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ABSTRACT: Novel thiophene-derived Schiff base ligand DE,
where DE is (E)-N1,N1-diethyl-N2-(thiophen-2-ylmethylene)-
ethane-1,2-diamine, and the corresponding M(II) complexes,
[M(DE)X2] (M = Cu or Zn, X = Cl; M = Cd, X = Br), were
prepared and structurally characterized. X-ray diffraction studies
revealed that the geometry around the center of the M(II)
complexes, [Zn(DE)Cl2] and [Cd(DE)Br2], could be best
described as a distorted tetrahedral. In vitro antimicrobial screening
of DE and its corresponding M(II) complexes, [M(DE)X2], was
performed. The complexes were more potent and showed higher
activities against Escherichia coli, Staphylococcus aureus, and
Pseudomonas aeruginosa, fungi Candida albicans, and protozoa
Leishmania major compared to the ligand. Among the studied
complexes, [Cd(DE)Br2] exhibited the most promising antimicrobial activity against all the tested microbes compared to its analogs.
These results were further supported by molecular docking studies. We believe that these complexes may significantly contribute to
the efficient designing of metal-derived agents to treat microbial infections.

1. INTRODUCTION
In recent decades, the emergence of microbial resistance to
antibiotics has been recognized as one of the biggest threats to
global health.1 Intensive research efforts are underway to
highlight effective and innovative metal-derived active agents as
potent antimicrobial drugs.2 Metals alter the thermodynamic
and kinetic properties of the complexes toward biological
receptors owing to a broad range of oxidation states, nuclearities,
and ligand architehtures.3 Metal complexes may employ their
effects by interacting with intracellular biomolecules, inhibiting
enzymes, enhancing the lipophilic character, and varying cell
membrane functions.4

Among the various ligands, nitrogen-containing ligands and
their metal complexes have been explored as viable compounds
for therapeutic and pharmacological purposes.5 In particular,
Schiff bases exhibit efficient bioactivity in a wide range of
biological applications.6 Much attention has been given to
ligands derived from Schiff base owing to their exceptional
structural and synthetic flexibility, fine tunability, and selectivity
toward the transition metal atom1,6,7 to form N,N′-bidentate,8
N,N′,X-tridentate, and N,N′,N″,X-tetradentate9 geometries.
Schiff bases regulate the performance of metals in a wide array
of useful catalytic transformations, such as catalytic activity in
the hydrogenation of olefins, ring-opening polymerization
(ROP) of cyclic olefins, and pharmacological and biological
applications.10 Metal complexes with Schiff base scaffolds

comprising heterocyclic moieties have gained notable attention
as broad-spectrum antimicrobial agents.11

Recently, thiophene12-derived Schiff base ligands have
become increasingly popular owing to their biological
significance. For instance, morpholine-(iso)thiosemicarbazone
Cu(II) complexes exhibit promising anticancer potential against
human ovarian cancer and antibacterial potential against
Staphylococcus aureus (S. aureus) with MIC50 values of 2−5 μg
mL−1.13 Moinuddin et al. recently studied N′-(3-
hydroxybenzoyl)thiophene-2-carbohydrazide-based Co(II)
and Cu(II) complexes, which exhibited remarkable cytotoxicity
in MCF-7 and HeLa cell lines and also had the antifungal and
antioxidant potential.11e Similarly, 2-aminomethylthiophenyl-4-
bromosalicylaldehyde-based Zn(II) complexes displayed MIC
values in the 0.06−9.9 μg mL−1 range for studied bacterial
species and in the 1.95−7.81 μg mL−1 range for studied fungal
species.14 Chohan et al. studied Ni(II), Co(II), and Cu(II)
complexes supported with thiophene-based diamines, which
exhibited promising antibacterial/antifungal potential against six
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fungal and bacterial strains.12b There is a dire need for the
development of novel and potent antimicrobial agents with
improved pharmacodynamic and pharmacokinetic character-
istics.15 The significance of thiophene-derived compounds, with
their wide range of biological properties, prompted us to design
new thiophene-derived C1-symmetric Schiff base ligand DE and
its transitionmetal complexes to be used as antimicrobial agents.
[M(DE)X2] complexes were synthesized and investigated for
their bactericidal, fungicidal, and leishmanicidal potential.

2. MATERIALS AND METHODS
2.1. Materials.All manipulations involved in the synthesis of

the ligand (DE), and the corresponding M(II) complexes,
[M(DE)X2], were accomplished using benchtop techniques
unless specified. Reagents, including thiophene-2-carbaldehyde,
N1,N1-diethylethane-1,2-diamine, copper chloride dihydrate
(CuCl2·2H2O), cadmium bromide tetrahydrate (CdBr2·
4H2O), zinc dichloride (ZnCl2), and drying agent magnesium
sulfate (MgSO4), were purchased from Sigma-Aldrich Corp.
Solvents used in synthesis such as methanol (MeOH), n-hexane
(n-hex), dichloromethane (CH2Cl2), diethyl ether (Et2O),
ethanol (EtOH), ethyl acetate (EtOAc), and dimethyl sulfoxide
(DMSO) were obtained from Merck and used as received. The
reagents for antimicrobial activities were purchased from Sigma-
Aldrich and used as received.
2.2. Instrumentation. Melting points of [M(DE)X2]

complexes were determined using an IA9100 Electrothermal
apparatus. The NMR spectrum was recorded on a Bruker
Avance III spectrometer (500 MHz for 1H NMR and 125 MHz
for 13C NMR) (Figures S1−S6). Tetramethylsilane (TMS) was
used as an internal standard, and chemical shifts are recorded in
ppm units (δ); coupling constants (J) are reported in Hertz
(Hz). The FTIR spectra of DE and its corresponding
[M(DE)X2] complexes were recorded on a Bruker FT/IR-
Alpha (neat; cm−1) (Figure 1 and Figures S7 and S8). Elemental
analysis of complexes, [M(DE)X2], was achieved using an EA-
1108 Carlo-Erba elemental analyzer (Figure S9). Molar
conductance (Ω−1 cm2 mol−1) in DMSO (1 × 10−5 M at
room temperature) solution was determined using a Digital

Multi-meter 73301. The electronic absorption spectra of the
ligand and corresponding M(II) complexes in the DMSO
solution (1 × 10−3 M) were recorded using a Cary-50 UV−
Visible spectrophotometer. Thermogravimetric analysis was
performed on a thermal analyzer (TGA-Q500) with mass loss
measurement from 25 to 900 °C under a N2 atmosphere at a
heating rate of 10 °C min−1.
2.3. Synthesis. 2.3.1. N1,N1-Diethyl-N2-(thiophen-2-

ylmethylene)ethane-1,2-diamine (DE). A CH2Cl2 solution of
2-thiophenecarbaldehyde (2.77 g, 24.75 mmol) was added to a
CH2Cl2 solution of N1,N1-diethylethane-1,2-diamine (3.00 g,
24.75 mmol) and stirred at 25 °C for 48 h. TLC was used to
check the progress of the reaction (n-hex:EtOAc, 2:8 as a
developing solvent). The reaction mixture was washed with
aqueousNaCl solution (10.0mL× 2), and the separated organic
layer was treated with MgSO4 as a drying agent and filtered. The
solution was concentrated to furnish a light brown oil liquid.
Vacuum distillation was carried out to get the final product as a
lemon color oil (3.50 g, 93%). 1H NMR (500 MHz, CDCl3,
ppm): δ = 8.38 (1H, s, N=CH), 7.38 (1H, td, J = 4.29 Hz, 1.34
Hz, Ar-H), 7.29 (1H, dd, J = 4.44 Hz, 2.96 Hz, Ar-H), 7.06 (1H,
m, Ar-H), 3.68 (2H, m, (=N-CH2)), 2.76 (2H, m, (CH3-CH2)2-
N-CH2), 2.59 (4H, q, J = 7.31 Hz, (CH3-CH2)2-N), 1.04 (6H, t,
J = 7.31 Hz, (CH3-CH2)2-N). 13C NMR (125 MHz, CDCl3,
ppm): δ = 154.7 (-N=CH-), 142.48 (Ar-C), 130.0 (Ar-C), 128.5
(Ar-C), 127.1 (Ar-C), 59.4 (=N-CH2), 53.3 (CH2-N-CH2-
CH3), 47.4 (CH2-N-(CH2-CH3)2), 11.9 (CH2-N-(CH2-
CH3)2). UV−Vis (DMSO; 1 × 10−3 M): 283 (n → π*); 268
(π → π*). FTIR (cm−1): ν(C−H; sp2) 2967 w; ν(C−H; sp3)
2930 w; ν(C=N) 1633 s; ν(C=C)thiophene 1432 m; δ(C−H; sp3)
1329 w; ν(C−N) 1027 s; ν(C−S) 857 w.

2.3.2. (E)-N1,N1-Diethyl-N2-(thiophen-2-ylmethylene)-
ethane-1,2-diamine Dichloro Cu(II) Complex, [Cu(DE)Cl2].
An EtOH solution of DE (1.00 g, 4.60 mmol) was added
dropwise to an EtOH solution of CuCl2 (1.06 g, 4.60 mmol) at
room temperature. A green precipitate appeared while stirring at
25 °C for 2 h. The precipitate was filtered and washed with cold
EtOH (10.0 mL × 2) and Et2O (10.0 mL × 2) to yield the final
product (1.50 g, 88%). MP (°C): 150. Elemental analysis:

Figure 1. FTIR spectrum of DE (top) and [Zn(DE)Cl2] (bottom).
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C11H18Cl2CuN2S (%): C, 38.32; H, 5.26; N, 8.12; Found: C,
38.39; H, 5.43; N, 8.45. UV−Vis (DMSO; 1 × 10−3 M): 281 (n
→ π*); 265 (π → π*). FTIR (cm−1): ν(C−H; sp2) 2951 w;
ν(C−H; sp3) 2867 w; ν(C=N) 1633 s; ν(C=C)thiophene 1463 m,
1386m; δ(C−H; sp3) 1387 w; ν(C−N) 1217 s; ν(C−S) 805 w.;
ν(M−N) 572 w. Molar conductivity in DMSO (1.0 × 10−5 M;
Ω−1 cm2 mol−1): 13.

2.3.3. (E)-N1,N1-Diethyl-N2-(thiophen-2-ylmethylene)-
ethane-1,2-diamine Dichloro Zn(II) Complex, [Zn(DE)Cl2].
[Zn(DE)Cl2] was synthesized according to the similar
procedure described for [Cu(DE)Cl2] except utilizing an
EtOH solution of ZnCl2 (0.627 g, 4.60 mmol) to get a white
crystalline solid as the final product (1.50 g, 92%). Single crystals
of [Zn(DE)Cl2] suitable for X-ray diffraction analysis were
obtained by layering n-hex on the CH2Cl2 solution of
[Zn(DE)Cl2] . MP (°C): 183. Elemental analysis:
C11H18Cl2N2SZn (%): C, 38.12; N, 8.08; H, 5.23. Found: C
38.28; N 8.00; H 5.24. 1H NMR (500 MHz, CDCl3, ppm): δ =
8.54 (1H, s, N=CH), 7.91 (1H, m, Ar-H), 7.78 (1H, d, J = 4.98
Hz, Ar-H), 7.21 (1H, m, Ar-H), 3.85 (2H, m, CH3-CH2)2-N-
CH2), 3.25 (2H, sextet, J = 14.09 Hz, 7.31 Hz, (CH3-CH2)2-N),
3.03 (2H, t, J = 6.59 Hz, (CH3-CH2)2-N-CH2) 2.92 (2H, sextet,
J = 14.09 Hz, 8.05 Hz, (CH3-CH2)2-N), 1.21 (6H, t, J = 7.34 Hz,
(CH3-CH2)2-N). 13CNMR (125MHz, CDCl3, ppm): δ = 162.0
(-N=CH-), 136.8 (Ar-C), 135.5 (Ar-C), 128.7 (Ar-C), 128.5
(Ar-C), 59.1 (=N-CH2), 52.1 (CH2-N-CH2-CH3), 44.5 (CH2-
N-(CH2-CH3)2), 8.26 (CH2-N-(CH2-CH3)2). UV−Vis
(DMSO; 1 × 10−3 M): 280 (n → π*); 263 (π → π*). FTIR
(cm−1): ν(C−H; sp2) 2974 w; ν(C−H; sp3) 2876 w; ν(C=N)
1631 s; ν(C=C)thiophene 1427 m, 1340 m; δ(C−H; sp3) 1341 w;
ν(C−N) 1226 s; ν(C−S) 851 w; ν(M−N) 566 w. Molar
conductivity in DMSO (1.0 × 10−5 M; Ω−1 cm2 mol−1): 11.

2.3.4. (E)-N1,N1-Diethyl-N2-(thiophen-2-ylmethylene)-
ethane-1,2-diamine Dichloro Cd(II) Complex, [Cd(DE)Br2].
[Cd(DE)Br2] was synthesized according to the similar
procedure described for [Zn(DE)Cl2] except utilizing CdBr2·
4H2O (1.06 g, 4.60 mmol) to yield a white solid as the final
product (1.53 g, 90%).MP (°C): 151. [Cd(DE)Br2] suitable for
X-ray diffraction analysis were obtained by layering n-hex on the
CH2Cl2 solution of [Cd(DE)Br2]. Elemental analysis:
C11H18Br2CdN2S (%): C, 27.38; H, 3.76; N, 5.81: Found C,
27.51; H, 3.71; N, 5.86. 1H NMR (500 MHz, CDCl3, ppm): δ =
8.61 (1H, s, N=CH-), 7.70 (1H, d, J = 4.79Hz, Ar-H), 7.65 (1H,
d, J = 3.65 Hz, Ar-H), 7.19 (1H, m, Ar-H), 3.85 (2H, m, (CH3-
CH2)2-N-CH2), 3.18 (2H, m, (CH3-CH2)2-N), 3.00 (2H, m,
(CH3-CH2)2-N-CH2), 2.92 (2H,m, (CH3-CH2)2-N), 1.21 (6H,
t, J = 6.66 Hz, (CH3-CH2)2-N). 13C NMR (125 MHz, CDCl3,
ppm): δ = 161.6 (-N=CH-), 136.2 (Ar-C), 135.1 (Ar-C), 133.6
(Ar-C), 128.3 (Ar-C), 54.8 (=N-CH2), 53.3 (CH2-N-CH2-
CH3), 45.3 (CH2-N-(CH2-CH3)2), 8.98 (CH2-N-(CH2-
CH3)2). UV−Vis (DMSO; 1 × 10−3 M): 281 (n → π*); 264
(π → π*). FTIR (cm−1): ν(C−H; sp2) 2973; ν(C−H; sp3)
2875; ν(C=N) 1627 s; ν(C=C)thiophene 1430 m, 1388 m; δ(C−
H; sp3) 1347 w; ν(C−N) 1269 s; ν(C−S) 845 w; ν(M−N) 644
w. Molar conductivity in DMSO (1.0 × 10−5 M; Ω−1 cm2

mol−1):10.
2.4. X-ray Crystallography. The diffraction data of single

crystals was recorded with synchrotron radiations (λ = 0.630 Å,
at 293(2) K) using a Rayonix MX225HS-detector at 2D SMC
with a silicon double crystal monochromator. For data
collection, PAL BL2D-SMDC software16 (with a detector
distance of 63 mm, omega scan;Δω = 1° and exposure time of 1
s/frame) was used. For cell refinement and absorption

correction, HKL3000sm (Ver. 703r)17 was employed. APEX 4
Software was employed for collection of data, and the intensity
data were corrected for absorption with the SADABS program
(Tmin/Tmax = 0.874).

18 Solving of crystal structures was done by
the intrinsic phasing method with SHELXT19 and refined by
full-matrix least-squares refinement using the SHELXL-2018/3
program.20 Anisotropic displacement factors were employed for
refinement of nonhydrogen atom positions. Hydrogen atom
positions were constrained relative to their parent atoms using
the appropriate HFIX command in SHELXL-2018/3.20

Structural refinements and crystallographic data for [Zn(DE)-
Cl2] and [Cd(DE)Br2] are summarized in Table 1.
2.5. Antimicrobial Activity. 2.5.1. Antibacterial Assay.

The bactericidal properties of the newly synthesized ligand
(DE) and complexes [M(DE)X2] were evaluated using the agar
standard diffusion procedure, in which the agar plate was
swabbed with a standard concentration of the test organisms,

Table 1. Structure Refinements and Crystallographic Data of
[Zn(DE)Cl2] and [Cd(DE)Br2]

[Zn(DE)Cl2] [Cd(DE)Br2]

empirical formula C11H18Cl2N2SZn C11H18Br2CdN2S
formula weight 346.60 482.55
temperature (K) 293(2) 293(2)
wavelength (Å) 0.630 0.630
crystal system monoclinic monoclinic
space group P21/n P21/n
unit cell dimensions

a (Å) 6.9460(14) 10.069(2)
b (Å) 9.6140(19) 15.515(3)
c (Å) 22.239(4) 10.339(2)
β (°) 97.46(3) 98.28(3)

volume (Å3) 1470.8(5) 1598.3(6)
Z 4 4
density (calculated)
(mg/m3)

1.564 2.005

absorption
coefficient
(mm−1)

1.539 4.700

F(000) 712 928
crystal size (mm3) 0.100 × 0.050 × 0.040 0.078 × 0.050 × 0.045
θ range for data
collection (°)

1.637 to 33.544 2.114 to 22.500

index ranges −11 ≤ h ≤ 11, −15 ≤ k ≤
15, −33 ≤ l ≤ 33

−12 ≤ h ≤ 12, −18 ≤ k ≤
18, −12 ≤ l ≤ 12

reflections collected 21,390 10,207
independent
reflections

6463 [Rint = 0.0460] 3005 [Rint = 0.0670]

completeness to
θ = 22.210°

96.0% 100.0%

absorption
correction

empirical empirical

max. and min.
transmission

1.000 and 0.941 1.000 and 0.853

refinement method full-matrix least-squares on
F2

full-matrix least-squares on
F2

data/restraints/
parameters

6463/0/156 3005/0/157

goodness-of-fit on
F2

1.189 1.143

final R indices [I >
2σ(I)]

R1 = 0.0417, wR2 = 0.1268 R1 = 0.0372, wR2 = 0.1138

R indices (all data) R1 = 0.0450, wR2 = 0.1296 R1 = 0.0375, wR2 = 0.1142
largest diff. peak and
hole (e.Å−3)

1.147 and −1.386 2.089 and −1.701
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i.e., E. coli, P. aeruginosa, and S. aureus, followed by placing a
paper disk containing specific concentrations of the test
compound on bacterial culture.21 The bacterial strains were
tested against three different concentrations, i.e., 500, 250, and
100 μg mL−1, of assessed compounds (dissolved in DMSO)
using chloramphenicol as a standard drug with the same
concentrations. The antimicrobial activity was assayed by
measuring inhibition zone diameter (mm) formed around the
well. Each compound was tested in triplicate, and the results
were noted and inferred according to standards.
A broth macrodilution method evaluated the minimum

inhibitory concentrations (MICs) against the bacteria (E. coli, P.
aeruginosa, and S. aureus) of the test compounds. Mueller−
Hinton Broth (MHB) was used as a medium. Small sterile tubes
(1.00 mL) were used to perform this assay. Isolated tubes were
used for the preparation of different concentrations of the test
compounds. MHB medium (500 μL) was distributed into each
glass tube. The bacterial strain and standardized bacterial
suspension of 0.5 McFarland turbidity were added to tubes
containing different concentrations of test compounds. A
bacterium in an antibiotic-free medium and bacteria with
antibiotics were also prepared. The tubes were later incubated
for 24 h at 37 °C. The inhibition of the tested compound was
recorded with the highest dilution having no turbidity. The tube
withMIC at which no bacterial growth was observed was further
diluted to record the optimum MICs of the compound.22

2.5.2. Antifungal Assay. For the screening of antifungal
properties of compounds against C. albicans, the agar well
diffusion technique22 was employed with chloramphenicol as a
positive control. First, Sabouraud dextrose agar (SDA) was
prepared and autoclaved at 121 °C and transferred into Petri
plates. To prepare a 0.5 McFarland standard, 0.05 L of 1.175%
BaCl2·2H2O was mixed with 9.95 mL of 1% H2SO4. The 24 h
culture of C. albicans inoculum was grown using the SDA. The
cell suspension was prepared in a sterilized saline solution
(0.85%). To attain the final concentration to that of 0.5
McFarland, the turbidity of fungal suspension was adjusted. A
0.5 McFarland standard inoculum was used to make the fungal
cell lawn on SDA plates. In the Petri plates, 4 mm walls were
made. The test compounds in various concentrations were
added to the wells and incubated at 35 °C for 48 h.

2.5.3. Antileishmanial Assay. The antileishmanial activities
of DE and its M(II) complexes, [M(DE)X2], were determined
using the previously developedmethod byHabtemariam..23 Pre-
established culture of L. major was inoculated in 199 media in
Novy-MacNeal-Nicole-medium slants and incubated for 6−7
days at 24 °C. A stock solution (1000 μg mL−1) was prepared by
dissolving 1.00 mg of each test compound in 1.00 mL of DMSO
followed by serial dilution of stock solution. A total of 180 μL of
199 medium was added in different 96-well microtiter plate
wells. For each test compound, 20 μL was added to the first well

and then serially diluted, and to keep the final volume of 180 μL,
20 μL was discarded from the last well. About 100 μL of the
parasite was added to each well, and two rows were left for
positive (amphotericin B) and negative control (DMSO).
Microtiter plates were incubated for 24 °C for 72 h. A total of 20
μL was taken from each dilution after the incubation period, and
live parasites were mounted under a microscope using an
improved Neubauer counting chamber. The leishmanicidal
assay was performed in triplicate. IC50 values of compounds
possessing leishmanicidal potential were calculated by Prism
software (GraphPad Software, San Diego, CA).
2.6. Molecular Docking. The PDB IDs of the crystal

structure of E. coli (24 kDa) are actually a clorobiocin complex
with 2.30 Å resolution, and DNA gyrase is involved in
replication and transcription of major proteins. The bacterial
DNA negative supercoiling is also catalyzed by DNA gyrase, and
bacterial cell death is induced when it is targeted by external
bacterial agents. 4CL6 is the crystal structure of the P. aeruginosa
protein complex with a resolution of 2.41 Å. The biosynthetic
pathway of fatty acid synthase (FAS) involved reduction,
dehydration, and chain elongation reactions in both prokaryotes
and eukaryotes, but the FAS pathway in eukaryotic cells is
completely different from the FASII pathway in prokaryotic
cells. The FASII enzyme is therefore targeted by bacterial agents
against Gram-negative bacteria for antibiotic developments.
3FYV is the crystal structure of S. aureus DHFR protein

complex with a resolution of 2.20 Å, which catalyzes the hydride
transfer from NADPH to DHF.24 The DHFR enzyme plays a
key role in the THF pathway by maintaining a sufficient amount
of cofactors involved in biosynthesis of purine nucleotides,
methionine, thymidylate, and panthothenate.25 The inhibition
of DHFR enzyme results in stoppage of cell division and DNA
synthesis, which lead to cell death, and thus, DHFR is the main
target of different antibiotics in various parasitic and bacterial
infections.26 5FSA is the crystal structure of the C. albicans
protein complex with a resolution of 2.86 Å, which is required
for sterol biosynthesis in eukaryotic cells and thus is the main
target of therapeutic agents used for fungal treatments.
Meanwhile, 2JK6 is the crystal structure of Leishmania infantum
with a resolution of 2.95 Å,27 which is involved in thiol-based
metabolism28 and thus is the main target of therapeutic agents
used for Leishmania treatments.29

These structures were used for molecular docking as a
receptor, and active sites were selected. The protein receptors
were docked with four different compounds. The Molecular
Operation Environment (MOE) 2014 program was used for
docking.30 The hybridization state assignment for each residue,
charge corrections, missing hydrogen addition, and water
molecule removal were done before docking. The GB/VI
electrostatic function was used for protonation correction in
different confirmations for each docking compound, and the

Scheme 1. Schematic Illustration of the Preparation of DE and Corresponding M(II) Complexes
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London docking scoring function was used for free energy
calculation.30 The binding affinities were calculated by the
GBVI/WSA method, which represent the nonbonding inter-
action energy between the receptor and docking compound, and
after energy minimization, the binding affinities were calcu-
lated.31

3. RESULTS AND DISCUSSION
3.1. Synthesis and Physical Properties. Schiff bases with

O- and S-bearing heterocyclic rings show enhanced biological
activities because of their similarities to natural products and
synthetic compounds with promising activities.32 In our study,
the C1-symmetric thiophene-derived Schiff base ligand (DE)
was obtained as a yellow oil in a single step, as shown in Scheme
1. The condensation reaction of thiophene-2-carbaldehyde with
N1,N1-diethylethane-1,2-diamine yielded an appreciable
amount of ligand (93%). The obtained ligand was purified by
vacuum distillation, and spectro-analytical techniques were used
for structure elucidation.
Ligands with a nitrogen donor atom having different

hybridizations are readily coordinated to the metal center. In
this regard, metals easily accept the Schiff base ligand (DE) upon
reacting with CuCl2·2H2O, ZnCl2, and CdBr2·4H2O to form
monomeric complexes, [M(DE)X2], in appreciable yields (88−
92%). The [M(DE)X2] (M=Zn or Cd; X =Cl or Br) complexes
were obtained as white crystalline solids, whereas the Cu(II)
complex was obtained as a blue-green solid. The complexes were
purified via recrystallization from EtOH. The electronic spectra
for the studied ligand and corresponding M(II) complexes were
obtained in DMSO, and absorption bands at approximately
264−268 nm are ascribed to the π → π* transitions existing in
the aromatic ring.33 Bands corresponding to n → π* transition
are observed at approximately 280 nm due to the characteristic
HC�N group33a (Figure S10). The UV−visible spectra of
[M(DE)X2] complexes showed identical absorption spectra to
DEwith a slight shift in wavelength, signifying the ligation of the
nitrogen atoms of DE to the metal centers.33b,34 Additionally, a
representative time-stability curve of [Cd(DE)Br2] at 0 and 48 h
is shown in Figure S11. There is no significant variation observed
in the position and intensity of the absorption maxima of the

studied complex during this period of time, signifying the
solution stability of the studied complex.
The FTIR spectrum of DE exhibited a strong peak at 1633

cm−1 (Figure 1), characteristic of the C�N functional
group.34,35 Additionally, the absorption band characteristic of
the υ(C�O) bond from thiophene-2-carboxaldehyde disap-
peared, demonstrating that the reaction was complete and
confirming that the imine ligand was successfully synthesized.
The representative (C�N)imine bond stretch appeared in the
range of 1634−1627 cm−1 in [M(DE)X2].

36 It was evident from
the spectral data that the (C�N)imine bond shifted to higher
wavenumbers (cm−1) in the spectra of [M(DE)X2] complexes,
in comparison to the free ligand (DE), signifying the
involvement of imine nitrogen in bonding.37 The vibration
peak found in the 1432−1377 cm−1 range was assigned to the
symmetrical and asymmetrical υ(C�C) stretching vibrations of
the thiophene ring, which shifted to the range of 1435−1384
cm−1 for the corresponding M(II) complexes. In addition, the
(C−S−C) absorption band of the thiophene ring appeared at
857 cm‑1.38 Typical peaks for the aromatic C�C, C−H bond
stretching appeared at the expected ranges, as reported in the
literature for similar complexes.36 Notably, no bands were
observed in the range of 421−418 cm−1 corresponding to the
ν(M−S) stretching vibrations in the spectra of complexes,
confirming that sulfur in thiophene had not participated in the
complexation.38

The formation of the ligand was also confirmed by 1H NMR
spectroscopy; the disappearance of an aldehyde peak and the
appearance of an imine proton peak at 8.38 ppm in the NMR
spectrum of DE were evident (Figure S1).35,37b In addition, the
protons of the ethylene backbone resonated at 3.68 and 2.76
ppm inDE. The structural characterization of Zn(II) andCd(II)
complexes via NMR spectroscopy revealed a slight shift of an
imine proton from 8.38 to 8.54 ppm for [Zn(DE)Cl2] and 8.61
ppm for [Cd(DE)Br2]. All the signals for carbon in the organic
framework of the complexes were in agreement with the
expected structures. The studied complexes were non-
hygroscopic and stable toward atmospheric components. The
complexes were soluble in CH2Cl2, THF, dimethylformamide,
and DMSO but insoluble in Et2O, n-hex, and water at room

Figure 2. TGA-DTA thermogram of [Cd(DE)Br2].
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temperature. The molar conductance values obtained at room
temperature in DMSO for the studied complexes were low,
which was indicative of the non-electrolytic nature of the
[M(DE)X2] complexes. The conductivities of studied com-
plexes remained constant even after 3 h, representing that no
dissociation had occurred in the solution.39 The purity of the
complexes [M(DE)X2] was verified by percentage composition
analysis of carbon, hydrogen, and nitrogen constituents, and
good correlations were found between the calculated and
experimental values (Figure S9).
The thermal stability profile of [Cd(DE)Br2] is presented in

Figure 2. The TGA curve of [Cd(DE)Br2] demonstrated
stability up to 140 °C and no loss in weight of complex occurred
before this temperature region, which infers the absence of
coordinated water molecules. The decomposition occurred in
two steps; decomposition started with an exothermic DSC peak
in the range of 140−240 °C. It is attributed to the loss of
bromide ions and dissociation of the thiophene moiety, and this
step brings a weight loss of 40%. The resultant residue of the
complex underwent a second-stage degradation in the 375−510
°C range with a weight loss of 54% because of the decomposition
of the ligand molecule. A horizontal thermal curve40 was
observed above 500 °C. The [Zn(DE)Cl2] profile represents
stability up to 190 °C. The single-step decomposition started at
190 °C and ended at 480 °C, resulting in a horizontal thermal
curve above 470 °C (Figure S12). In the case of the Cu(II)
complex, [Cu(DE)Cl2], no weight loss has been observed up to
250 °C. The loss between 250 and 370 °C with an exothermic
peak in the 250−350 °C range is associated with the loss of
chloride ions and thiophene moiety. Second-stage degradation
in the 500−700 °C range with a weight loss of 44% represents
the decomposition of [Cu(DE)Cl2], which might be in the form
of CuO above 700 °C. This step is also accompanied by
exothermic peaks (Figure S13).40

3.2. Molecular Structures of Complexes. The precise
structural properties of studied complexes were determined with
X-ray diffraction studies. ORTEP drawings of [Zn(DE)Cl2] and
[Cd(DE)Br2] are depicted in Figures 3 and 4, respectively.

Selected bond lengths (Å) and angles (°) for these complexes
are presented in Table 2. The geometry around the
tetracoordinate Zn(II) and Cd(II) centers in [Zn(DE)Cl2]
and [Cd(DE)Br2] can be described as a distorted tetrahedral
attained via ligation with the nitrogen atoms of the azomethine
and amine moieties of the DE ligand. Based on the τ4 values,
Zn(II) and Cd(II) complexes exhibited distorted tetrahedral
geometries (Table 3).41 Additionally, the THCDA index42 for
differentiation of tetrahedral and trigonal pyramidal geometries
(a perfect tetrahedral structure generates a THCDA index = 100,

whereas a perfect trigonal pyramidal structure generates a
THCDA index = 0) and tetracoordinate geometric parameter
FCGP,43 which represents faces as the sum of the angles
involved in each polytopal face of the tetracoordinate structure,
also provide useful information regarding the tetrahedral
geometries of studied complexes.
The M−Nimine (2.0575(13)−2.302(3)) Å and M−Namine

(2.1101(14)−2.314(3)) Å bond lengths of the synthesized
M(II) complexes agreed well with the M−N structural
parameters of the studied complexes.44,45 M−Namine was slightly
longer than M−Nimine owing to the differences in the
hybridization of nitrogen atoms. In addition, the M−Cl and
M−Br bond lengths lie within the expected range.46 The
N(1)�C(5) bond distances of 1.2845(19) Å in [Zn(DE)Cl2]
and 1.289(5) Å in [Cd(DE)Br2] agreed with the accepted C�
Ndouble bonds. TheC(6)−C(7) bond distances were 1.523(2)
Å [Zn(DE)Cl2] and 1.519(5) Å [Cd(DE)Br2], demonstrating
the lack of delocalized π-electrons. The bond length of M−
Namine was larger by about 0.21 Å in [Cd(DE)Br2] compared to
[Zn(DE)Cl2] owing to the variances in the size of the
coordinated metal ions. Additionally, the sulfur of the thiophene
moiety did not form a formal bond with the metal center as
persistent with our previously reported complexes.46b

Nimine−M−Namine angles were observed to be smaller
compared to Xterminal−M−Xterminal (X = Cl or Br) angles around
the central metal ion in [Zn(DE)Cl2] and [Cd(DE)Br2] (Table
2). This represents a structural attribute of [LMX2]-type
complexes forming a distorted tetrahedral geometry;8a here, L
represents the bidentate ligand attached to the metal center and

Figure 3. ORTEP drawing of [Zn(DE)Cl2] with thermal ellipsoids at
70% probability. All hydrogen atoms are omitted for clarity.

Figure 4. ORTEP drawing of [Cd(DE)Br2] with thermal ellipsoids at
50% probability. All hydrogen atoms are omitted for clarity.

Table 2. Selected Bond Distances (Å) and Angles (°) of
[Zn(DE)Cl2] and [Cd(DE)Br2]

[Zn(DE)Cl2] [Cd(DE)Br2]

Bond lengths (Å)
Zn−N1 2.0575(13) Cd−N1 2.302(3)
Zn−N2 2.1101(14) Cd−N2 2.314(3)
Zn−Cl1 2.2332(5) Cd−Br1 2.5397(6)
Zn−Cl2 2.2103(5) Cd−Br2 2.5195(6)
N1−C5 1.2845(19) N1−C5 1.289(5)
C6−C7 1.523(2) C6−C7 1.519(5)

Bond angles (°)
N1−Zn1−N2 86.17(5) N1−Cd1−N2 79.38(11)
N2−Zn1−Cl2 109.71(3) N2−Cd1−Br2 114.66(8)
N2−Zn1−Cl1 109.81(3) N2−Cd1−Br1 106.76(8)
N1−Zn1−Cl2 119.21(4) N1−Cd1−Br2 120.24(8)
N1−Zn1−Cl1 107.41(4) N1−Cd1−Br1 110.01(8)
Cl2−Zn1−Cl1 119.442(19) Br2−Cd1−Br1 118.65(3)
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X represents a halide. It is evident from X-ray data that the
Nimine−M−Namine angles lie in an accepted range, i.e.,
79.38(11)−86.17(5)°.46 The plane angle between the thio-
phene moiety and the five-membered ring N2−C7−C6−N1−
Zn1 in [Zn(DE)Cl2] was 31.15°, whereas the plane angle
between the thiophene moiety and the five-membered ring N2−
C7−C6−N1−Cd1 in [Cd(DE)Br2] was 43.69°. The buried
volumes were calculated using the SambVca 2.1 program,47 and
the steric encumbrance due to the ligand framework around the
M(II) (M = Zn and Cd) center was computed by comparing the
topographic maps of the studied M(II) complexes (Figure 5).

The metal center variation can influence the properties of the
M(II) complexes.
3.3. Biological Activities. The characteristics of the metals

are of utmost relevance to the biological interactions and toxicity
of the complexes; therefore, researchers strive for the develop-
ment of more effective, target-specific metal-based drugs with
minimal toxicity. In addition, steric, electronic, and chelate
effects also contribute to the enhanced potency of antimicrobial
agents.49 Cu(II)- and Zn(II)-based complexes are interesting in
this regard because these metal ions are biocompatible and
contribute to many important biological processes.49a,50 Zn(II)

Table 3. Four-Coordinate Geometry Indices41 for Zn(II) and Cd(II) Complexes and Illustrative Parameters for Similar
Complexes from the Literature

complexes geometry τ4 THCDA/100 FCGP/100 reference

square planar (D4h) square planar 0.000 −1.43 −0.400 41
trigonal pyramidal (C3v) trigonal pyramidal 0.850 0.000 1.00 41
[Zn(DE)Cl2] tetrahedral 0.861 0.493 0.406 this work
[Zn(DE)Br2] tetrahedral 0.859 0.351 0.490 this work
[Zn(L-b)2Cl2]

a tetrahedral 0.885 0.432 0.452 37b
[Pd(L-b)2Cl2]

b square planar 0.0626 −1.34 −0.265 37b
[Zn(LC)Cl2]

b tetrahedral 0.887 0.370 0.422 48
[Pd(LD)Cl2]

c tetrahedral 0.870 0.337 0.415 48
[Zn(LC)Cl2]

d square planar 0.0754 −1.31 −0.243 37b
tetrahedral (Td) tetrahedral 1.00 1.00 0.000 41

aL-b = 4-methoxy-N-methyl-N-(pyridin-2-ylmethyl)aniline.37b bLC = N-cyclohexyl-1-(pyridin-2-yl)methanimine.
48 cLD = 2,6-diethyl-N-(pyridin-2-

ylmethylene)aniline.48 dLC = 4-nitro-N-((pyridin-2-yl)methylene)aniline.37b

Figure 5. Topographic maps and space filling models of [Zn(DE)Cl2] and [Cd(DE)Br2] complexes.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.2c08266
ACS Omega 2023, 8, 17620−17633

17626

https://pubs.acs.org/doi/10.1021/acsomega.2c08266?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08266?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08266?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.2c08266?fig=fig5&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.2c08266?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


represents an essential ion in certain metalloenzymes, whereas
Cd is a toxic element present in the environment due to human
activities. It rapidly localized intracellularly, especially in the
liver, binding to metallo-thionein to form a complex that is
slowly transferred to the bloodstream to be deposited in the
kidneys. However, recent studies have demonstrated a wide
range of pharmacological properties of cadmium complexes with
sulfur-derived ligands.51

3.3.1. Antibacterial Activities. The antibacterial potencies of
the DE and its M(II) complexes, [M(DE)X2], were tested
against two Gram-negative bacteria, E. coli and P. aeruginosa, and
one Gram-positive bacterium, S. aureus. The zone of inhibition
(diameter in mm) was used to compare the antibacterial activity
with that of the standard drug chloramphenicol. The
representative antibacterial results, summarized in Table S1,
revealed that all the complexes exhibited significant antibacterial
activity against the studied bacterial strains since many heavy
metals are toxic to microbes as they kill microbes by binding to

intracellular proteins and inactivating them. For instance, several
coordination compounds exhibited a prominent inhibitory
profile. However, the coordination of metal has a pronounced
effect on the antibacterial activity of the ligand as well as the
metal salts alone. As shown in Table S3, the metal salts have
shown lower bactericidal potential and resulted in an enhanced
inhibitory profile upon chelation to DE. Marked activity of the
Cd(II) complex [Cd(DE)Br2] was observed among all the
studied complexes, withMIC= 10 μgmL−1 against E. coli (Table
S2). This increasing activity of M(II) complexes compared to
that of free ligands could also be explained by the chelation
theory, and chelation results in a greater decrease in metal ion
polarity resulting from the overlap of the ligand orbital and
partial sharing of the positive charge of the metal ion with donor
groups. Furthermore, the delocalization of π-electrons over the
chelate ring promotes the lipid membrane permeation to these
complexes and might result in the deterioration of the metal-
binding sites in the enzymes of microorganisms.52 The

Figure 6. Antibacterial activities of DE and its corresponding M(II) complexes against E. coli.

Figure 7. Antifungal activities of DE and its M(II) complexes against C. albicans at three different concentrations.
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complexes were highly active against the Gram-positive
bacterium S. aureus at 500 and 250 μg mL−1, which were
superior to the standard drug chloramphenicol. (Table S2). The
reason for such discrepancies in the activities of various strains of
bacteria might be due to the difference in the complexity of the
cell wall structure of these bacterial strains; therefore, lipo-
solubility is an important criterion for controlling microbial
growth. The characteristics of the metal ions coordinated to the
ligand framework, including the metal ion size and coordination
geometry, may play a role in such differences in microbial
activities, chelation, and lipophilicity.52a,53 For instance, Zn(II)
andCd(II), with identical ligand frameworks and geometries but
different metal ion sizes and buried volumes, exhibited different
antibacterial activities (Figure 6). The same was evident from a
recent study by the Demissie group, where the Cu(II)
complexes of 2-((2-hydroxyethyl)amino)quinoline-3-carbalde-
hyde showed higher antibacterial potential than the Zn(II)
complexes with the same ligand.54

3.3.2. Antifungal Activities. The studied ligand DE and its
M(II) complexes, [M(DE)X2], were tested in vitro for their
antifungal activities in different concentrations against C.
albicans. All the screened compounds exhibited significant
inhibitory potential against C. albicans. It was clear from the data
that the activities of the synthesized complexes increased with
increasing concentrations of the solutions. Results showed that
the [Cd(DE)Br2] complex exhibited higher antifungal activity.
The order of antifungal activity of the tested compounds at all
three concentrations was [Cd(DE)Br2] > [Cu(DE)Cl2] >
[Zn(DE)Cl2] > DE (Figure 7). The Cd(II) and Cu(II)
complexes exhibited higher antifungal activity than the standard.
Notably, these complexes might be adsorbed on the cell wall of
microorganisms and could also disturb the respiration process of
the cell, thus blocking the synthesis of proteins, which restricts
the further growth of microorganisms.53,54

3.3.3. Antileishmanial Activities. Leishmaniasis is one of the
deadliest diseases after malaria that is transmitted via sand fly
bite, and it affects approximately 1.5 million people per annum.
Protozoan parasites of the genus Leishmania can manifest
visceral and cutaneous forms of infection in humans.55 Classical
antiparasitic drugs become less effective with the emergence of
drug resistance in parasites. Additionally, long-term usage of
these leishmanicidal drugs renders them less effective. The
inadequate acquaintance with the mechanistic action makes it
difficult to overcome these adverse properties.1,56 Recently,
several studies on metal complexes having enhanced leishmanial
potential are reported.57 However, there is still a desire for
selective complexes with sulfur-bearing moieties to be preferred
because of their similarities to natural products with promising
activities against parasites causing leishmaniasis.33b Herein, we
also tested our studied ligand and M(II) complexes, [M(DE)-
X2], against L. major for their leishmanicidal potential.
It is evident from data summarized in Table 4 that the

leishmanicidal potential of the studied complexes was superior
to amphotericin B. It is a known fact that the ligation of the
ligand framework can be enhanced with complexation to
transition metals. The metal complexes, [M(DE)X2], exhibited
greater inhibition profiles than the Schiff base ligand (DE) and
metal salts alone (Table 4). It is evident that metals inhibit
pathogenic growth. In comparison to our studied complexes, we
run control experiments using CuCl2·2H2O, ZnCl2, and CdBr2·
4H2O metal salts and found that metal salts without ligand
architecture do not show significant inhibition of L. major under
provided experimental protocols. The order of antileishmanial

inhibition at 100 μg mL−1 for studied complexes was
[Cd(DE)Br2] > [Cu(DE)Cl2] > [Zn(DE)Cl2] > DE (Table
4). Compared to the Zn(II) complex supported with the N-(2-
methoxyphenyl)acetamide ligand that exhibited antileishmanial
potential (IC50 value = 0.78 ± 0.31 μM), our metal complexes,
[M(DE)X2], showed higher activities.

39 The excellent inhibition
profiles of the complexes, [M(DE)X2], reported in our study
might contribute to the designing of effective metal-derived
agents for the treatment of infectious diseases.
3.4. Molecular Docking. Molecular docking is used for

identification of various bonding interactions between the
docking compound and bioreceptor. This method identifies
compounds with greater and lesser affinity for a given receptor.
This helps to verify the chemical and geometric interactions of
molecules with the receptor active site. In this context, the ligand
(DE) and its M(II) complexes, [M(DE)X2], were theoretically
investigated as potent inhibitors of the pathogenic proteins of
the studied microbes. The ligand interactions in the active site of
receptors and least binding affinity values validated the results.
Figure 8 highlights the major interactions of the studied

complexes in the active pocket of receptor protein with amino
acid residues of E. coli. It is evident that DE in the protein
receptor active site with the residues Asn46 and Glu50 formed
two hydrogen bonding interactions. [Cu(DE)Cl2] showed one
hydrogen bonding interaction with residue Glu50 having a
binding energy around −14.76 kcal mol−1 (Table 5). [Zn(DE)-
Cl2] also exhibited hydrogen bonding interaction with the
residue Glu50, while [Cd(DE)Br2] formed two bonding
interactions, i.e., hydrogen bonding with the residues Ile78
and Glu50 with −16.73 kcal mol−1 binding energy (Table 5). In
the case of P. aeruginosa, [Cu(DE)Cl2] binds in the active site
with residue Ser49 forming one hydrogen bonding interaction
and one arene−cation interaction (Figure S14b). [Zn(DE)Cl2]
formed two bonding interactions with the residues Ser49 and
Leu20 (Figure S14c), while [Cd(DE)Br2] formed one bonding
interaction with residue Lys52 having −17.89 kcal mol−1
binding energy (Figure S14d). In the case of S. aureus, DE
with the residues Gly103 and Asp84 formed two hydrogen
bonding interactions (Figure S15a), [Cu(DE)Cl2] with the
residue Gly91 formed one hydrogen bonding interaction
(Figure S15b), and [Zn(DE)Cl2] with residues Gly103 and
Gln27 formed two hydrogen bonding interactions (Figure
S15c). [Cd(DE)Br2] with the residues Pro29 and Gly103
formed two hydrogen bonding interactions having −12.55 kcal
mol−1 binding energy (Figure S15d).
The interactions of the M(II) complexes and ligand (DE)

with C. albicans are shown in (Figure S16a−d). DE with the
residues Leu139 and Cys470 formed two hydrogen bonding
interactions. [Cu(DE)Cl2] with the residue Ile304 formed a

Table 4. Antileishmanial Activities of DE and Its M(II)
Complexes against L. major

S. No compounds IC50 ± SEMa (μM)

1 CuCl2·2H2O 2.7 ± 0.11
2 ZnCl2 5.8 ± 0.07
3 CdBr2·4H2O 1.8 ± 0.01
4 DE 2.9 ± 0.01
5 [Cu(DE)Cl2] 0.54 ± 0.08
6 [Zn(DE)Cl2] 0.7 ± 0.01
7 [Cd(DE)Br2] 0.40 ± 0.05
8 amphotericin B 0.58 ± 1.09

aSEM = standard error mean (experiment run in triplicate).
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hydrogen bonding with the complex and one arene−cation
interaction, whereas [Zn(DE)Cl2] also with the residue Phe126
formed one hydrogen bonding interaction. [Cd(DE)Br2] with
the residue Tyr132 formed one hydrogen bonding interaction

and one arene−cation interaction with residue Ile304 with
−13.11 kcal mol−1 binding energy (Table 5). The interactions of
the synthesized ligand and M(II) complexes with L. major are
shown in Figure S17a−d. DE formed one hydrogen bonding

Figure 8. Pictorial description of DE (2-D (a) and 3-D (b)); [Cu(DE)Cl2] (2-D (a) and 3-D (b)); [Zn(DE)Cl2] (2-D (a) and 3-D (b));
[Cd(DE)Br2] (2-D (a) and 3-D (b)) representing the interactions with amino acid residues in the active pocket of receptor protein of E. coli.
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with the residue Ala365 and one π−π interaction with the
residue Tyr198. [Cd(DE)Br2] formed two hydrogen bonding
interactions with residues Tyr198 and Met333 along with one
arene−cation interaction with residue Lys60.

4. CONCLUSIONS
In the present study, M(II) complexes, [M(DE)X2], supported
by the thiophene-derived Schiff base ligand DE, were
synthesized. Spectro-analytical techniques were used for
structural characterization of DE and its corresponding M(II)
complexes. X-ray structural analysis of [Zn(DE)Cl2] and
[Cd(DE)Br2] showed that the M(II) atom was coordinated
via two nitrogen atoms of the bidentate ligand, demonstrating a
distorted tetrahedral geometry. The efficacy of the synthesized
complexes was studied for their antibacterial properties against
E. coli, S. aureus, and P. aeruginosa. In addition, antifungal and
antileishmanial properties against C. albicans and L. major were
determined, which were further validated through molecular
docking studies. It was observed that molecular docking
inhibition of selected pathogenic proteins was carried out
from each species used in the study as all the pathogenic proteins
are essential for pathogens’ survival and virology. The results
obtained were promising, exhibiting maximum interactions and
good binding energies. The [Cd(DE)Br2] complex can act as a
better agent for controlling pathogenic growth compared to its
analogs Cu(II) and Zn(II) complexes. The present study
revealed the effectiveness of the studied complexes, which could
contribute to drug design and show effective results in further in
vivo experiments and pharmacological assays.
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