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Abstract: Polymer-based nanoparticles of tailored size, morphology, and surface properties have
attracted increasing attention as carriers for drugs, biomolecules, and genes. By protecting the
payload from degradation and maintaining sustained and controlled release of the drug, polymeric
nanoparticles can reduce drug clearance, increase their cargo’s stability and solubility, prolong its
half-life, and ensure optimal concentration at the target site. The inherent immunomodulatory
properties of specific polymer nanoparticles, coupled with their drug encapsulation ability, have
raised particular interest in vaccine delivery. This paper aims to review current and emerging drug
delivery applications of both branched and linear, natural, and synthetic polymer nanostructures,
focusing on their role in vaccine development.

Keywords: polymer-based nanoparticles; drug delivery; targeted delivery; vaccine delivery; vaccine
adjuvants; novel nanocarriers

1. Introduction

The variety and versatility of polymeric materials have drawn increasing scientific
interest in their application in diversified fields [1–4]. In particular, polymer-based nanopar-
ticles were noted to have advantageous properties for biomedical uses [5]. Features such as
safety, stability, good solubility, tunable physicochemical characteristics, biocompatibility,
and biodegradability have recommended polymeric nanomaterials for use as vehicles for a
broad range of drugs, genes, vaccines, and biomolecules [6–8].

Either used alone, in blends, or combined with other types of materials, polymer-based
nanoparticles can offer protection to the attached cargos, prolong their circulation time,
ensure controlled and targeted release, and enhance cellular uptake efficiency [6,9–12].
Moreover, certain polymers’ innate antimicrobial, antitumor, or immunostimulant prop-
erties can amplify therapeutic outcomes of corresponding incorporated drugs and vac-
cines [13–16]. Thus, polymer-based nanoparticles can be employed in the prophylaxis and
treatment of various infectious, chronic, or genetic diseases [17–19].

In this regard, the present paper aims to present the natural and synthetic polymers
that are most relevant and most commonly used for delivery purposes, further reviewing
the recent advances in the delivery of different cargos and focusing, in more detail, on the
role of polymers in the development of vaccine formulations.

2. Polymers Used as Nanocarriers

Depending on their origin, two main categories of polymers can be distinguished: nat-
ural and synthetic polymers; a more detailed classification is provided in Figure 1. Natural
polymers possess superior biocompatibility to synthetic-based materials, as they occur in
nature and are fully renewable. In contrast, synthetic polymers are more appealing than
natural macromolecular compounds from the reproducibility point of view. Specifically,
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synthetic polymeric nanomaterials can be produced with negligible inter-batch variation,
being engineered with tunable chemical, mechanical, biological, and interfacial proper-
ties [11,20]. The features of the most relevant natural and synthetic polymers for delivery
applications will be further discussed in more detail.
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2.1. Natural Polymers
2.1.1. Chitosan

Chitosan is a highly researched material for polymeric nanocarriers, being a non-toxic,
biodegradable, hemocompatible, mucoadhesive polysaccharide generally recognized as
safe by the Food and Drug Administration (FDA) [21,23–25]. The abundance of hydroxyl
and amino groups from its backbone renders this material suitable for chemical modifi-
cations and targeted delivery to particular organs or cells [6,26,27]. Moreover, various
techniques can be employed for fabricating chitosan drug delivery nanosystems, including
ionic gelation, emulsion crosslinking, spray-drying, nanoprecipitation, emulsion solvent
diffusion, and reverse micellization method [28,29].

The intrinsic antitumor and antimicrobial properties of chitosan have attracted interest in
enhancing the efficacy of corresponding loaded substances [23,30]. To put the antitumor po-
tential of this material to use, particular attention has been drawn to the delivery of a plethora
of anti-cancer drugs [28] such as doxorubicin [31,32], paclitaxel [33–36], docetaxel [33,37,38],
tamoxifen [39,40], curcumin [40–43], cisplatin [44,45], and mitomycin C [46,47]. The result-
ing nanosystems are able to reduce side toxicity while increasing treatment efficiency [28].
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Besides, the antimicrobial activity of chitosan can be used in the development of novel
antibacterial [48–54], antifungal [55–58], and antiviral [59–62] formulations.

The mucoadhesive properties of chitosan can be especially exploited for mucosal drug
delivery [28]. Chitosan nanoparticles (CSNPs) are suitable for oral and nasal delivery of
vaccines and drugs. They produce only small steric obstruction, protect freight therapeutics
at the extracellular and intracellular level, prevent rapid clearance, and increase cargo
retention time in the mucosa [6,28,63]. CSNPs can also be employed in the ocular delivery
of drugs because their hydrophilic nature enhances stability, precorneal retention, and
increases interaction with eye mucosa [28,64]. Furthermore, CSNPs can ensure colon-
targeted delivery due to their tendency to dissolve in the acidic pH of the stomach and get
swollen in the intestinal pH [28].

Nonetheless, chitosan is insoluble at physiological pH. However, this drawback
can be overcome by chemical modification of the polymer to synthesize novel soluble
derivatives [65]. The active functional groups from the structure of chitosan can undergo
reactions such as hydroxylation, carboxylation, alkylation, acylation, and esterification that
help introduce pendant groups, destroy the crystal structure, and consequently enhance
the solubility of the resulted material. This possibility of facile modification expands the
chitosan application range and dosage form [23,66,67].

2.1.2. Dextran

The simple and unique features of dextran make it an ideal candidate for nanomedicine
carriers. Specifically, this FDA-approved biocompatible and biodegradable bacterial ex-
opolysaccharide is very soluble in water and shows no cytotoxicity after drug deliv-
ery [6,68,69]. In contrast to other polysaccharides, dextran is not degraded by salivary
amylase or malt amylase, only being broken down by dextranase found in the lumen
of the large intestine, liver, spleen, and kidney. Therefore, this material is suitable for
encapsulating drugs that must be protected throughout the stomach and small intestine,
requiring enhanced absorption of the intestinal epithelium [70].

Dextran derivatives (e.g., diethyl aminoethyl (DEAE)-dextran or acetylated dextran (Ac-
DEX)) are also promising for delivery applications, demonstrating adjuvant properties, and
generating robust immune responses when used as vehicles for vaccine delivery [65,69,71].

2.1.3. Alginate

Alginates (also known as sodium-alginates) are a class of unbranched anionic polysac-
charides that are attractive for transmucosal administration of drugs due to their mucoad-
hesive properties [6,21,72]. Moreover, alginate is an FDA-approved polymer that can be
orally administered or injected due to its low toxicity, biocompatibility, and biodegradabil-
ity [73]. In this context, alginate-based nanoparticles were reported as carriers for a broad
range of drugs, enzymes, and genes [74].

More recently, alginate biomedical applications were extended to the field of vac-
cine delivery [75]. Being stable in simulated gastric fluid, alginate nanoparticles can
be employed to encapsulate antigens, protecting them from enzymatic degradation and
facilitating their release [73].

2.1.4. Pullulan

Pullulan is another FDA-approved polysaccharide of interest for bio-nanomedicine.
It is non-toxic, non-mutagenic, non-immunogenic, and non-carcinogenic; thus, pullulan-
based nanoparticles have important scientific value, receiving great research interest in
designing excellent vaccine delivery systems [6,75–77]. In addition, pH-sensitive pullulan-
based nanocarriers can be employed in anti-angiogenesis and chemotherapy against hepa-
tocellular carcinoma, acting as targeted carriers of genes or proteins without presenting
cytotoxic effects to normal cells [75].
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Moreover, due to the presence of nine hydroxyl groups in its structure, pullulan can be
derivatized to enhance its utility in a broad range of applications, including drug delivery,
gene targeting, vaccination, medical imaging, and pharmaceutical dosages formation [75].

2.1.5. Hyaluronic Acid

Hyaluronic acid (HA) is another FDA-approved natural bioadhesive polymer that
has been widely investigated for constructing various functional delivery vehicles. Espe-
cially due to its mucoadhesive properties, HA can enhance the bioavailability of carried
substances through various delivery routes, such as ocular, nasal, and pulmonary ad-
ministration routes [78,79]. HA-based nanoparticles or nanoconjugates are considered
valuable candidates for drug delivery in cancer and atherosclerosis therapy [80]. Delivery
effects can be optimized as HA NPs allow selective binding to receptors, such as CD44 and
TLR4, which may trigger innate immune responses. Thus, HA site-specific drug delivery
systems are valuable options for the targeted release of anticancer drugs and subunit
vaccines [6,21,66]. Furthermore, HA structure benefits from ease of chemical modification,
extending its application possibilities in drug delivery by conjugating and functional-
izing with other molecules [78]. Particularly, their covalent conjugation with lipophilic
molecules (e.g., propargylated ferulate fluorophores linked to fatty-acid residues through
hexa(ethylene glycol) spacers) represents a promising path for creating self-assembled drug
delivery colloidal nanosystems [81].

2.1.6. Albumin

Albumin represents an appealing protein-based macromolecular carrier due to its
non-toxicity, non-immunogenicity, biocompatibility, easy incorporation of various drugs,
and ability to bind with proteins [21,82,83]. Albumin nanoparticles have been shown
to exhibit enhanced affinity for anti-cancer drugs, including paclitaxel [84–87] (FDA-
approved nanoformulation as Abraxane®/ABI-007 (Celgene) [88]), doxorubicin [87,89–92],
docetaxel [93–96], tacrolimus [87,97], and curcumin [98,99].

2.1.7. Poly(γ-Glutamic Acid) (γ-PGA)

γ-PGA is a bacterial-produced capsular exopolymer that can be degraded by γ-glutamyl
transpeptidase present in the human body. Its advantageous properties, such as low toxicity,
non-immunogenicity, biodegradability, and biocompatibility with tissues and cells, have
recommended γ-PGA for vaccine development and pharmaceutical applications. Specifically,
NPs composed of amphiphilic γ-PGA and hydrophobic amino acids are able to immobilize
proteins, peptides, and chemical agents on their surfaces or encapsulate these substances
inside the particles [73,100,101].

2.1.8. Other Natural Polymers

β-glucan is another FDA-approved natural polysaccharide of interest for biomedical
applications [102]. Particularly, its immunostimulatory properties are appealing for antigen
delivery and intensification of the immune response [103]. Moreover, β-glucan can be used
as a carrier for targeted drug delivery. Due to its stability, biocompatibility, and specificity,
this polymer can be successfully employed in cancer therapies, modulating body immunity
in the tumor microenvironment [104,105].

Mannan is also a natural polysaccharide endowed with immunomodulatory proper-
ties. When used as a vaccine adjuvant, this polymer can enhance the immune response,
especially against the human immunodeficiency virus (HIV) [103]. Other promising ap-
plications, for which mannan-based delivery systems have been investigated, include
glioblastoma therapy [106], alternative medicine in lung cancer [107], and hypolipidemic
medication [108].

The significant hydrophilicity and biocompatibility of cellulose are two main factors
that recommend this material for biomedical applications. Recent research demonstrated
that cellulose-based hydrogel has cross-sectional porous structures and viscoelastic proper-
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ties, important features in designing efficient vaccine delivery systems [109]. Specifically,
cellulose-based materials have been used as adjuvants for proteins, antigens, or DNA, lead-
ing to enhanced immune response [65,110]. Various forms (e.g., nanoparticles, nanowires,
or nanofibers) exhibited immunomodulatory properties as they increased the secretion of
pro-inflammatory cytokines [65,111,112].

Inulin is a complex natural and hydrophilic polysaccharide useful in the biomedical
field, especially due to its unique and flexible structure. Investigations have demon-
strated that high molecular weight inulin NPs can be employed to deliver drugs and other
molecules of interest. In particular, nanoparticle adjuvants derived from inulin are able to
enhance the immune response in vaccines against viruses, such as influenza and hepatitis
B [6,75,113].

Other natural polymers that have attracted research interest for delivery purposes
include, but are not limited to, glycogen [114–116], starch [114,117–120], lignin [121,122],
heparin [123,124], lentinan [14,125,126], and chondroitin sulfate [127–129].

2.2. Synthetic Polymers
2.2.1. Polyethyleneimine (PEI)

PEI is an FDA-approved synthetic cationic homopolymer, for human medical appli-
cations, that can be used as a transfection reagent or as a material for creating NPs with
high nucleic acid complexation capacity [130,131]. PEI has good aqueous solubility and
intrinsic pH buffering capacity in the endosomal/lysosomal pathway [132,133]. Due to
these favorable features, it can induce endosomal escape of carried agents by the “proton
sponge effect”, having a potent mucosal adjuvant activity for viral subunit glycoprotein
antigens and promoting antigen cross-presentation [100,130]. However, PEI presents some
drawbacks that limit its clinical use. This polymer is not biodegradable, and it exerts toxic
effects on cells [130,132]. The toxicity issue can be overcome by conjugating PEI to other
polymers, including CS, HA, cyclodextrins, and PEG, to produce safer nanoparticles that
can still facilitate endosomal escape [132].

2.2.2. Poly (Lactic Acid) (PLA)

PLA is a widely used FDA-approved synthetic polymer in biomedicine, especially for
preparing tailored size and shape micro and nanoparticles [6,101,134]. Its versatility, facile
synthesis from renewable resources, and biodegradability in extracellular environments
have attracted considerable research interest, resulting in numerous investigations for
PLA-based drug delivery vehicles [135]. Moreover, this polymer can be chemically altered
through interactions with adhesive proteins that endow the material with targeting ability
towards specific cells and tissues once it is placed in-situ [136].

2.2.3. Poly (Ethylene Glycol) (PEG)

Another FDA-approved synthetic polymer that gained significant interest for biomedi-
cal applications is PEG, especially due to its advantageous properties such as high solubility,
non-toxicity, and excellent biocompatibility [11,133,137]. Besides its stand-alone properties,
conjugation of PEG to proteins, peptides, and drug delivery systems is a widely employed
method for increasing the therapeutic effects of nano-biopharmaceuticals. Known as “PE-
Gylation”, this process endows the nanocarrier with the ability of modulated drug delivery
and release [138,139]. However, clinical manifestations of PEG allergy are often severe,
imposing attentive consideration concerning its administration and timely diagnosis to
prevent anaphylactic reactions [140–143].

2.2.4. Poly (Lactic-co-Glycolic Acid) (PLGA)

Due to its biodegradability, biocompatibility, and favorable safety profile, PLGA has
been approved by the FDA and European Medicines Agency (EMA) for various biomedical
applications, including drug and vaccine delivery [65,101,130,144,145]. Moreover, the
physicochemical characteristics of PLGA nanosystems can be fine-tuned extensively. This
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material can also be conjugated with PEG or polyetherimide to form block copolymers that
are able to self-assemble into micelles that can encapsulate hydrophobic molecules and
hydrophobic peptide antigens or proteins [18].

2.2.5. Poly-ε-Caprolactone (PCL)

PCL is one more FDA-approved, biocompatible, and biodegradable synthetic poly-
mer that has attracted attention for nanobiomedicine purposes [146]. Its inexpensiveness,
hydrophobicity, stability, and slow degradation pattern are several important features
that recommend PCL-based nanoparticles for mucosal antigen delivery and DNA deliv-
ery [6,147]. Compared to PLGA, PCL degrades very slowly and without subsequently
producing an acidic environment; thus, it is considered a promising adjuvant and carrier
candidate for different vaccines [147].

2.2.6. Polystyrene (PS)

Despite not being biodegradable, polystyrene nanoparticles (PSNPs) are also attractive
for biomedical purposes. PSNPs are biocompatible, do not induce inflammation, bind
to a range of antigens due to their easily modifiable surface, and generate CD8+T cell
responses specific to the delivered peptides [75,148]. Moreover, PS can be associated with
other polymers to create amphiphilic block copolymers that are stable in aqueous media,
while also being able to encapsulate hydrophobic bioactive substances [149].

2.2.7. Dendrimers

Dendrimers’ compact, well-defined, highly branched, and radial chemical structure
makes this class of synthetic polymers suitable for encapsulating various drugs [6,9].
Bearing multiple surface-accessible functional groups, dendrimers can be employed in cou-
pling with biologically relevant molecules. Moreover, their characteristic three-dimensional
structure, size, and surface charge enable them to interact with, and pass through, cell mem-
branes, making them better delivery vehicles than classical polymeric materials [6,130,150].
Nonetheless, the use of dendrimers in biological systems is hindered by their inherent
toxicity, mostly attributed to the interaction of surface cationic charge of dendrimers with
negatively charged biological membranes [151]. In particular, higher cytotoxicity has
been observed for higher-generation dendrimers and for cationic dendrimers, such as
poly(amido amine) (PAMAM) and poly(propylene imine) (PPI) [152]. To minimize their
toxicity, different chemical modifications can be performed on dendrimers’ surface (e.g., PE-
Gylation, acetylation) [151] or biocompatible molecules (e.g., maltose, maltotriose) can be
used to decorate the nanosystem’s outer shell [153].

2.2.8. Other Synthetic Polymers

Phosphazenes are attractive polymers for vaccine formulations. They can induce
strong and sustained antigen-specific humoral and cell-mediated immune responses, which
are considered better and safer options than conventional adjuvants [75].

Polyanhydrides represent another polymer class of interest for controlled release
products. These materials are biodegradable, biocompatible, safe, and approved for human
use. Specifically, polyanhydrides degrade through surface erosion, releasing non-toxic and
easily metabolized carboxylic by-products. Furthermore, this process of erosion that takes
place only at the surface of nanoparticles contributes to the tailored and sustained release
of encapsulated cargos [6,65]. Moreover, the surface of polyanhydride particles can be
easily functionalized [65].

Polyelectrolytes represent a class of polymers with charged functional groups in their
backbone, such as poly(allylamine hydrochloride) (PAH), poly (styrene sulfonate) (PSS),
polyacrylic acid (PAA), and poly(diallyl dimethyl ammonium chloride) (PDAC) [154].
Polyelectrolytes can be employed in delivery applications, such as glucose-responsive
nanocapsules for protein drug delivery [155], theranostic nanoparticles as MRI-visible drug
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delivery systems [156], ultrasound-sensitive nanocapsules for remote activated release of
biomolecules/drugs [157], and nanocontainers for antibiotic therapy [158].

Polymersomes have attracted increasing research interest as versatile carriers due
to their colloidal stability, tunable membrane properties, and capacity of encapsulating
various drugs and biomolecules. These vesicles made of self-assembling synthetic block
copolymers have tunable stability, degradation, and functionalization. They can deliver
hydrophilic compounds by incorporating them inside the vesicle or hydrophobic cargos by
membrane delivery [130].

Other synthetic polymers that have attracted research interest for delivery purposes
include, but are not limited to, poly β-hydroxybutyrate [159,160], polyurethane (PU) [161,162],
polyvinyl pyrrolidone (PVP) [163–165], poly (γ-glutamic acid) (PGA) [166,167], and poly-
methyl methacrylate [168–170].

3. Polymeric Nanoparticles Synthesis

Polymer-based NPs are one of the most commonly used forms of soft materials for
nanomedicine applications not only due to their versatility and the broad spectrum of
applications but also due to their facile synthesis [88]. Recent polymer chemistry progress
has allowed the preparation of tailored NPs with well-controlled structures (e.g., fine-
tuned size, shape, morphology) and compositions, which are essential factors in obtaining
vehicles for targeted delivery and controlled cargo release [171].

In drug delivery applications, two main categories of nanoparticles can be distin-
guished, namely nanocapsules (reservoir systems) and nanospheres (matrix systems)
(Figure 2). Nanocapsules present an inner core in which the freight is usually incorporated,
surrounded by a polymeric shell, whereas nanospheres are composed of a continuous poly-
meric network that can entrap the drug or absorb it onto the nanoparticle’s surface [172].
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Depending on the type of cargo to be delivered by the polymeric NPs and their
proposed administration route, different methods can be employed in the production of
nanospheres and nanocapsules [172]. The standard synthesis methods involve one of two
fundamental mechanisms: kinetically driven encapsulation, during nucleation and particle
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growth, and thermodynamically self-assembly. Out of these possibilities, the first one has
shown particular promise as it allows the encapsulation of large amounts of hydrophobic
drugs while preserving a narrow size distribution [175].

The first strategy used for manufacturing polymeric NPs from a preformed poly-
mer was the solvent evaporation method (Figure 3a), which leads to the formation of
nanospheres. It assumes the preparation of an oil-in-water emulsion, starting from an
organic phase (consisting of polar organic solvent, polymer, and drug) and an aqueous
phase (consisting of surfactant and water). Initially, dichloromethane and chloroform have
been most widely used as organic solvents, but due to toxicity considerations, they have
been replaced by ethyl acetate [172,176]. For obtaining small particle size, ultrasonication
or high-speed homogenization stages can be employed. This method is suitable for the
encapsulation of hydrophobic drugs [177]. A similar synthesis route for nanospheres
production is the emulsion/reverse salting method (Figure 3b), which mainly differs from
the previous method by the emulsion composition. Specifically, the organic phase is
formulated from a polymer, drug, and solvent miscible in water (e.g., acetone, ethanol),
and the aqueous phase contains salting-out agents and a stabilizer [176,177]. A derived
synthesis method, the emulsification/solvent diffusion technique (Figure 3c), can be used
for producing both nanocapsules and nanospheres [177]. This method assumes the forma-
tion of an oil-in-water emulsion between a partially water-miscible solvent (e.g., benzyl
alcohol, ethyl acetate), containing the polymer and the desired cargo, and an aqueous
solution with a surfactant [172]. This method may yield particles with a high encapsulation
efficiency of lipophilic and hydrophilic active substances, batch-to-batch reproducibility,
narrow size distribution, and ease of scale-up production [176,177]. In contrast to the
above-described methods, nanoprecipitation (also known as solvent displacement method
or interfacial deposition) (Figure 3d) requires two miscible solvents. The polymer and drug
are dissolved in a water-miscible solvent and further injected into an aqueous solution,
resulting in a colloidal suspension. The as-such-obtained nanospheres and nanocapsules
have a better-defined size, and a narrower size distribution, than the emulsification pro-
cesses [172,176,177].
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Other chemical methods for polymeric nanoparticles manufacturing involve the poly-
merization of monomers, instead of nanoparticles construction, from preformed polymers.
In this category, the most used techniques are emulsion polymerization and interfacial
polymerization, allowing simultaneous polymer synthesis and drug encapsulation [177].

Alternatively, physical methods can be used for polymer NPs manufacturing. One
such method is laser ablation, which uses a high-power laser beam to evaporate particles
from a solid material source. Similarly, pulse laser deposition (PLD) can be employed;
this method assumes that the target material is hit by high-power laser pulses, leading to
its melting, evaporation, and ionization. Another technique that provides flexibility and
control over surface parameters of the synthesized nanoparticles is electrospraying. The
synthesis process starts with a solution of polymer and solvent, placed in a syringe, and
the application of a high voltage to its capillary tip. The solvent is evaporated while the
particles or fibers are pushed to a collector [178].

More recently, polymer-based nanoparticles started being synthesized with the aid
of microfluidic devices. The small channel dimensions and the special geometry of these
devices allow the synthesis of high-quality nanocarriers in shorter times and with lower
consumption of reagents. Moreover, microfluidics technology brings better control over the
size, size distribution, morphology, and composition of the final products. Specifically, the
size, polydispersity, and drug encapsulation can be simply tailored by varying experimental
parameters such as flow rates, polymer composition, and polymer concentration [179].

4. Applications of Polymer-Based Delivery Nanosystems

Either alone, in blends, or in combination with other nanomaterials, polymer-based
nanoparticles can deliver a variety of cargos, including active pharmaceutical ingredients,
nucleic acids, imaging agents, antigens, and other biomolecules. This section reviews
the most recent advances in the development of polymer-based delivery nanosystems,
depending on the carried moieties.

4.1. Drug Delivery

For a drug to be released to the targeted cell, it must be hydrophilic enough to
travel through aqueous media and reach the cellular membrane but lipophilic enough to
cross this barrier and pass inside the cell. Due to the broad range of available materials
and the possibility of functionalization, polymeric materials can be tailored to adjust the
hydrophilicity of the drug formulation and deliver the cargo at the desired site. Moreover,
the versatility of polymer-based nanoparticles can ensure the delivery of encapsulated
drugs through a variety of administration routes, including oral delivery, ocular delivery,
nasal delivery, pulmonary delivery, buccal delivery, periodontal delivery, dermal and
transdermal delivery, and vaginal delivery.

Given the wide range of possible applications, increasing research interest has been at-
tracted to designing and testing polymer-based delivery platforms. Much effort has recently
been put into developing antimicrobial delivery systems that would enhance cargo activity
while overcoming drug resistance and diminishing systemic side effects [173,180–183]
(Figure 4).

Several such novel polymer-based delivery systems are reviewed in Table 1.



Materials 2021, 14, 6812 10 of 39

Materials 2021, 14, 6812 10 of 40 
 

 

most recent advances in the development of polymer-based delivery nanosystems, de-
pending on the carried moieties.  

4.1. Drug Delivery 
For a drug to be released to the targeted cell, it must be hydrophilic enough to travel 

through aqueous media and reach the cellular membrane but lipophilic enough to cross 
this barrier and pass inside the cell. Due to the broad range of available materials and the 
possibility of functionalization, polymeric materials can be tailored to adjust the hydro-
philicity of the drug formulation and deliver the cargo at the desired site. Moreover, the 
versatility of polymer-based nanoparticles can ensure the delivery of encapsulated drugs 
through a variety of administration routes, including oral delivery, ocular delivery, nasal 
delivery, pulmonary delivery, buccal delivery, periodontal delivery, dermal and transder-
mal delivery, and vaginal delivery. 

Given the wide range of possible applications, increasing research interest has been 
attracted to designing and testing polymer-based delivery platforms. Much effort has re-
cently been put into developing antimicrobial delivery systems that would enhance cargo 
activity while overcoming drug resistance and diminishing systemic side effects [173,180–
183] (Figure 4).  

 
Figure 4. Visual representation of antimicrobial resistance mechanisms (left) and antimicrobial activity of nanoparticles 
(right). Reprinted from an open-access source [173]. 

Several such novel polymer-based delivery systems are reviewed in Table 1. 

Table 1. Polymer-based delivery nanosystems for antimicrobial drugs. 

Delivery System Results Refs. 

Antimicrobial agent: Cinnamomum zeylan-
icum essential oil 
Polymer: Chitosan 
Other materials: - 

Enhanced antibacterial effect compared to free essential oil for all 
tested bacteria (Escherichia coli, Erwinia carotovora, and Pseudomo-

nas fluorescens) 
Highest sensitivity was obtained for P. fluorescens 

Maximum antibacterial activity was recorded for E. coli 

[52] 

Figure 4. Visual representation of antimicrobial resistance mechanisms (left) and antimicrobial activity of nanoparticles
(right). Reprinted from an open-access source [173].

Table 1. Polymer-based delivery nanosystems for antimicrobial drugs.

Delivery System Results Refs.

Antimicrobial agent: Cinnamomum zeylanicum
essential oil
Polymer: Chitosan
Other materials: -

Enhanced antibacterial effect compared to free essential
oil for all tested bacteria (Escherichia coli, Erwinia

carotovora, and Pseudomonas fluorescens)
Highest sensitivity was obtained for P. fluorescens

Maximum antibacterial activity was recorded for E. coli

[52]

Antimicrobial agent: Origanum syriacum essential oil
Polymer: Chitosan
Other materials: Zn(II)Salen

Good in vitro release profiles
Significant growth suppression of microbial species, in

the order Gram-positive bacteria > Gram-negative
bacteria > fungi

[55]

Antimicrobial agent: Nettle essential oil
Polymer: Chitosan
Other materials: -

Greater antioxidant activity than free essential oil
High antibacterial activity against Staphylococcus aureus

and Escherichia coli
[184]

Antimicrobial agent: Clove essential oil
Polymer: Chitosan
Other materials: -

Improved antioxidant and antibacterial activities
compared to free essential oil

High antibacterial activity against Listeria monocytogenes
and Staphylococcus aureus

[185]

Antimicrobial agent:
N′-((5-nitrofuran-2-yl)methylen)-2-benzhydrazide
Polymer: Chitosan
Other materials: Polysorbate, Lyoprotectants (lactose,
saccharose, glycine)

Potent antibacterial activity against Staphylococcus aureus
ATCC 29213, hVISA, and ORSA strains

Protective biofilm effect
[51]

Antimicrobial agent: Levofloxacin
Polymer: Chitosan
Other materials: -

High encapsulation and loading
Non-irritant and safe formulation for topical ophthalmic

use
Strong antibacterial activity against Pseudomonas

aeruginosa and Staphylococcus aureus

[49]
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Table 1. Cont.

Delivery System Results Refs.

Antimicrobial agent: Gentamycin
Polymers: Chitosan, Carbopol 974P
Other materials: -

Sustained drug release
Safe to the cornea; thus, suitable for ocular delivery

Improved patient compliance
Antimicrobial susceptibility against Staphylococcus aureus

and Escherichia coli

[186]

Antimicrobial agent: Gentamycin
Polymer: Chitosan
Other materials: Phosphatidylcholine

Antibiofilm activity through the damaging and removal
of pathogens (Listeria monocytogenes and Pseudomonas

aeruginosa)
Facilitated antibiotic permeation

Neglectable cytotoxicity

[187]

Antimicrobial agents: Polyphenol drugs (naringenin,
quercetin, curcumin)
Polymers: Chitosan, Dialdehyde cellulose
Other materials: L-histidine, Zinc oxide NPs

Sustained drug delivery
Potent activity antimicrobial activity against

Staphylococcus aureus and Trichophyton rubrum
[188]

Antimicrobial agent: Ampicillin
Polymers: Chitosan, Polyanions
Other materials: Phytic acid

High encapsulation efficiency
Adequate stability

Two-times higher antimicrobial activity than free
ampicillin against sensitive and resistant Staphylococcus

aureus strains

[189]

Antimicrobial agent: Silver sulfadiazine
Polymer: Supramolecular polyelectrolyte
complexes based on a cyclodextrin-grafted chitosan
derivative and carrageenan
Other materials: -

Controlled drug delivery (10 times slower drug release
than for pure silver sulfadiazine)

Strong antibacterial activity against Gram-positive
bacteria (Staphylococcus aureus and Enterococcus

durans/hirae) and Gram-negative bacteria (Klebsiella
pneumoniae and Escherichia coli)

[190]

Antimicrobial agents: Rifampicin, Ascorbic acid
Polymers: Alginate, Chitosan
Other materials: -

Facilitated antibiotic permeation and enhanced cell
uptake

Significant biocide activity against Staphylococcus aureus
strains

[191]

Antimicrobial agent: LysMR-5 endolysin
Polymers: Alginate, Chitosan
Other materials: -

Sustained drug release
Biphasic release profile

Enhanced bactericidal effect against Staphylococcus
aureus

[192]

Antimicrobial agent: Vancomycin
Polymers: Silk fibroin, Alginate
poly(N-isopropylacrylamide) (PNIPAM)
Other materials: Growth factor (EGF)

Supported proliferation and growth of fibroblasts
Sustained drug release

Higher release rate in an alkaline pH compared to
neutral pH during 10 days

Suitable for severe wound infections

[193]

Antimicrobial agent: Vancomycin
Polymer: Hyaluronic acid
Other materials: Oleylamine

Sustained drug release for 72 h
Moderate antibacterial activity against Staphylococcus

aureus and methicillin-resistant S. aureus (MRSA)
1.8 times higher MRSA cell death than for free drug

administration due to a stronger impact on the
bacterial membrane

[194]

Antimicrobial agent: Triphala Churna
(polyherbal formulation)
Polymer: Starch
Other materials: -

Excellent antibacterial activity against Salmonella typhi
and Shigella dysenteriae

Antibiofilm activity against methicillin-resistant
Staphylococcus aureus

Neuroprotective potential

[117]

Antimicrobial agent: SET-M33 peptide
Polymer: Dextran
Other materials: -

Effective against Pseudomonas aeruginosa
Acceptable cytotoxicity

Markedly improved lung residence time
[195]
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Table 1. Cont.

Delivery System Results Refs.

Antimicrobial agent: Titanium dioxide
Polymers: Heparin, Polyvinyl alcohol
Other materials: -

Good antimicrobial activity against Staphylococcus aureus
and Escherichia coli

Improved wound healing
Suitable for burn injuries

[196]

Antimicrobial agent: Pistacia lentiscus L. var. chia
essential oil
Polymer: PLA
Other materials: Surfactants (poly(vinyl
alcohol—PVA), lecithin—LEC)

Higher encapsulation efficiency was recorded for
PLA/PVA NPs than for PLA/LEC NPs

A gradual release of the carried agent was noticed for
the PLA/PVA NPs, while the PLA/LEC NPs exhibited a

more immediate release

[197]

Antimicrobial agent: Rifampicin
Polymers: PLA, Poly(L-lysine)
Other materials: -

High and superficial loading of the antibiotic
Effective delivery with a biphasic release profile

Slowed particle migration in the Staphylococcus aureus
biofilm thickness

Improved retention in the biofilm
Better antibiotic efficacy than for uncoated particles

[198]

Antimicrobial agents: Rutin, Benzamide
Polymers: PEG, PLGA
Other materials: -

Sustained release of rutin-benzamide for several days
Antibacterial activity against Staphylococcus aureus and

Pseudomonas aeruginosaAnti-biofilm activity through the
disruption of the bacterial membrane and

biofilm surface

[199]

Antimicrobial agent: Teicoplanin
Polymer: PLGA
Other materials: Specific aptamers

Targeted drug delivery
There were recorded a 32-fold decrease in minimum
concentration values for Staphylococcus aureus and a
64-fold decrease for moderately resistant strains, as

compared to free teicoplanin

[200]

Antimicrobial agent: Red propolis hydroethanolic
extract
Polymer: PLGA
Other materials: -

96.99% encapsulation efficiency
Biofilm inhibitory activity against Staphylococcus aureus

and Pseudomonas aeruginosa
[201]

Antimicrobial agent: Farnesol
Polymer: PLGA
Other materials: -

Increased irregular cell morphology, membrane and
wall damages, and large vacuoles were noted in Candida

albicans cells
Inhibited Candida growth and biofilm formation

57% reduced biofilm formation than free farnesol

[202]

Antimicrobial agents: Flavonoids (quercetin, rutin)
Polymer: PVP
Other materials: -

99.8% entrapment efficiency
Higher dissolution rate than unprocessed flavonoids [203]

Antimicrobial agent: Silver nanoparticles
Polymer: PVP
Other materials: -

Complete eradication of common otitis media pathogens
(i.e., Streptococcus pneumoniae and Haemophilus influenzae)

No in vitro cytotoxicity
[204]

Antimicrobial agent: N-diazeniumdiolates
(NONOates)
Polymer: Poly(oligo(ethylene glycol)methyl ether
methacrylate) (POEGMA)
Other materials: Glycidyl methacrylate (GMA)

Pseudomonas aeruginosa biofilm dispersal
Worm-like particles are more effective in the long term;
spherical NPs are better for faster delivery applications

[205]

As cancers remain one of the major health concerns worldwide, extensive research has
been oriented to developing better therapeutics for this category of diseases. Chemothera-
peutic drugs can be employed in the treatment of cancer patients, as they interfere with
the cell cycle and the process of mitosis, causing a greater proportion of cell kill in tumor
cells than in healthy tissues [206]. Nonetheless, large systemic doses of such aggressive
drugs may lead to drug resistance and adverse effects, while their repeated administration
requires a strict treatment schedule that must be adapted to the ability of healthy tissues
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to recover [207–209]. Thus, attention has been drawn to developing carrier systems that
allow a controlled release at the tumor site. Due to recent findings concerning the tumor
microenvironment, targeted solutions have been envisaged. Specifically, stimuli-responsive
delivery systems have been created to target the acidic pH and/or hypoxic environment
characteristic of tumor cells [210] (Figure 5).
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In this respect, polymeric nanoparticles have been investigated as carriers towards
various tumor cells, including breast [44,211–213], colon [91,214–217], gastric [169,218–220],
liver [116,221,222], bladder [46,223], skin [224,225], lung [36,92,226], prostate [94,227–229],
and ovarian [230–232] cancer cells (Table 2).

Table 2. Polymer-based delivery nanosystems for chemotherapeutic agents.

Delivery System Results Refs.

Chemotherapeutic agent: Mitomycin C
Polymer: Chitosan

Other materials: Mn:ZnS quantum dots

Diffusion mediated drug release
Efficient targeted drug delivery to cancer sites

Sustained drug release
Effective drug delivery system for non-muscle invasive

bladder cancer

[46]

Chemotherapeutic agent: Paclitaxel
Polymer: Chitosan

Other materials: Polystyrene templates

Sustained drug release
Good bioavailability

Marked inhibition of lung cancer cells proliferation
Promoted apoptosis of cancer cells

[36]

Chemotherapeutic agent: Cisplatin
Polymer: Chitosan

Other materials: Silver nanoparticles

High encapsulation efficiency
Specificity towards breast cancer cells

80% cancer cell death at less than 10 µg doses
Minimal cytotoxicity towards healthy cells

[44]
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Table 2. Cont.

Delivery System Results Refs.

Chemotherapeutic agent: Curcumin
Polymer: Chitosan
Other materials: -

High encapsulation efficiency
The drug was vastly released in the first 5 h, then gradually

release up to 90 h
Most cancer cells entered apoptosis phase after 72 h of

treatment with 150 µM of the drug-carrier system

[43]

Chemotherapeutic agents: Tamoxifen, Curcumin
Polymer: Chitosan

Other materials: Lipid

High encapsulation efficiency
High antioxidant effects

Inhibitory activity in the proliferation, growth, and
migration of cancer cells

[40]

Chemotherapeutic agent: Helianthus tuberosus extracts
Polymer: Starch

Other materials: Copper oxide NPs, Folic acid

High cytotoxicity to human breast cancer cells due to ROS
generation, nuclear damage, and reduction in mitochondrial

membrane potential
Activation of apoptosis-related protein expression

Increased penetration in target cells leads to enhanced
breast cancer therapy

[212]

Chemotherapeutic agent: Betulinic acid
Polymers: Cellulose, Polymethyl methacrylate

Other materials: -

High drug loading capacity
Slow drug release rate

Satisfactory antitumor activity both in vitro and in vivo
Improved cancer cell cytotoxicity

Reduced side-effects risk

[168]

Chemotherapeutic agents: Doxorubicin, Paclitaxel
Polymer: Alginate

Other materials: Oleic acid, Fe3O4

Increased stability and biocompatibility of the
drug-loaded nanocarrier

Faster drug release in the acidic medium than in a
neutral medium

Higher toxicity toward MCF-7 and HeLa cells than
free drugs

[233]

Chemotherapeutic agent: Doxorubicin
Polymers: Cellulose, Polyacrylamide

Other materials: Carboxymethyl-β-cyclodextrin, Folic acid

pH-dependent release behavior
Targeted drug release

High internalization of cellulose-based NPs lead to fast
cellular uptake

Reduced dose of doxorubicin and subsequently reduced
systemic toxicity

[234]

Chemotherapeutic agent: Doxorubicin
Polymer: Lentinan
Other materials: -

pH-responsive drug release
Enhanced anticancer effects in breast cancer cells

Decreased toxicity against healthy cells
[125]

Chemotherapeutic agent: Doxorubicin
Polymers: Glycogen, Polypyrrole

Other materials: Phospholipids

Efficient specificity and enrichment of
hepatocellular carcinoma

Controllable drug release to induce cell nucleus damage
Synergistic results in combination with

photothermal therapy
Reduced systemic toxicity

Efficient suppression of tumor growth

[116]

Chemotherapeutic agent: Doxorubicin
Polymer: Albumin
Other materials: -

Drug activity was suppressed under physiological pH, but,
in the presence of proteolytic enzymes, 40% of the

encapsulated doxorubicin was released from the particles
Reduced the metabolic activity of lung carcinoma cells

after 72 h
Up to 98% cell uptake in cancer cell lysosomal compartment

[92]

Chemotherapeutic agent: Doxorubicin
Polymer: Albumin
Other materials: -

Cytotoxicity in colon 26 cancer cultures
More pronounced in vivo anti-tumor activity than free drug

Suppression of metastasis
[91]
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Table 2. Cont.

Delivery System Results Refs.

Chemotherapeutic agent: Docetaxel
Polymer: Albumin

Other materials: 131I

80% of the drug was released at pH 7.4, whereas 93% of
docetaxel was released at pH 5.8

Accumulation of drug-carrier system in tumor cells
Suitable agent for nuclear imaging and radiotherapy of

prostate cancer

[94]

Chemotherapeutic agent: Docetaxel
Polymer: Albumin

Other materials: Nucleolin-targeted aptamers

Sustained drug release
Preferential uptake in nucleolin-expressing CT26 colon

cancer cells
Enhanced antitumor efficacy compared to non-targeted

drug delivery
Prolonged survival of the CT26-bearing mice

[96]

Chemotherapeutic agent: Docetaxel
Polymer: Albumin
Other materials: -

Higher permeability than free drug
Controlled drug release

Similar cytotoxicity against A549 cells to free drug
Lower systemic toxicity than solvent formulated docetaxel

[93]

Chemotherapeutic agent: Curcumin
Polymer: Albumin

Other materials:

Redox-responsive system and acidic pH-triggered
controlled delivery

Significantly accelerated drug release in the presence
of glutathione

Enhanced cellular uptake in MCF-7 cells resulting in higher
anticancer efficacy

[98]

Chemotherapeutic agent: Paclitaxel
Polymer: Chondroitin sulfate

Other materials: Quercetin, Chlorin e6

Redox-responsive system that allows controlled delivery
Synergistic results in combination with

photodynamic therapy
Effective in vivo multidrug resistance inhibition and

anti-metastasis efficacy

[129]

Chemotherapeutic agent: Docetaxel
Polymer: Chondroitin sulfate

Other materials: Alpha-tocopherol succinate (TOS),
Cystamine

Redox-responsive system that allows controlled delivery
Time-dependent qualitative and quantitative uptake by

melanoma cells
Safe carrier system

Enhanced antitumor activity as the drug was delivered
accurately, quickly, and thoroughly

[128]

Chemotherapeutic agent: Docetaxel
Polymers: PCL, Pluronic F108

Other materials: Near infrared dye

Diffusion mediated drug release
Increased accumulation of NPs in breast cancer cells

Superior targeted drug delivery system
[213]

Chemotherapeutic agent: Paclitaxel
Polymers: PLGA, Chitosan

Other materials: -

Sustained drug release
Faster drug release at pH 5.5 than at pH 7.4

Chitosan modification of PLGA NPs leads to increased
cellular uptake and cancer cell viability reduction

[235]

Chemotherapeutic agents: Curcumin, Niclosamide
Polymer: PLGA

Other materials: -

Much higher drug release at acidic pH 6.0 than at healthy
pH of 7.4

Dual drug-loaded particles exhibited a higher anticancer
effect than the bare mixture of drugs without PLGA

Effective drug-carrier system for MDA-MB-231 breast
cancer cells

[236]

Chemotherapeutic agent: Doxorubicin
Polymer: PVP

Other materials: Gold nanoparticles

Enhanced inhibition of lung cancer cells growth compared
to free drug

Increased ROS generation
Sensitized mitochondrial membrane potential

Induced both early and late apoptosis in lung cancer cells
Highly upregulated expression of tumor suppressor genes

[226]
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Table 2. Cont.

Delivery System Results Refs.

Chemotherapeutic agents: Quercetin, Gefitinib
Polymer: PVP

Other materials: Graphene oxide

Acceptable biocompatibility
Efficient drug loading
Improved drug release

Significantly more toxic than individual drug-loaded
systems and free drugs toward PA-1 ovarian cancer cells

compared to the toxicity toward IOSE-364 cells

[230]

Chemotherapeutic agent: Doxorubicin
Polymers: PMMA, Ovalbumin (OVA)

Other materials: Graphene oxide

Successful loading and controlled drug release
Higher swelling ratio of the carrier in acidic medium

resulting in increased delivery of the drug at pH 2.8 than at
normal pH

Anti-cancer effect on gastric cancer cells

[169]

Another attractive and effective cargo for polymeric nanoparticles is represented by
photosensitizer drugs and photothermal agents that can be used as adjuvant therapies
(e.g., photodynamic therapy, photothermal therapy) in a wide range of diseases [237–240].

Polymer nanoparticles are also useful for delivering drugs to hard-to-reach tissues
and organs. For instance, they can facilitate drug permeation to challenging anatomic
structures, such as the inner ear [241–244], retina [245–249], brain [250–254], and avascular
connective tissues [255–257].

4.2. Imaging Agent Delivery

Medical imaging is an essential part of clinical diagnosis, enhancing diagnostic ac-
curacy, enabling a faster start of treatment, and improving survival rates in many dis-
eases [258]. Moreover, synergistic outcomes can be obtained by combining conventional
imaging techniques with nanotechnology, especially when using nanoparticles as contrast
agents [259–261]. Nonetheless, uncoated metal-based nanoparticulate contrast agents may
induce toxicological reactions through ROS generation, the release of free metal ions, and
the production of aggregates that cannot be eliminated by the cells [261].

Thus, a convenient approach is to coat these NPs with biocompatible polymers. For
instance, Vu-Quang et al. [262] designed a nanosystem, based on SPION core covered with
a pluronic F127-folate coating, that can specifically target folate receptor-expressing cancer
cells—a promising candidate as a contrast agent in MRI. Similarly, Kania et al. [263] have
coated SPIONs with ultrathin layers of chitosan derivatives, obtaining suitable T2 contrast
agents for liver disease diagnostic. In another study by Amendola et al. [264], bimetallic
(silver-iron) nanoparticles were coated with PEG, offering promising results in terms of
biopersistency and contrast efficiency.

Another promising strategy is to deliver conventional contrast agents by polymer-
based vehicles. In this respect, Shao et al. [220] have proposed a carboxymethyl chitosan
4-hydroxymethyl-pinacol phenyl borate carrier encapsulated with indocyanine green and
modified with RGD. Their ROS-responsive nanosystem can be employed in near-infrared
imaging and photothermal therapy against gastric cancer. Another polymer-contrast
agent system possibility is offered by Ponsiglione et al. [265], who have delivered Gd-
DTPA with the aid of hyaluronic acid. Cheng et al. [266] have also approached Gd deliv-
ery using porous polymersomes (produced from self-assembly of polyethylene oxide-b-
polybutadiene (PBdEO) and polyethylene oxide-b-polycaprolactone (PEOCL)). The Gd was
conjugated to polyamidoamine (PAMAM) dendrimers via diethylenetriaminepentaacetic
acid dianhydride (DTPA dianhydride) before polymersome encapsulation.

Modern medical imaging can also benefit from polymers tagged with radionuclides
for molecular imaging of cancer in techniques such as positron emission tomography
(PET) and single-photon emission computed tomography (SPECT) [267]. For instance,
Gill et al. [268] have reported the synthesis of PLGA NPs surface conjugated to DTPA-hEGF,
encapsulating the ruthenium-based DNA replication inhibitor and radiosensitizer, and



Materials 2021, 14, 6812 17 of 39

labeled with 111In (Figure 6). The same radiolabel was used by Gorshkov et al. [269], who
conjugated it on N-vinylpyrrolidone-N-vinylformamide copolymers. In a recent study,
Huang et al. [270] have prepared 64Cu-labelled polymer that can detect small occult tumors
in mice’s brain, head, neck, and breast at much higher contrast 18F-fluorodeoxyglucose.
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4.3. Gene Delivery

Gene therapy and immune engineering are complex tasks that hold great promise in
treating various disorders. In this respect, nucleic acids can be employed for overexpressing
or knocking down specific genes and can be used as adjuvants or danger signals for
modulating the behavior of immune cells. Nonetheless, the direct delivery of nucleic acids
has several drawbacks, as naked nucleic acids are prone to extracellular degradation, and
they face difficulties in passing through the cell membrane [19,271,272].

In this context, increasing research has recently been focused on creating innovative
delivery systems that can ensure efficient and targeted delivery of nucleic acids. Among
the various tested materials, nanoscale polymers can embed or electrostatically absorb
nucleic acids at their surface through a suitable surfactant or cationic polymer addition [6].
Specifically, cationic polymers can form electrostatic nanocomplexes with nucleic acids,
which are highly negative, to facilitate their permeation into desired cells. In contrast, other
hydrophobic polymers can physically entrap nucleic acids within nanoparticles [19].

Having a positively charged chemical structure, PEI-based nanoparticles are exten-
sively used in gene delivery. However, despite its buffering capacity that can overcome
intracellular barriers, PEI use is limited by its toxicity [273,274]. Poly(L-lysine) is another
material that has attracted early gene delivery research, as it allows efficient binding to the
cargo. Nevertheless, it faces challenges in facilitating endosomal escape and releasing the
carried agents inside the cells [19].

Currently, lipid-based nanoparticles (LNPs) are the most clinically progressed nanoplat-
forms for delivering nucleic acids. Nonetheless, Blakney et al. [275] have compared the
efficiency of LNP to that of pABOL bioreducible polymer in self-amplifying RNA (saRNA)
delivery. Both tested platforms induced enhanced levels of IFN-γ, IL-12, IL-5, and TNF-α
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4 h after administration. The researchers obtained a higher humoral and cellular immunity
for LNPs, whereas a higher protein expression was observed for pABOL carriers. Thus,
each delivery vehicle is advantageous for a different niche of saRNA applications. Specifi-
cally, LNPs are more suitable for vaccine formulations, while pABOL nanosystems may be
employed in protein replacement therapies.

Another promising approach for nucleic acid delivery is employing lipid-polymer
hybrid nanoparticles (LPNs) [276–278]. For instance, Vencken et al. [279] have tested the
delivery of miR-17 to bronchial epithelial cells by LPNs, composed of PLGA and cationic
lipid 1,2-dioleoyloxy-3-(trimethylammonium)propane, noting minimal cytotoxic and pro-
inflammatory effects. LPNs can also be employed in gene therapy against drug-resistant
glioblastoma, as investigated by Yang et al. [280]. The researchers have recently constructed
LPNs loaded with CRISPR/Cas9 plasmids, targeting the MGMT gene, modified with the
cRGD peptide that effectively targeted overexpressed integrin αvβ3 receptors in tumor
cells, and restored the sensitivity of glioblastoma cells to temozolomide.

4.4. Vaccine Delivery

In general, vaccination represents the main method of preventing virus pathogenic-
ity, reducing the burden of many infectious diseases. Nonetheless, traditional vaccines
encounter several limitations, as they are susceptible to degradation, have a short duration
of action, and may cause side effects and inflammatory reactions at the injection site [6,11].
Moreover, an important number of infectious diseases and chronic disorders (e.g., human
immunodeficiency virus (HIV), healthcare-associated infections (HAIs), cytomegalovirus
(CMV), respiratory syncytial virus (RSV), tuberculosis, malaria, etc.) cannot be prevented by
conventional vaccines [18]. Thus, in recent years, modern bio-nanotechnology started being
involved in vaccine development towards creating new-generation formulations [12,281].
In particular, the use of polymer-based nanovaccines is considered a promising approach
in improving cross-presentation and enhancing vaccine potency against cancer, intra-
cellular bacteria, and virus infection [282,283]. The main advantages of polymer-based
nanovaccines are synthesized in Figure 7.
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One attractive approach is to employ polymer nanoparticles, in mucosal delivery
of vaccines, as a strategy to overcome some of the drawbacks of conventional vaccines.
Such nanovaccines can target both the mucosal and systemic immune systems, enhancing
humoral and cell-mediated immune responses, ensuring a sustained release, and protecting
the loaded freight against degradation [12]. In more detail, mucosal vaccine delivery may
stimulate cytotoxic T-cell responses along with secreted IgA, helping the host organism
identify and destroy pathogens before entering further into the body [11].

Due to their immunological activity and mucoadhesive properties, CS-based NPs
have been widely investigated in developing vaccines against Clostridium botulinum type A
neurotoxins, Naospora, hepatitis B virus, Newcastle disease, and more [6,285]. For instance,
Zhao et al. [286] have encapsulated Newcastle disease viruses (NDV) in N-2-hydroxypropyl
trimethyl ammonium chloride chitosan (N-2-HACC) nanoparticles and assessed their
potential as a mucosal immune delivery carrier. The newly developed nanosystems have
shown much stronger cellular, humoral, and mucosal immune responses than commercially
available live attenuated NDV vaccines.

Another example is offered by Dhakal et al. [287], who have proposed an innovative
vaccine delivery platform and tested it against several influenza A virus strains. The
researchers evaluated the immune responses and cross-protective efficacy of intranasal
administered CSNPs, encapsulated with inactivated SwIAV vaccine, in pigs. The results
showed an enhanced IgG serum antibody and mucosal secretory IgA antibody responses
in nasal swabs, bronchoalveolar lavage (BAL) fluids, and lung lysates that were reac-
tive against homologous (H1N2), heterologous (H1N1), and heterosubtypic (H3N2) viral
strains. Influenza vaccine formulations were also created by use of other bioadhesive poly-
mers [6,65], such as hyaluronic acid [288,289], alginate [290], starch [291], and poly(acrylic
acid) [291,292].

Another intranasal vaccine delivery system has been developed and investigated by
Hamzaoui and Laraba-Djebari [293]. Their study focused on PLGA NPs, loaded with
Cerastes venom for snake envenomation prevention, and their results confirmed this new
nano-formulation represents a potent adjuvant system that improves humoral immune
response while protecting against high lethal doses of viper venoms. A similar approach for
developing an antivenom vaccine was tackled by Mirzaei et al. [294]. The researchers used
CS NPs for loading Echis carinatus venom in order to stabilize it. Moreover, the obtained
antivenom plasma had a considerably higher potency for neutralizing the venom than
conventional delivery systems.

In an effort to prevent antibiotic-resistant pathogen infections, increasing attention has
been drawn to developing antibacterial vaccines [295]. In this respect, various nanoparticle-
based vaccines, against several bacteria, have shown promising results (Table 3).

Table 3. Examples of antibacterial vaccines comprising polymers in their formulation.

Pathogen Vaccine Formulation Results Refs.

Salmonella

Polymer: Chitosan
Other materials: Immunogenic outer

membrane proteins (OMPs),
Flagellin protein

Upregulation of TLRs, and Th1 and Th2 cytokines
mRNA expression

Enhanced specific systemic IgY and mucosal IgA
antibodies responses

Reduced Salmonella load in the intestines

[296]

Salmonella
Polymer: Chitosan

Other materials: OMPs,
Flagellin protein

Increased expression of TLR 2, TLR 4, IFN-γ, TGF-β,
and Il-4 mRNA expression in chicken cecal tonsils

Significantly higher OMPs-specific mucosal
IgA production

Enhanced lymphocyte proliferation response

[297]

Salmonella
Polymer: Poly (lactic acid)

Other materials: Vi polysaccharide
and r-flagellin of Salmonella typhi

Generated a strong immune response
Promoted antibody class switching

Produced memory antibody response from single
point immunization

Enhanced secretion of pro-inflammatory cytokine
TNF-α and IL-6, while decreasing IFN-γ production

[298]
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Table 3. Cont.

Pathogen Vaccine Formulation Results Refs.

Streptococcus pyogenes
Polymers: α-Poly-(L-glutamic acid),

Trimethyl chitosan (TMC)
Other materials: Peptide antigen

Higher systemic and mucosal antibody titers than
antigen adjuvanted with standard mucosal adjuvant
cholera toxin B subunit or antigen mixed with TMC

Reduced bacterial burden in nasal secretions,
pharyngeal surface, and nasopharyngeal-associated

lymphoid tissue

[299]

Streptococcus pyogenes
Polymer: Polyacrylate ester-based

dendritic polymer
Other materials: J14 peptide

Opsonization of pathogen
Self-adjuvanting potential [300]

Streptococcus pyogenes

Polymer: Poly (methyl acrylate)
Other materials: B-cell epitope J8,

universal T-helper Pan
HLA-DR-binding epitope peptide

Strong systemic and mucosal immune responses
after a single low-dose immunization

Opsonization of pathogen after a
second immunization

[301]

Streptococcus pyogenes

Polymers: Polyelectrolyte
complexes various formulations,
including alginate, chondroitin

sulfate, dextran, hyaluronic acid or
heparin, TMC

Other materials: Liposomes

Anionic polymers assisted in eliciting immune
responses while also working as complexing agents
PEC-heparin system induced higher antigen-specific
systemic IgG and mucosal IgA titers than all other

tested PECs

[302]

Streptococcus pyogenes

Polymer: Polyethyleneimine
Other materials: Liposomes

Lipidated B-cell epitope,
T-helper epitope

Significant mucosal and systemic immunity
Production of IgA and IgG antibodies [303]

Streptococcus pneumoniae
Polymer: Polymeric caffeic acid
Other materials: Pneumococcal

surface protein A (PspA)

Induction of PspA-specific antibody responses in the
mucosal and systemic compartments

Intranasal vaccination resulted in antigen-dependent
protective immunity against a lethal infection of

the pathogen

[304]

Streptococcus agalactiae
Polymer:

Poly(lactic-co-glycolic acid)
Other materials: CAMP factor

Induced a sustained increase od antibody titers
Mortality and bacteria counts were lower than in the

control group
No pathological lesions were detected

[305]

Pseudomonas aeruginosa
Polymers: Poly(lactic-co-glycolic

acid), Alginate
Other materials: -

Significant increase in total IgG and IgM antibodies
No cytotoxicity in lung, kidney, and liver [306]

Pseudomonas aeruginosa
Polymer: Poly(lactic-co-glycolic

acid), Alginate
Other materials: -

Significant decrease in the bacterial burden in
the spleen

Considerably increased opsonic activity
[307]

Pseudomonas aeruginosa Polymer: Polyhydroxyalkanoate
Other materials: Selected epitopes

Induced the production of functional antibodies
Lead to opsonophagocytic hilling

Induced an overall serotype-independent
immune response

[308]

Escherichia coli
Polymer: Chitosan, Dextran sulfate

Other materials: Vitamin E,
IutA protein

Improved formulation stability
Controlled release of the associated antigen

Higher IgG levels than in an
alum-adjuvanted vaccine

Stable formulation at room temperature for at least
3 months

[309]

5. Role of Polymer-Based NPs in Vaccine Development

Due to their extraordinary versatility, polymers play more than just transporter roles
in vaccine formulations. Polymeric nanoparticles may possess the dual capability of being
both the adjuvant and delivery vehicle, helping in controlled antigen release, inducing
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rapid and long-lived immunity, prolonging shelf-life at elevated temperatures, enhancing
patient compliance, and enabling the rapid development of vaccines for newly emerging
infectious disease viruses [10,65,75,310].

5.1. Vaccine Adjuvants

As many antigens are poorly immunogenic, adjuvants are added to vaccine formula-
tions to elicit/potentiate the immune response, offer better protection against pathogens,
and diminish the required antigen amount for obtaining immunity [12,100,281].

The most currently used adjuvants are aluminum-based (or alum compounds) adju-
vants and Freund’s adjuvants. However, despite their relative safety and long history of
use, aluminum salts may produce adverse effects, including erythema, nodules, contact
hypersensitivity, and granulomas. Other drawbacks of alum adjuvants are the bias towards
humoral immunity, the necessity of multiple doses, and incompatibility with many anti-
gens. Freund’s adjuvants also present important disadvantages, as the paraffin oil used
for these emulsions causes toxicity issues and produces severe local reactions [65,311–313].
Hence, better solutions had to be developed.

There are two main adjuvants types: antigen delivery systems (or depots) and im-
munostimulatory agents [130]. Some materials are even able to perform both roles simulta-
neously.

5.1.1. Antigen Delivery

A variety of polymeric carriers have been investigated for protecting antigens from
proteolytic degradation, enhancing antigen entrapment, obtaining a desirable release
profile, and targeting antigen-presenting cells (APCs) [144,147,283,314–316] (Figure 8).
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Figure 8. Activation of adaptive immunity by nanovaccines: uptake and presentation of antigenic subunit by APCs
elicit cell-mediated and antibody-mediated immune response, leading to apoptosis of infected cells and phagocytosis of
antibody–pathogen complex. Reprinted from an open-access source [18].

For instance, Wusiman et al. [317] have prepared antigen delivery carriers made of
CS-modified PLGA NPs, PEI-modified PLGA NPs, and ε-Poly-L-lysine (εPL)-modified
PLGA NPs. The particles were loaded with AHPP and OVA, exhibiting positive charge
after surface cationic polymers modification and demonstrating improved antigen loading
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capacity and stability (Figure 9). Moreover, these formulations allowed greater OVA
adsorption capacity, leading to a significantly increased lymphocyte proliferation, improved
CD4+/CD8+ T cells ratio, and secretion of cytokines (TNF-α, IFN-γ, IL-4, and IL-6),
antibodies (IgG), and antibody subtypes (IgG1 and IgG2a) in immunized mice.
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Cruz et al. [318] have also tackled the benefits of PLGA NPs antigen encapsulation.
The researchers have co-encapsulated resiquimod and tetanus toxoid peptide antigen in
PLGA NPs, obtaining a prolonged controlled release in the endosome. Their findings
demonstrated that the slower kinetics of antigen release is more effective for major histo-
compatibility complex (MHC) class II and I cross-presentation in dendritic cells, producing
stronger and more durable immune responses than soluble components.

By conjugating PLGA with PEG through a peroxalate ester bond and adding PEI as a
cationic adjuvant, Liang et al. [319] have synthesized an antigen delivery system that is both
ROS responsive and facilitates antigen uptake while diminishing the toxicity associated
with cationic adjuvants. The tested nanocarrier proved excellent loading capacity, in vitro
stability when encapsulating OVA model antigen, enhanced dendritic cell maturation,
improved antigen uptake, increased lysosomal escape, antigen cross-presentation, upregu-
lation of CD4+ and CD8+ T cell proportions, and increased memory T-cell generation.

PLGA has also shown promising results in combination with inorganic materials.
In particular, Saengruengrit et al. [320] have reported the successful synthesis of a delivery
system based on biocompatible nanocomposite particles of PLGA and superparamagnetic
iron oxide nanoparticles (SPIONs). When an external magnetic field was applied, the
SPIONs-PLGA system presented superparamagnetic activity, low toxicity, and good uptake
in macrophages and bone-marrow-derived primary dendritic cells (BM-DCs). Moreover,
the nanodelivery platform did not induce BM-DCs secretion of TNF-α, but it upregulated
MHC II, CD80, and CD86 expression and IL-12 and IFN-γ production.

Another widely studied biopolymer for antigen delivery is chitosan. In this respect,
Bussio et al. [321] have developed a core-shell structure, with an oily core and a surrounding
CS shell of a lower size, for transcutaneous vaccination (Figure 10). CS polymeric corona
offered protection to the cargo and exhibited high stability in different storage conditions,
along with a significant association of OVA as the model antigen.

Wang et al. [322] have investigated a system based on polydopamine nanoparticles
(Pdop-NPs) for subcutaneous antigen delivery as a vector in cancer immunotherapy. OVA
model antigen was grafted onto the nanoparticles to form a carrier system able to mi-
grate to lymph nodes and penetrate APCs. Furthermore, OVA-encapsulated Pdop-NPs
promoted the maturation of DCs, activated OVA-specific cytotoxic CD8+ T cells, and in-
duced the production of memory CD4+ and CD8+ T cells, thus considerably suppressing
tumor growth.
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Another promising delivery system tested for OVA encapsulation is based on lignin
nanoparticles. This adjuvant developed by Alqahtani et al. [121] was proven to be a safe
stabilizer for antigen formulation during preparation and storage. Moreover, the OVA-
encapsulated lignin particles showed no cytotoxicity, significantly higher antigen uptake in
dendritic cells, and stronger IgG antibody response than that induced by free OVA alum-
adjuvanted OVA, being a potential candidate for the induction of long-term immunity.

Lipid-polymeric hybrid delivery systems have also started to draw increasing scientific
interest. For instance, Miura et al. [323] have created a cholesterol-pullulan self-assembly
nanogel that they further modified by carboxylic group substitution to become negatively
charged. This innovative system has been shown to target APCs and release the loaded
antigen, inducing considerable adaptive immunity.

5.1.2. Immunomodulation

One way of enhancing the immune responses is to use a targeted delivery approach
to immune cells [324]. In this respect, Dowling et al. [325] have encapsulated a Toll-like
receptor (TLR) 8 agonist inside various poly(ethylene glycol)-bl-poly(propylene sulfide)
(PEG-bl-PPS) polymer-based nanostructures, allowing direct intracellular release after se-
lective uptake by DCs. TLR 8 agonist polymersomes led to similar newborn DC maturation
profiles to those induced by BCG and stronger IL-12p70 production, holding promising
potential for early-life immunization against intracellular pathogens. Following a similar
strategy for stimulating cellular immunity, Rajput et al. [326] have designed an inulin
acetate-based nanodelivery system to target DCs. The tested material exhibited potent
vaccine adjuvant properties, activating TLR 4 on multiple immune cells to secrete various
cytokines. Widmer et al. [327] proposed a novel carrier nanosystem that can ensure the tar-
geted delivery of resiquimod to the lymph node. The researchers successfully encapsulated
this TLR 7 ligand into methoxy poly(ethylene glycol)-b-poly(DL-lactic acid) (mPEG-PLA)
and mixed poly(DL-lactic-co-glycolic acid) (PLGA)/mPEG-PLA nanoparticles obtaining
good results in terms of cell (i.e., dendritic cells and macrophages) targeting and uptake.
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Moreover, the investigated particles are non-inflammatory and non-toxic on immune cells,
making them promising candidates for cancer immunotherapy.

Another strategy is to take advantage of the intrinsic immunostimulatory properties
of certain materials [9,154]. Several polymers, including PLGA, PS, CS, cellulose, lentinan,
and dendrimers, can enhance the immune effects of vaccine formulations [14,154,328,329].

The beneficial properties of such polymers can be harnessed for improving the im-
mune response for a broad range of vaccines. For example, inhalable polymeric particles
were designed for pulmonary delivery of the hepatitis B vaccine. Thomas et al. [330] have
created porous PLGA, as well as PLA NPs loaded with a specific antigen (i.e., HBsAg) that
induced enhanced immune responses. Dewangan et al. [331] have also designed an HBsAg
PLGA-loaded nanovaccine that demonstrated sustained release and better internalization
in macrophage and MRC-5 cell lines. The researchers have tested several single-dose ad-
ministration routes, obtaining the best results, in terms of immune-stimulating activity, for
the intramuscular route; particularly, the nanovaccine administered in this way produced
better humoral and cellular responses. An alternative intramuscular delivery system for
HBsAg antigen was proposed by Liu et al. [332], who produced PLA microparticles modi-
fied with didodecyldimethylammonium bromide that absorbed hepatitis-specific antigens
onto their surface. After three intramuscular injections with these particles, the level of
pro-inflammatory cytokines (IL-1β, IL-6, CCL2, and CXCL1) increased at the injection site,
the vaccine exhibiting ten times higher antigen-specific IgG titers than the group treated
with commercial alum-adjuvanted antigen.

Another vaccine, for which polymers have been shown to potentiate the immune
response, is tuberculosis (TB) vaccine. Khademi et al. [333] have combined the vaccine
for this disease with chitosan and tested the novel formulation on mice. The CS-based
TB vaccine demonstrated how parenteral and non-parenteral immunization lead to ap-
propriate immune responses, inducing both protective and cell-mediated (CD4 and CD8)
immune responses in the immunized animal models. Moreover, due to the mucoadhe-
sive properties of CS, non-parenteral immunization can be considered as a more effective
administration route.

Another highly researched topic is the development of an effective HIV vaccine. In
this respect, Dacoba et al. [334] have investigated if the covalent attachment of a pro-
tease cleavage site (PCS) peptide to polysaccharide-based nanoparticles, together with the
administration of polyinosinic:polycytidylic acid, enhanced the immune response. The
study obtained promising results, with strong activation of APCs, concluding that both
nanoparticle composition and the conjugation of the HIV peptide antigen contributed to
the generated humoral and cellular immune responses.

5.2. COVID-19 Immunization

As severe acute respiratory syndrome-associated coronavirus 2 (SARS-CoV 2), also
known as coronavirus disease of 2019 (COVID-19), has produced a public health crisis
worldwide with huge human and economic losses, concerted global efforts have been
employed in designing efficient vaccines [335–337]. As the genetic sequence of SARS-CoV 2
was made available in record time (within weeks after its discovery), the current vaccines
were developed with unprecedented speed, with the clinical trials of promising candidates
being completed within only a few months [17,336,338].

Nanomedicine played a tremendous role in COVID-19 vaccine development [339]. More-
over, the virus can be regarded as a functional nanomaterial, due to its nanometric size and
core-shell nanostructure [340,341]. Thus, various nanoplatforms, such as lipid nanoparti-
cles, polyplexes, dendrimers, cationic polysaccharide particles, and cationic nanoemulsions,
were tested for delivering nucleic acids in vaccine formulations [17,275,338,342]. Out of the
plethora of possibilities, lipid nanoparticles (LNP) are the most clinically advanced, both
Pfizer/BioNTech and Moderna COVID-19 vaccines being LNP formulations [17,275].

Nonetheless, polymer-based vaccine alternatives have also shown promising results.
For instance, Volpatti et al. [343] have created a subunit nanovaccine by conjugating SARS-
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CoV-2 Spike protein receptor-binding domain on the surface of polymersomes susceptible
to oxidation. This vaccine formulation conducted to strong humoral neutralizing response
to SARS-CoV-2 and robust T cell immunity.

Another strategy was adopted by Zhang et al. [344], who developed a core-shell
nanostructure with a core made of PLGA and a human-cell-derived shell sourced from cells
that are naturally targeted by SARS-CoV 2. The researchers demonstrated that the virus is
neutralized, after incubation with these nanosponges, and can no longer infect cells.

Polyamidoamines (PAMAMs) represent another promising strategy in the treatment
of COVID-19 [340], as it was demonstrated that they could prevent the cleavage of an-
giotensin and acute respiratory distress syndrome by binding to the ACE2 receptor [345].
Alternatively, chitin and chitosan can be used as delivery vehicles, as they have intrinsic
antiviral activities and immune-boosting effects [346]. Other antiviral macromolecules of in-
terest for COVID-19 drugs and vaccines are poly(vinylbenzoic acid), poly(vinylphosphonic
acid), PVP, and cyclodextrins [347].

6. Conclusions and Future Perspectives

To summarize, a multitude of natural and synthetic polymers can be used to design
useful delivery nanosystems for diverse therapeutics, imaging agents, antigens, and other
biomolecules. Their versatility and property tunability can be exploited for carrying the
necessary moieties to the desired site, even if the cells/tissues are challenging to reach by
conventional drugs. Moreover, polymeric nanoparticles allow a targeted and controlled
cargo release in response to changes in the pH, the oxygen level in the tissues, or binding
with specific receptors. Therefore, polymer-based systems are suitable for many therapies
against infections and chronic diseases, offering accurate diagnosis possibilities. This
review also explores the role of polymers in developing novel and improved vaccines,
especially mucosal administered formulations, for preventing various conditions, including
envenomation, hepatitis, tuberculosis, cancer, and COVID-19 infection.

Considering the recent advances in this field, it can be expected that the particles,
experimentally validated on animal models, would move to clinical trials. Nonetheless,
further research is required, as a small subset of the immune-activation cascade is usually
examined, while overall effects on human health may be neglected. Another challenge
that has to be soon overcome is translating from the lab to scale-up synthesis of polymeric
nanocarriers without compromising their quality and fine-tuned properties.

Furthermore, interesting possibilities arise at the convergence of nanotechnology with
other innovative fields, such as artificial intelligence and data analytics, that are promising
perspectives towards attaining personalized therapeutic and vaccine formulations.
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