mn deficiency. We hypothesize that Mn superoxide dismutase
may play this role. However, we did not detect this protein,
despite the high level of MS suitability predicted for its tryptic
peptides, suggesting that targeted approaches to quantify this
protein are required and should be implemented in future studies.
In addition, the lack of flavodoxin expression in the —Fe — Mn
condition has the potential to exacerbate this increase in oxidative
stress, as flavodoxin plays a role in shunting excess reducing
power to dissipative pathways in the cell, preventing ROS
generation*2, Taken together, our results indicate that Mn
sufficiency in the face of low Fe allowed continued electron flux
without high levels of oxidative stress, and flavodoxin is a key
shunt of this flux, therefore distinguishing between —Fe + Mn
and —Fe — Mn.

In contrast to flavodoxin, plastocyanin expression in P.
antarctica appears to be controlled by Fe nutritional status alone,
without additional impacts from ROS interactions under Mn
insufficiency. This direct relationship of plastocyanin with Fe is
consistent with previous work showing that, in cyanobacteria and
algae possessing both plastocyanin and cytochrome ¢, the
expression of these proteins appears to be controlled by the
relative availability of Fe and copper (Cu)3046; Cu is abundant in
our culture media and in the Southern Ocean (see Source Data
File)*’. Regardless of the mechanism behind differences in
flavodoxin and plastocyanin expression under low Fe depending
on Mn availability, we propose here that expression levels of these
Phaeocystis proteins can, together, be used as indicators of
combined Fe and Mn nutritional status in P. antarctica. High
plastocyanin and high flavodoxin together indicate low Fe and
replete Mn, whereas high plastocyanin and low flavodoxin
indicate low Mn and low Fe. We apply this observation to the
interpretation of targeted protein measurements in Southern
Ocean field samples below. Since Phaeocystis experiences a large
range of irradiance, the observation that plastocyanin and
flavodoxin expression patterns do not respond to changes in
light under conditions of metal sufficiency (Fig. 4) is important
for interpreting protein expression patterns in the field.

McMurdo Sound bioassays and targeted metaproteomics. As
shown in Fig. 5, bottle incubation bioassays conducted at the sea
ice edge in McMurdo Sound of the Ross Sea (Southern Ocean)
showed increased chlorophyll a production when either Mn or Fe
was added in the later growing season (15 January 2015), but not
in an earlier sampling event (28 December 2014). This late
timepoint had depleted concentrations of dissolved Mn and Fe
relative to the earlier timepoint (decreasing 19% and 53%,
respectively). These data suggest that the community on 28th
December was not experiencing stress or limitation due to low Fe
or Mn, while the community on 15th January was experiencing
stress or limitation due to low Fe and low Mn. Light microscopy
observations revealed that P. antarctica comprised most of the
phytoplankton community at the early timepoint and a sig-
nificant portion, along with diatoms and dinoflagellates, at the
later timepoint, as previously described*8. Measurements of two
plastocyanin peptides and one flavodoxin peptide, specific to P.
antarctica (Table 1; Supplementary Fig. 7) normalized to peptides
derived from a Phaeocystis protein with invariable expression
patterns (Rubisco small subunit protein; Supplementary Data 1),
reveal Phaeocystis-derived plastocyanin and flavodoxin expres-
sion patterns consistent with late-season Fe and Mn stress
(Fig. 5).
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Fig. 5 Transition into Mn and Fe stress. Southern Ocean protein expression
patterns, dissolved trace metal measurements, and bottle incubation
bioassays suggest that over the course of a 4-week time series in McMurdo
Sound, the phytoplankton community, Phaeocystis antarctica in particular,
transitioned from metal replete to a state of Fe and Mn stress. a Maps
demonstrating sampling location (black dot) and sea ice extent (blue) in
December 2014 (left) and January 2015 (right). b Bioassay results
(chlorophyll a production) upon Mn and Fe addition, relative to unamended
treatments (O) and initial chlorophyll concentrations (t0), shown with

in situ dissolved Mn and Fe concentrations. Dots represent a single
biological replicate, three independent biological replicates per treatment.
¢ Expression of metal-responsive Phaeocystis peptides flavodoxin and
plastocyanin normalized to constitutively expressed Phaeocystis-specific
peptides derived from the rubisco small subunit protein, given as mol/mol
(Table 1). Source data are provided in the Source Data File

Discussion

The classical understanding of flavodoxin expression is that low
flavodoxin indicates Fe sufficiency’. In contrast, we show here
that low flavodoxin expression in P. antarctica can result from
simultaneous Fe and Mn deprivation, and this Fe and Mn
interaction influences protein expression patterns in the Southern
Ocean. Flavodoxin and plastocyanin were both detected under all
conditions in our culture study, even the Fe- and Mn-replete
condition. This suggests that simple detection of either of these
proteins cannot be used as a signature of metal limitation for
Phaeocystis. However, examining changes in flavodoxin and
plastocyanin expression can, together, offer a description of Fe
and Mn nutritional status. Phaeocystis flavodoxin expression goes
down through the season: according to the culture results

presented here, this reflects either a transition into an Fe-replete
state or a state of combined low Fe and low Mn availability.
The state of late-season Fe and Mn stress can be identified
by simultaneously considering the plastocyanin expression
results, which show an increase that is consistent only with ele-
vated Fe stress.

By combining bottle incubation bioassays with Phaeocystis
flavodoxin and plastocyanin expression patterns, we suggest that
even coastal Southern Ocean Phaeocystis communities experience
physiological stress, reduced chlorophyll, and potentially limita-
tion of carbon assimilation due to both low Fe and low Mn
availability (Fig. 5). These experiments together suggest that the
stochiometric ratio of bioavailable Fe:Mn is a potential determi-
nant of whether Mn may limit primary productivity in this
region. The lack of an additive effect of Mn and Fe addition on
chlorophyll production may be explained by possible growth of
these bioassay communities into macronutrient limitation and/or
by simultaneous cobalamin (vitamin B,,) limitation of the com-
munity. Cobalamin stress was in fact observed at this same
location on 15th January*® and is not unusual in the Southern
Ocean®. Further work is required to understand the physiolo-
gical, ecological, and biochemical consequences of simultaneous
stress induced by low cobalamin, Fe, and Mn. Given that the
cobalamin-dependent enzyme MetH is highly and dynamically
expressed under changing metal and light availability in P. ant-
arctica (Fig. 2, Supplementary Data 1; upregulated under —Fe +
Mn but not under —Fe — Mn), the potential for interactive
effects is strong.

There are important interactions between phytoplankton and
co-occurring bacteria that govern Fe and cobalamin co-
limitation8, Since Mn is also required for surface ocean bacter-
ial metabolism®?, and its cycling is significantly impacted by
bacterially mediated Mn(II) oxidation’!, it is possible that
simultaneous stress by all three micronutrients may be intimately
related to bacterial community dynamics and interactions. This
highlights the importance of examining the molecular response of
bacteria and phytoplankton simultaneously in environmental
surveys and manipulative experiments designed to understand
and predict future changes in Southern Ocean productivity.

There is a growing body of geochemical?>30 and bioassay-
based? evidence that Mn availability may contribute to the high
macronutrient-low chlorophyll conditions in the Southern Ocean.
Here we provide a set of molecular measurements that extend this
emerging picture, documenting protein expression patterns
consistent with simultaneous Mn and Fe stress in P. antarctica, a
key component of Southern Ocean plankton communities. Future
work combining these molecular approaches with in-depth
photophysiological and biogeochemical studies should provide
additional insights into the synergistic role of Mn and Fe in
shaping Southern Ocean productivity. The molecular approach
we applied here demonstrated the utility of taxon-specific meta-
proteomic assessments of nutritional status via peptide MS.
Taken together, these results implicate Mn availability as an
important driver of Southern Ocean productivity and demon-
strate the utility of peptide MS as a tool for determining the role
of Mn in incomplete macronutrient consumption in the
Southern Ocean.

Methods

Phaeocystis cultivation and physiology measurements. Axenic P. antarctica
(CCMP3314, syn. CCMP1374 obtained from NCMA at Bigelow Laboratory for
Ocean Science, West Booth-bay Harbor, ME, USA) was cultured using aseptic and
trace metal clean techniques in modified artificial seawater medium Aquil* with a
final concentration of 20 uM POy, 440 uM NOs, and /2 vitamins in trace metal
clean polycarbonate flasks>>2. Trace metals were added with 100 uM EDTA%3; Mn
and Fe were manipulated as described below. Cultures were maintained under
light-limiting (low light) conditions (25 pmol photons/m?/s)!? as well as
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Protein, ORF i.d. Description

Table 1 Peptides for targeted selected reaction monitoring analyses

Peptide Produced by

Rubisco, small subunit Constitutively

contig_153894_99_518_— expressed
Rubisco, small subunit Constitutively
contig_153894_99_518_— expressed

Plastocyanin contig_159012_220_933_— Fe stress responsive

Plastocyanin contig_159012_220_933_—
Flavodoxin contig_205496_69_506_+

Fe stress responsive
Fe and Mn responsive

[K].AKPNFYVK Emiliania huxleyi, Phaeocystis globosa,
Phaeocystis antarctica
[K].QIQYALNK Prymnesiophyta
[K].GDSITWINNK Phaeocystis antarctica (all available sequenced
strains)

(all available sequenced strains)

Phaeocystis antarctica (all available sequenced

strains)

[K].GGPHNVVFVED AIPK
[KI.AWIAQIK

Cleavage sites are denoted with “." and amino acid residues in brackets were included in taxonomic affiliation analyses

intermediate (~70 pmol photons/m?/s, where maximum cell-specific growth rate is
observed in nutrient-replete conditions!>3%) and high light conditions (~230 pmol
photons/m?/s, where previous studies have documented growth rates slightly
reduced relative to maximal growth rates'234) on 12 h:12 h light:dark cycle, with
light supplied by white light-emitting diode (LED) at 2 °C.

For variable metal experiments, single precultures were acclimated at four
conditions (high Fe high Mn, high Fe low Mn, low Fe high Mn, and low Fe low
Mn, where high Fe =1 uM added FeCl;, low Fe = 0 added iron and 0.2 nM added
FeCls, high Mn = 48 nM added MnCl, and low Mn = 0 added MnCl,) for at least
10 generations. Fe levels were chosen according to previous reports®? in order to
achieve replete and Fe-limited conditions while preventing cell death due to metal
deprivation (no added Fe resulted in no Phaeocystis growth after seven generations,
so low Fe cultures for this experiment were provided with 0.2 nM added FeCl; after
six generations). For variable light experiments, P. antarctica cells under replete
nutrient and low light condition were inoculated into two new precultures. These
precultures were acclimated at two light conditions (intermediate light and high
light as above) on 12 h:12 h light:dark cycle, at 2 °C, for 10 generations before
inoculating to replicate cultures. In vivo chlorophyll a fluorescence was monitored
daily to estimate growth phase using the AquaFluor Handheld fluorometer (Turner
Designs).

Three replicate cultures (200 mL in 300 mL polycarbonate flasks) for each
condition were inoculated from the acclimated precultures to initial cell densities of
approximately 5 x 10® cells/mL. Concentrations of Mn and Fe in the replicate
experimental cultures were: high Fe = 1 uM added FeCls, low Fe = 0.2 nM added
FeCls, high Mn = 48 nM added MnCl,, and low Mn = 0 added MnCl,. Semi-
continuous cultivation was conducted to maintain cells in exponential phase.
Specifically, the high Fe and low Fe cultures were diluted to a cell density of 3 x 104
and 2 x 10% cells/mL, respectively, every other day, continuing until the growth
rate, and the dilution factor did not change by more than 10% for three consecutive
sampling events. Cell abundance and relative size were monitored via Accuri C6
flow cytometer (BD Sciences) after dissolving colonies to yield all single cells.
Phaeocystis colonies were dissolved by adding 0.2% HCl and incubating 35 min on
ice (procedure modified from ref. 34; solutions were monitored via light microscopy
to ensure that this treatment dissolved all colonies but did not lyse cells). Forward
scattered light and chlorophyll a autofluorescence were used for gating. Cells were
harvested on glass fiber (Whatman GF/F) and NucleporeTM cell culture track-
etched polycarbonate membrane filter (Whatman) via vacuum filtration and kept
at —80 °C for analysis of chlorophyll a and protein extraction, respectively.

Fv/Fm values (variable fluorescence to maximum fluorescence ratios) were
measured using PAM fluorometry after the cells were dark acclimated on ice for
20 min (DUAL-PAM-100; Heinz Walz GmbH). Chlorophyll a was extracted in
90% acetone from the glass fiber filters; concentration was determined via
fluorescence comparison to a standard curve>* using the AquaFluor Handheld
fluorometer (Turner Designs).

Physiological data (chlorophyll a, Fv/Fm, growth rate, cell size from flow
cytometry) were analyzed using an analysis of variance with a Tukey’s honest
significant difference post hoc test for pairwise comparisons. We tested the
influence of light (only metal replete treatments) and Mn/Fe (only low light
treatment) on these physiological response variables separately. Explanatory
variables (e.g., metal treatment) were considered fixed and categorical, and type I
error rate was set at a 5% significance cut-off. All statistical analyses were
conducted using the R programing language®.

Culture sample protein preparation. Proteins were extracted from frozen cells
(120 mL of culture) in 700 pL protein extraction buffer (0.1 M Tris-HCI, pH 7.5;
5% glycerol, 1% sodium dodecyl sulfate, 10 mM EDTA) by heating at 95 °C in
Eppendorf Thermomixer for 15 min. Then, the mixture was sonicated (120 W,
QSonica microprobe) for 15 s at 30% amplitude, followed by flash freezing in liquid
nitrogen. Sonication and flash freezing cycles were repeated two more times. After
centrifugation (14,000 x g at 4 °C for 20 min) of the extracted mixture, the super-
natant contained the proteins. The protein concentration was determined using
Micro BCA Protein Assay Kit (Thermo Scientific). One hundred micrograms of

protein aliquots was acetone precipitated at —20 °C. The precipitated protein
pellets were resuspended in 8 M urea and TEAB buffer (triethyammonium bicar-
bonate), reduced with 0.5 uL of 1 M dithiothreitol (DTT) at 56 °C for 30 min, and
alkylated by the addition of 1.5 uL of 1 M iodoacetamide in dark at room tem-
perature. One hundred nanograms of trypsin was added to each sample for further
digestion at 37 °C overnight. Sep-Pak C18 columns were used to desalt ahead of
TMT labeling, described below.

The peptide samples were labeled using the TMT-10plex Kit based on a minor
modification of the manufacturer’s instruction (Thermo Fisher Scientific), where
25% of the recommended TMT label was used; equal amounts of labeled peptides
from each sample were pooled in 0.01 M ammonium formate, 5% acetonitrile
(shown in Supplementary Fig. 1). In total, there were two separate pooled peptide
samples (TMT run 1 and TMT run 2), with two common reference samples
measured in both run 1 and run 2 (see Supplementary Fig. S1). Each pooled sample
was pre-separated by high pH reverse-phase (RP) liquid chromatography (Onyx
Monolithic C18 column 100 x 4.6 mm, Phenomenex) at 1 mL/min over 15 min
(gradient of 0-40% buffer B (0.01 M ammonium formate, 95% acetonitrile) and
100-60% buffer A (0.01 M ammonium formate, 5% acetonitrile)) and then to 100%
buffer B over 5 min, collecting 0.6 mL fractions. In total, 60 fractions were collected
along with the LC separation and were concatenated into 20 fractions by
combining fractions 1, 21, 31; 2, 22, 32; 3, 23, 33; 4, 24, 34; and so on, to improve
the orthogonality of RP-RP separation. These 20 fractions were subjected to online
liquid chromatography-MS (LC-MS) analysis as described below.

Liquid chromatography tandem MS. Peptide fractions were desalted, solubilized
in 12 pL of 1% formic acid, and analyzed by RP LC tandem MS (LC-MS/MS). For
each fraction, an aliquot of 1 pL of peptides was injected onto a 75 pm x 30 cm
column (New Objective, Woburn, MA) self-packed with 4 um, 90 A, Proteo C18
material (Phenomenex, Torrance, CA). Online chromatography was performed
using a Dionex Ultimate 3000 UHPLC (Thermo Scientific, San Jose, CA) at a flow
rate of 0.3 uL/min. Peptides were separated using a gradient of 3-35% acetonitrile
(0.1% formic acid) over 65 min, followed by 5 min in 95% acetonitrile (0.1% formic
acid). Column outflow was interfaced into the mass spectrometer via a Thermo
NS1 nanosource (Thermo Scientific, San Jose, CA). MS was performed using an
Orbitrap Velos Pro (Thermo Scientific, San Jose, CA) operated in data-dependent
mode. Survey scans (MS1) were performed using the Orbitrap over a scan range of
300-1500m/z and resolution setting of 30,000. A lock mass of 445.12003m/z was
used to achieve internal mass calibration. Based on MS! scans, MS? scans were
performed using the ion trap, selecting the top 10 most intense precursor (MS!)
ions for fragmentation by CID at 35% normalized collision energy with a precursor
isolation window of 2m/z. MS? scans were only collected on peptides with charge
states of 2+ or 3+ with a minimum MS! threshold of 3000 counts. Advanced gain
control settings were 5 x 10% for Orbitrap scans and 2 x 10 for ion trap scans.
Reporter ions were quantified by MS? using the most intense ion found in the MS2,
using higher-energy collision dissociation with 65 as normalized collision energy,
and scanned at 15,000 resolution on the orbitrap mass analyzer.

Protein identification and quantitative analysis. Raw spectral files from MS were
processed using Thermo Proteome Discoverer (version 2.1.1.21). SEQUEST sear-
ches were against a transcriptome assembly from P. antarctica strain CCMP137417
combined with a common contaminant dataset®®, setting 20 ppm and 0.5 Da mass
tolerances for precursor and fragment ions, respectively. Trypsin was set as the
specific enzyme for protein digestion and allowed to have maximum 2 missed
cleavages. N-terminal and lysine TMT 6-plex (4-229.16239) and cysteine carba-
midomethylation (+57.02146) were configured as static modification, and
methionine oxidation as dynamic modifications. Decoy database searches were
performed and a strict false discovery rate of 1% and maximum ACn of 0.05 were
applied and validated using Percolator®’. At least one unique peptide sequence was
detected from the protein database with high confidence. The highest-scoring
protein detected by longest peptide was identified as a master protein.
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For this extended multiplexed experiment, the TMT reporter ion intensities of
identified proteins were normalized via a three-step procedure®. Scripts to recreate
these analyses can be found at https://github.com/bertrand-lab/phaeo-mn-fe.
Briefly, we first normalized for sample loading and labelling reaction efficiency,
second to compare across the two TMT experiments, and third to scale using the
weighted trimmed means®®. Results from each successive normalization procedure
are shown in Supplementary Fig. 2. Only proteins observed in all TMT channels
(six treatments, three biological replicates) were included in analyses described
here, and the final normalized values (TMM) were used for determining
differential expression, conducting principle component analyses, and calculating
standard scores. Differential protein expression was determined by testing protein-
specific negative binomial generalized linear models®*¢!, with one explanatory
variable that has four levels (low Mn-low Fe, high Mn-low Fe, low Mn-high Fe, and
high Mn-high Fe) and no intercept. Dispersion estimates for each model were
obtained using Cox-Reid profile-adjusted likelihood. Each protein has a coefficient
that predicts whether a treatment increases or decreases its expression and an
empirical Bayes quasi-likelihood F test was applied, with Benjamini-Hochberg
correction, to determine significance of those coefficients. To determine differential
expression across treatments, a null hypothesis must be specified in the model (i.e.,
a comparative baseline). To examine protein expression profiles, we used both the
Fe/Mn-replete condition as a baseline condition and the Fe/Mn-deplete condition
(specific comparisons highlighted in Fig. 2). To examine the effect of different light
levels on protein expression, we conducted a separate analysis with just the replete
Fe/Mn conditions across light treatments, with low light as the comparative
baseline. All differential expression analyses were conducted in R, and we used a
type I error rate of 5% throughout.

A re-analysis of the mass spectra was conducted to enhance detection and
quantification of Photosystem I proteins PsaA and PsaB. The transcriptome
assembly sequences for PsaA and PsaB were removed and replaced with PsaA and
PsaB sequences from the P. antarctica chloroplast genome project (retrieved from
GenBank on 12 April 2019; YP_005088681.1 and YP_005088682.1). The
stringency of peptide identification and quantification filters were relaxed to allow
use of medium confidence peptides. Quantification was performed if reporter ions
were found in at least 19 sample channels, provided that there was at least one
peptide identified from that protein with high confidence in the dataset. Missing
values were imputed with half of the lowest measured value for the protein in
question. The resulting dataset was normalized as described above, and PsaA TMM
values were extracted for further analyses.

Field sampling. Sea surface microbial community samples were acquired at the sea
ice edge in McMurdo Sound of the Ross Sea from the same location (—77.62S,
165.41E) between 28 December 2014 and 22 January 2015. Large volume protein
samples (150-200 L) were acquired from 1 m depth on 28 December, 6 January, 16
January, and 22 January via sequential filtration through 3, 0.8, and 0.2 um of 142
mm Supor filters as described previously®2. Filters were placed in tubes containing
a sucrose-based preservative buffer (20 mM EDTA, 400 mM NaCl, 0.75 M sucrose,
50 mM Tris-HCl, pH 8.0). A small fraction of the 3 um protein samples acquired
were used for targeted peptide measurements described below. Bottle incubation
bioassays were conducted on 28th December and 15th January as previously
described®3, except with Mn and Fe as the manipulated micronutrients. Briefly,
water was collected via a trace metal clean diaphragm pump from 3 m depth and
distributed into trace metal cleaned carboys and cubitainers on the ice edge. Water
was brought back to the Crary Laboratory on McMurdo Station where it was
subsampled into twelve 300 mL polycarbonate bottles; select bottles were spiked
with 2nM Mn and 2 nM Fe to yield triplicate unamended treatments, +Fe, +Mn
and +Fe and +Mn treatments. Fe additions were made from a 1001 mg/L ana-
Iytical grade Fe stock in 2% nitric acid. This was diluted to a working stock in pH
2.5 milli Q water with hydrochloric acid. Fe was thus added to incubation bottles as
Fe(NOj3); in dilute hydrochloric acid. When 2 nM Fe was added, a negligible
amount of nitrate was also added (5.4 x 10~8 M). Mn additions were made using
an analytical standard, 1000 mg/L in 2% nitric acid. This was diluted to a working
stock in pH 2.5 milli Q water with hydrochloric acid. Mn was thus added to
incubation bottles as Mn(NO3), in dilute hydrochloric acid. When 2 nM Mn was
added, a negligible amount of nitrate was also added (5.3 x 1078 M). Bottles were
placed at 0-1°C in an indoor incubator with constant illumination at 80 uE/m?/s
and left unopened until harvesting for chlorophyll a determination after 7 or

8 days. Constant illumination was chosen since samples were collected during a
period of 24 h light and 80 pE/m?/s was chosen to approximate in situ conditions,
which were estimated assuming 40-60% light attenuation and mean surface irra-
diance at McMurdo station during the same time period the previous year.

Dissolved Fe and Mn determination in field samples. Samples were acquired as
described for the bottle incubation bioassays and filtered by hand using a trace
metal clean 60 mL syringe and 25 mm filter holder fitted with hydrochloric acid
cleaned 0.2 um polycarbonate membrane filters. Samples were stored at room
temperature and acidified with quartz-distilled HCI to a concentration of 0.024 M,
resulting in a pH of ~1.8. In the home laboratory, a volume of 30 mL sample was
pipetted into an acid cleaned FEP vial. An internal standard (indium and lutetium)
was added at a final concentration of 5nM (see refs. ©1:62 for details on the
method). Subsequently, 20 mL of the sample was extracted using an automated off-

line SeaFAST pre-concentration system® to remove the seawater matrix and pre-
concentrate the samples. The metals were eluted in 500 uL of 1.5 M quartz-distilled
HNO; into cleaned polyvinylidene fluoride or polyvinylidene difluoride sample
vials, which results in a pre-concentration factor of 40. Samples were analyzed
using a Nu Attom HR-SF-ICP-MS using wet plasma at a resolution setting of 4000.
Quantitative recovery using the SeaFAST system was verified by comparing the
slope of the calibration line obtained from standard additions to seawater with the
slope of standard additions done directly to untreated eluent acid®*. The accuracy
of the method was verified using GEOTRACES reference samples for which results
agreed with the consensus values® and the full dissolved metal dataset is provided
in the Source Data File.

Field sample preparation. Proteins were extracted from the filters as well as the
sucrose buffer. Filters were thawed on ice. The sucrose buffer was removed, con-
centrated, and buffer exchanged with a sodium dodecyl sulfate (SDS) extraction
buffer (8 mL; 0.1 M Tris-HCl, 5% glycerol, 10 mM EDTA, 3% SDS, pH 7.5) using
ultrafiltration (Vivaspin 5000 MWCO). This extraction buffer with the sample was
recombined with the original filter and rigorously homogenized using a sterile
surgical blade. An additional 4 mL of SDS protein extraction buffer was used to
rinse the blade into the sample tube. Samples were left on ice for 10 min, heated at
88 °C for 15 min at 350 RPM (Eppendorf Thermomixer C), and sonicated on ice
for 1 min (50% amplitude, 120 W, QSonica). We then incubated the samples at
room temperature for 1h. Solubilized protein was removed and centrifuged at
12,000 x g for 20 min to remove cell debris. Aliquots of solubilized protein were
acetone precipitated overnight, dissolved in 8 M urea, and gradually diluted with
50 mM ammonium bicarbonate to a final concentration of 1.6 M urea. Twenty to
70 pg protein aliquots (a small fraction of the total protein extracted) were reduced
(DTT), alkylated (iodoacetamide), and digested with trypsin for downstream
analysis as previously described®®.

Peptide selection for targeted MS. Proteins were selected for targeted analysis in
field and culture samples based on expression patterns as either constitutively
expressed or having diagnostic expression under Fe or Fe and Mn stress. Peptides
were selected as representative of those proteins based on (1) their detection in the
culture-based study and (2) their taxonomic specificity, that is, they are only
produced by P. antarctica or other very closely related organisms. Taxonomic
specificity was assessed via searching for exact peptide matches against NCBI’s nr
database on 1 June 2018, the MMETSP transcriptome library®’, and additional
available P. antarctica transcriptome assemblies!”. These peptides and their spe-
cificities can be found in Table 1.

Targeted LC-MS. Targeted MS was performed using a Dionex Ultimate 3000
UPLC system interfaced to a TSQ Quantiva MS, fitted with a heated, low flow
capillary ESI probe (HESI-II). The MS was operated with a spray voltage of 3500 V,
sheath gas 5, auxiliary gas 2, ion transfer tube 325 °C, vaporizer gas 70 °C, and a
Chrom filter setting of 10s. Protein samples (1-2 pg) was spiked with 20 fmol of
each heavy isotope-labeled peptide standard (described below) and loaded onto
5mm x 0.3 mm LD. C18 trapping column at 20 pL/min and then separated over a
150 x 0.3 mm ID RP column (Acclaim C18, 2 um, 100 A), 4-43% B over 40 min,
5 uL/min, 50 °C. Mobile phase A, 0.1% formic acid; B, 80% acetonitrile, 0.08%
formic acid. Isotopically labeled, heavy internal standard versions of each peptide
were synthesized by Thermo Scientific at >95% purity as determined by high-
performance liquid chromatography. Stock solution (100 uM) of peptide standards
were prepared in mixtures of acetic acid, acetonitrile and water, or 50 mM
ammonium bicarbonate in the case of acidic peptides. Selected reaction monitoring
(SRM) transitions were optimized by syringe infusing 1 uM solutions and executing
the Quantiva transition optimization tool. The method contained 80 transitions,
15 ms dwell time, Q1 and Q3 resolution was set to 0.7 (FWHM), automatically
calibrated RF lens setting, and a collision gas pressure of 2.5 mTorr. Each sample
was analyzed via triplicate injections. SRM parameters and details on heavy
isotope-labeled internal standard peptides can be found in Supplementary Table 2.
Targeted MS data was processed using Skyline®s.

Map preparation. For Fig. 5, sea ice data (shown by month) that were downloaded
from the National Snow & Ice Data Center (ftp://sidads.colorado.edu/DATASETS/
NOAA/G02135/). Maps were prepared in R using the maptools and rgdal
packages®70.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability

Mass spectrometry data are available via ProteomeXchange with accession number:
PXD010974. Processed mass spectrometry data are available in Supplementary Data 1
and 2. Field mass spectrometry data will also be available through the Ocean Protein
Portal at https://proteinportal.whoi.edu. The source data underlying Figs. 1, 2b, 3, 4 and 5
are provided as a Source Data File. The source data underlying Fig. 2a and
Supplementary Figs. 2-6 are provided in Supplementary Data 1.
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Code availability
Scripts to reproduce the analyses presented here are available at: https://github.com/
bertrand-lab/phaeo-mn-fe
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