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Abstract

Mesenchymal stem cells (MSCs) are being assessed for ameliorating the severity of graft-versus-host disease, autoimmune conditions, muscu-
loskeletal injuries and cardiovascular diseases. While most of these clinical therapeutic applications require substantial cell quantities, the
number of MSCs that can be obtained initially from a single donor remains limited. The utility of MSCs derived from human-induced pluripotent
stem cells (hiPSCs) has been shown in recent pre-clinical studies. Since adult MSCs have limited capability regarding proliferation, the quantum
of bioactive factor secretion and immunomodulation ability may be constrained. Hence, the alternate source of MSCs is being considered to
replace the commonly used adult tissue-derived MSCs. The MSCs have been obtained from various adult and foetal tissues. The hiPSC-derived
MSCs (iMSCs) are transpiring as an attractive source of MSCs because during reprogramming process, cells undergo rejuvination, exhibiting
better cellular vitality such as survival, proliferation and differentiations potentials. The autologous iMSCs could be considered as an inex-
haustible source of MSCs that could be used to meet the unmet clinical needs. Human-induced PSC-derived MSCs are reported to be superior
when compared to the adult MSCs regarding cell proliferation, immunomodulation, cytokines profiles, microenvironment modulating exosomes
and bioactive paracrine factors secretion. Strategies such as derivation and propagation of iMSCs in chemically defined culture conditions and
use of footprint-free safer reprogramming strategies have contributed towards the development of clinically relevant cell types. In this review,
the role of iPSC-derived mesenchymal stromal cells (iMSCs) as an alternate source of therapeutically active MSCs has been described. Addition-
ally, we also describe the role of iMSCs in regenerative medical applications, the necessary strategies, and the regulatory policies that have to
be enforced to render iMSC’s effectiveness in translational medicine.
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Introduction

Mesenchymal stromal cells (MSCs) are assorted cell preparations and
only a rare subpopulation often referred to as ‘mesenchymal stem
cells’ retains clonogenic proliferation ability & multilineage
differentiation potential [1]. Mesenchymal stem cell preparations are

significantly affected by starting cell source/material, such as bone
marrow (BM), adipose tissue (AT) or other adult/perinatal tissue
source; cell culture surface, media composition and other in vitro
tissue culture conditions [1, 2, 9]. Furthermore, they acquire
phenotypic, biochemical, molecular as well as functional changes
during long-term in vitro culture expansion ending in replicative senes-
cence [7, 8]. So far, MSCs are occasionally defined by their plastic
adherent growth displaying fibroblast-like cellular colonies, a panel of
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positive (CD73, CD90, CD105) and negative cell surface markers
(CD11b/CD14, CD34, CD45, CD79a/CD19) for phenotypic characteri-
zation and their capacity to differentiate towards at least trilineage dif-
ferentiations such as adipogenic, osteogenic and chondrogenic
lineages [2, 4]. Many researchers indicate that plasticity and
immunomodulatory capabilities of the MSCs contribute towards
unique therapeutic potentials of the MSCs [1, 2]. The bone marrow
MSCs (BMMSCs) are considered to be the gold standard in the field of
MSCs. However, their invasive accessibility and lower proliferation
potential significantly undermine their ability to be considered for
mainstream therapeutic applications [3]. The therapeutic potency of
MSCs is often limited because of age or pathologically related impair-
ments regarding cell survival, proliferation and differentiations poten-
tial of BMMSCs [4–6]. Before adult MSCs can exert its therapeutic
potential in vivo; we must determine reasons behind their limited pro-
liferation capability, quick down-gradation of their differentiation
potentials and secrete minimal protective factors during their expan-
sion ex vivo? [7, 8] The adult MSCs unveil time-limited functions
under both in vivo and in vitro conditions [9, 10]. Exploration for an
alternate source of MSCs resulted in several groups reporting suc-
cessful isolation of MSCs like cells from foetal, neonatal [11–15] and
embryonic stem cells (ESCs) [16–18]. As a result of the current deficit
in adult MSCs regarding inadequacy in MSCs passages, cell numbers
and consistencies in cellular behaviour; alternative, easily accessible,
safe and healthy populations of MSCs are being considered for clinical
applications [3]. The iPSC-derived MSCs (iMSCs) are emerging as an
attractive option for obtaining a substantial population of stem cells in
a sustained manner for regenerative medical applications [3]. The
achievement of cell-based therapy of MSCs in preclinical trials has
precipitated success in human translational applications [19].

Therapeutically active MSCs derived
from human bone marrow

In the field of regenerative medicine, human mesenchymal stem cells
(hMSCs) have transpired to be a promising candidate. Bone marrow-
derived MSCs (BMMSCs) have been used as a predominant source of
MSCs. Bone marrow-derived MSCs have been successfully used in a
significant number of clinical and pre-clinical applications [20, 21]. In
the early 20th century, Maximow and Friedenstein were the first to
investigate the role of bone marrow fibroblast-like subset cells in
maintaining the haematopoiesis [22]. The BMMSCs were first isolated
and propagated under in vitro culture conditions in 1970s by Frieden-
stein et al. [21, 22]. In 1991, Arnold Caplan termed the cells MSCs
based on the ability of the cells to give rise to distinct tissue lineages
[23]. Maureen Owen further characterized the MSCs and observed
the heterogeneity in its population [21, 24]. The in vivo administration
of the MSCs in animal and humans has shown to be safe without
triggering adverse immune reaction or any tumour formation [25].
Subsequently, MSCs have been shown to modulate the immune
response and prevent graft-versus-host disease (GVHD) [26, 27].
Above all MSCs has been demonstrated to be effective in both pre-
clinical and clinical stages in orthopaedic applications, cardiovascular

therapies, burns, wounds, ulcers, neurodegenerative disorders,
spinal cord injury, autoimmune disorders, etc., [28]. Mesenchymal
stem cells exert their biological functions through cellular migration,
local engraftment, self-renewal, plasticity, and secretion of various
bioactive compounds. These intrinsic characteristics render the
MSCs ideal for regenerative medical applications [29]. Moreover,
MSCs can be engineered to secrete various bioactive factors
through viral or non-viral-based methods, which enhance the capa-
bilities of MSCs in therapeutic applications [30, 31]. The low prolif-
eration potential of the adult BMMSCs renders the BMMSCs
unsuitable for clinical applications [32]. Further, the limited accessi-
bility, difficulty in obtaining patient consent and invasive procedure
contribute towards un-usability of BMMSCs for routine clinical treat-
ment. During specific times extraction of autologous MSCs from
the patients might be counter-productive for the management of the
patients [3]. The BMMSCs are short-lived and hence cannot ensure
consistent, long-lasting immune regulatory functions both in vivo
and in vitro [33]. Moreover, the adult MSCs undergoes replicative
senescence at a very early stage of proliferative cycle rendering it
disadvantageous to use the cells for transplantation [3]. Hence, for
mainstream therapeutic applications alternate source of MSCs must
be considered.

In this regard, human-induced pluripotent stem cells (hiPSCs)
reprogrammed from human adult somatic cells, converge to a bet-
ter-defined ground state of pluripotency. Human-induced pluripo-
tent stem cells can be differentiated into all three germ layer cell
types (Ectodermal, Mesodermal and Endodermal) of the organism
and – while in the pluripotent state – can be cultured virtually
indefinitely without significant signs of replicative senescence. A
recent breakthrough in the generation of hiPSCs from human
somatic cells by using defined factors, [34, 35] could facilitate gen-
eration of patient-specific iMSCs derived from hiPSCs. The iMSCs
have the capabilities for utilization in a broad range of regenerative
medical applications. Hence, they are often considered as readily
accessible promising source of stem cells for future clinical thera-
pies [3]. The iMSCs shared the similar properties compared to the
ESC-derived MSCs [33]. Recent studies have also revealed that
biomimetic surface results in the rapid and efficient derivation of
iMSCs from hiPSCs [36]. However, several challenges need to be
effectively tackled before iMSCs could be favourably used for trans-
lational applications.

Human pluripotent stem cells (hESCs
& hiPSCs) as a novel cell resource for
generating clinical-grade products

The PSCs could serve as an alternate source for the generation of
MSCs. Embryonic stem cells can be used as an efficient source to
generate the MSCs almost indefinitely, attributed to tremendous
proliferation potential of ESCs [37]. Nonetheless, ethical concerns,
allogenicity and immune reactivity proffer ESC-derived MSCs unsuit-
able for clinical applications [30]. On the other hand, efficient hiPSCs
reprogramming methods could be successfully used to obtain
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patient-specific iPSCs. Takahashi and Yamanaka were the first groups
to demonstrate that mouse [32] and human [34] somatic cells could
be successfully converted to iPSCs through the retroviral delivery of
Oct4, Sox2, Klf4 and C-Myc. Further characterization of iPSCs
indicated human iPSCs are similar to human ESCs in their morphol-
ogy, gene expression profile, in vitro differentiation potential and
teratoma formation [30]. Different types of human somatic cells have
been successfully shown to reprogram into hiPSCs (Table 1).

The discovery of hiPSCs has accelerated the regenerative medi-
cal research [19]. Human-induced PSCs are cells that have the
capability of differentiating into all somatic cell derivatives (all
three germ layers, for example, ectoderm, mesoderm and endo-
derm) and also, make a contribution to the germline (Table 2
shows a catalogue of different cell types derived from iPSCs); this
unique ability of contribution to chimera and indefinite self-renewal
provides a unique opportunity for autologous personalized cell-
based therapy [34, 49, 50]. Towards future studies, hiPSCs are
considered as the driving force for personalized cell replacement
therapy [51].

Establishment of reliable and
standardized source of functional
MSCs for regenerative applications

The establishment of a reliable source of autologous, transgene-free
progenitor cells have enormous potential in the field of cell-based

regenerative medicine [3, 4, 30, 33–35], for example, in preparing a
therapeutic strategy for infants born with devastating birth defects
[73–82]. However, standardization of MSCs remains a major obstacle
to the therapeutic usage in regenerative medicine [30, 31, 83].
Comparison of experimental data with different studies becomes diffi-
cult when starting materials and culture conditions affects cell prepa-
rations [6, 8, 10, 16–18].

Recent studies using RNA-based technology [84], pluripotency-
associated protein transfection [85], non-integrating methods of the
pluripotent gene containing plasmid usage [86] and a pluripotent
gene containing Sendai viral vectors [87, 88] are hinting towards safe
clinical usage of footprint-free hiPSC-derived cellular products, such
as iMSCs, since these directed differentiated cells will not have any

Table 1 Different types of human somatic cells that have been

reprogrammed to induced pluripotent stem cells (hiPSCs)

Cell source References

Bone marrow MSCs [38]

Adipose tissue-derived stem cells [39]

Cord blood cell [40]

Keratinocytes [41]

Skin fibroblasts [41]

Mammary epithelial cells [42]

Renal epithelial cells [43]

Corneal epithelial cells [44]

Peripheral blood cells [45]

Umbilical cord MSCs [46]

Placental MSCs [47]

Amniotic membrane MSCs [46]

Amniotic fluid-derived cells [48]

Table 2 List of different cell types including iMSCs derived from

hiPSCs

Cell types References

Ectoderm

Neural [52]

Retinal pigment epithelial cells [53]

Corneal epithelial cells [44]

Mesoderm

Cardiomyocytes [54]

Adipocytes [55]

Osteocytes [56]

Chondrocytes [57]

iMSCs [58]

Haematopoietic stem cells (HSCs) [59]

Erythrocytes [60]

Platelets [61]

Endothelial cells [62]

Neutrophils [63]

Endoderm

Lung and airway epithelial cells [64]

Nephrogenic intermediates [65]

Follicular epithelial cells [66]

Hepatocytes [67]

Kidney progenitor cells [68, 69]

Pancreatic beta cells [70]

Germ cells [71, 72]
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risk of undesired genomic modifications associated with
reprogramming protocol.

iMSCs as a novel source of
therapeutically active MSCs

The adult MSCs does not exhibit long-lasting immunoregulatory func-
tions in vitro and in vivo [10]. The primary source of MSCs with high-
proliferation potential has been reported as a suitable alternative to
the adult MSCs sources [33]. The development of hiPSCs has, in turn,
led to the culmination of the unique ability to generate iMSCs by
directed differentiation (Table 3). Recent data suggest that iMSCs are
emerging as a strong contender for the new sources of MSCs that
could be suitable to replace the adult MSCs. Particularly, of late many
studies have reported successful derivation of functional MSCs from
iPSCs (iMSCs) [33, 36, 50, 58, 89–92]. The iMSCs are a novel class
of stem cells that augments effective and reliable regeneration than
contemporary methods. The iMSCs can be obtained from the readily
accessible adult tissues and exhibit greater proliferation potential than
the traditional sources of MSCs [58]. Because of the promising pre-
clinical and clinical therapeutic potential of MSCs, the iMSCs derived
from iPSCs may serve as an alternate and inexhaustible source [93].
Additionally, the synthetic coating has been shown to assist in the
derivation of iMSCs. The derivation of iPSCs into iMSCs on synthetic
polymer coating, PMEDSAH [Poly [2-(methacryloyloxy) ethyl
dimethyl-(3-sulfopropyl) ammonium hydroxide] resulted in high
differentiation efficiency, tri-lineage differentiation potential and
expression of characteristic MSCs markers (CD73+, CD90+, CD105+,
CD166+, CD31�, CD34� and CD45�) [91]. Similarly, Liu et al. has
shown that iMSCs could be orderly derived in a single step from
iPSCs on fibrillar collagen coating [36]. In a recent study, Chen et al.
has shown that treatment of iPSCs with SB431542, a transforming

growth factor b pathway inhibitor to generate epithelial
monolayer-like cells in two-dimensional (2D) culture system followed
by induction of epithelial–mesenchymal transition lead to rapid and
reliable differentiation into iMSCs [50]. Overexpression of Oct4 along
with the combination of GSK3 inhibitor has been demonstrated to
reprogram CD34+ peripheral blood or cord blood into functional
mesenchymal stromal cells [94].

Phenotypic features of iMSCs

The specific cell surface marker on the human MSCs remains to be
properly elucidated. Currently, a panel of markers is used to charac-
terize the MSCs isolated from different tissue sources, since there is
no specific marker for identifying the bonafide MSCs. The iMSCs
satisfies the essential criteria’s such as plastic adherence, expression
of key MSC surface markers and tri-lineage differentiation capability
properties as laid down by the International Society of Cellular Ther-
apy [3]. Himeno et al. have demonstrated that iMSCs from mice
exhibited characteristic mice MSC surface marker such as CD105,
CD140a, Sca-1 and CD44 as previously described [19, 96]. The
immunosuppressive, cytoprotection and tissue regeneration
properties are exerted by the paracrine factors secreted by the MSCs
[97–99]. The iMSCs and ESC-derived MSCs displayed attenuation of
proliferation and cytolytic activity of NK cells in a similar way to
BMMSCs. The iMSCs offer vast superiority than traditional sources of
MSCs, as they can be generated from any tissue source from the
body and theoretically iPSCs pose unlimited growth potential. Thus,
iMSCs should serve as an inexhaustible source of MSCs [3]. The
human MSCs from various tissue sources are typically identified by
the expression CD29, CD44, CD73, CD90, CD105, CD146 and CD166.
Newer studies have reported that human iMSCs exhibited the above
indicated typical characteristics of adult MSCs [33].

Biological characteristics of iMSCs:

The iMSCs and ESC-derived MSCs displayed similar strong
immunosuppressive characteristics [33], also iMSCs display a wide
range of cytokine profiles, microenvironment modulatory paracrine
factors and exert different functions on the local cellular niche
components via secretion of suitable bioactive molecules (Fig. 1).
Giuliani et al. further reported that there was no marked functional
variability between iMSCs and ESCs–MSCs [33]. Unlike BMMSCs,
iMSCs and ESCs–MSCs that could be subjected to long-term cul-
ture without resulting in explicative senescence [33]. Studies by
Lian et al. have shown that iMSCs display typical MSC characteris-
tics and there were no differences between human iMSCs and
human ESC-derived MSCs [58, 83]. More robust proliferation was
observed in iMSCs than BMMSCs. The iMSCs could be easily
scaled up to more than 40 passages while stably maintaining nor-
mal diploid karyotype, and consistent gene expression and surface
antigen profile [58]. Human iMSCs apart from typical MSCs char-
acteristic markers such as CD29, CD44 and CD73 also expressed
a higher level of endogenous pluripotency markers such as Oct4

Table 3 Cell culture supplements that promote in vitro derivation of

iMSCs from hiPSCs

Materials/Additives References

Synthetic polymer, PMEDSAH [91]

Fibrillar collagen [36]

SB431542, a TGF-b pathway inhibitor [50]

RGD (Arg-Gly-Asp) peptides [95]

Fibronectin (Fn) [95]

Fibronectin-like engineered polymer protein (FEPP) [95]

Extracellular matrix, Geltrex [95]

Platelet concentrate [95]

Oct4 [94]

CHIR99021, GSK inhibitor [94]
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[58]. Liu has proposed that iMSCs derived from blood cells could
be used as a novel and patient-specific source for usage in disc
repair [100]. Comparative study of DNA methylation profiles of
iMSCs with normal MSCs and PSCs suggested that iMSCs main-
tained donor-derived epigenetic differences [101]. In a recent
study, published by Frobel et al. iMSCs are starter MSCs and sub-
jected to epigenetic analysis. The study indicated that morphology,
immunophenotype, in vitro differentiation and gene expression of
iMSCs were consistent with the initial donor MSCs population.
Except iMSCs were impaired in suppressing T-cell proliferation.
The iMSCs retained donor-derived DNA methylation (DNAm)
profile. However, tissue-specific and age-related DNAm profiles of
iMSCs were completely erased. Further, the iMSCs reacquired
senescence-associated DNAm. The study also contrastingly
highlights that iMSCs reacquire incomplete immunomodulatory
functions [102].

Directed Differentiation of iMSCs

The use of stem cells and biologically suitable scaffolds offer the full
potential for tissue regeneration. Transplantation of lineage-com-
mitted cells can obviate in vivo teratoma formation that is caused by
the rapid proliferation and uncontrolled spontaneous differentiation of
PSCs. Thus, controlled differentiation of hiPSCs into cells that resem-
ble adult MSCs is an attractive approach to obtain a readily available
source of progenitor cells for tissue engineering. Unlike previously
reported methods that typically rely on the addition of soluble factors
to affect PSC differentiation, a recent study by Liu et al. reports an
alternative approach using a biomaterial coating on a cell culture plate
made of fibrillar collagen Type I to promote the derivation of MSC-like
cells. This study has reported a collagen matrix that could potentially
play a positive role in regulating the differentiation of hESCs and

hiPSCs

Multilineage 
differentiations

Paracrine 
functions of 

iMSCs 
secretome 

MSCs
modulation 

of local 
niche

Chemotactic 
cell migration

Directed   Mesodermal
differentiation   to iMSCs

iMSCs

Hematopoietic
Stem cell niche

responses

Fig. 1 Intrinsic features of iMSCs, which may allow them to have better biological effectiveness compared to adult hMSCs. Multilineage differentia-

tions may obtain a variety of specialized cells for cell replacement therapy (Table 2 lists different types of cells obtained from hiPSCs). Various
cytokines in their secretome profile also help immunomodulation, antifibrotic, anti-apoptotic activities. The microenvironment modulatory paracrine

factors may exert a wide range of cellular functions on local cellular niche components via the release of the suitable bioactive compound.
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hiPSCs towards a multipotent mesenchymal progenitor cell [36].
Activation of epithelial-to-mesenchymal transition (EMT) of epithelial
cells has been used successfully by others for generation of MSC-like
cells from hESCs [103]. A study by ThienHan et al. to generate MSCs
from human iPSCs, and investigate the osteogenic differentiation of
iMSCs seeded on biofunctionalized CPCs containing RGD (Arg-
Gly-Asp) peptides, fibronectin (Fn), Fibronectin-like engineered
polymer protein (FEPP), Geltrex and platelet concentrate has also
been reported [80]. A significant part of the study dedicated to the
investigation of iMSCs proliferation and osteogenic differentiation
atop calcium phosphate cement (CPC) containing biofunctional
agents was also evaluated [80].

Therapeutic applications of iMSCs

The iMSCs could be effectively used for diseases modelling, drug
screening and therapeutic applications (Fig. 1). The immunological
concerns on cell therapy can be effectively bypassed by iMSCs [51].
Nevertheless, the long-term studies on the immunosuppressive activ-
ity of the iMSCs remain to be explored [33]. Mesenchymal stem cells
are considered as the first line of prophylactic treatment for GVHD
and organ transplantation owing to their immunoregulatory properties
[27, 104–106]. During allogeneic transplantation, the circulating NK
cells target and destroy the graft [107, 108]. On the other hand
cotransplantation of MSCs prevent GVHD by attenuating the cytotoxic
activity of NK Cells [27, 105, 106]. Under in vitro culture conditions
Giuliani et al. has shown that human MSCs derived from the iPSCs
considerably down-regulated NK cell cytolytic capabilities [33]. The
iMSCs were more potent than the BMMSCs. Thus, iMSCs can be
graded as a useful therapeutic option to prevent allograft rejection
[33]. The study from Himeno et al. showed MSCs from iPSCs amelio-
rated diabetic polyneuropathy (DNP) in mice [19]. The results sug-
gest that effects of DNP by MSCs might be because of the secretion
of angiogenic/neurotrophic factors and differentiation into Schwann
type cells. Mesenchymal stem cells have also been reportedly consid-
ered as a potential treatment option for periodontal defects arising
from periodontitis. A report by Hynes et al. indicated that iMSCs facil-
itated the periodontal regeneration coupled with newly formed miner-
alized tissue in periodontitis rat models [3]. Recently, Yang et al.
demonstrated that tumour necrosis factor alpha-stimulated gene-6
(TSG6) expressing iMSCs were capable of decreasing the inflamma-
tion in experimental periodontitis model and inhibiting alveolar bone
resorption [109]. Human MSCs have emerged as a promising thera-
peutic source for treating myocardial and limb ischaemia [110, 111].
An investigation by Lian et al. revealed that human iMSCs attenuate
limb ischaemia in mice [58]. Further analysis showed that transplan-
tation of iMSCs into mice exhibited better attenuation in hindlimb
ischaemia than adult BM-MSCs. The greater therapeutic efficacy can
be attributed to their ability to survive for a longer time after trans-
plantation. Tracking of transplanted iMSCs divulged, iMSCs could
engraft and survive for more than 5 weeks following transplantation
[58]. Wei et al. indicated human iMSCs could continuously proliferate
for more than 32 passages without undergoing cellular senescence
and displayed superior wound healing and pro-angiogenic properties

[92]. The iMSCs derived on a synthetic polymeric coating; PMEDSAH
resulted in novel bone formation when transplanted into the mice with
calvarial defects [91]. Zang et al. have shown that iMSCs derived
from Hutchinson–Gilford Progeria syndrome (HGPS) were helpful in
studying the molecular pathology of HGPS [89]. In a recent study, Liu
et al. has successfully utilized iMSCs for modelling Fanconi anaemia.
The Fanconi anaemia iPSC-derived MSCs displayed premature senes-
cence [112]. Also, hiPSC-derived cells have been successfully used to
model various other diseases. We have provided the comprehensive
details below in Table 4, a list of disease modelling using hiPSCs
(Fig. 2).

Recent developments in safe clinical
products

Challenges & strategy to overcome them for
Clinically Relevant iMSCs

Safety and Efficacy of iMSCs are of paramount importance to succeed
in the field of translational regenerative medicine. The viral vector-
based strategy for reprogramming might result in tumour formation
as a result of insertional mutagenesis of the transgene. C-Myc is a
proto-oncogene that has been shown to increase the efficiency of
reprogramming by suppressing the tumour suppressor p-53 gene.
The overexpression of proto-oncogene and moderating of tumour
suppressor genes render hiPSCs beneficial results regarding higher
proliferative advantage for downstream translational applications
[206]. Consequently, many studies have unveiled several different
strategies for generation of safer iPSCs. In 2010, Yamanaka’s group
suggested using L-Myc as an alternative to C-Myc for reprogramming
based on the result that L-Myc maintained in the reprogramming effi-
ciency without inducing any tumorigenesis [206]. Fang et al.,
reported generated iPSCs devoid of C-Myc enervated retinal ischae-
mia and reperfusion injury following transplantation in rat models
[207]. The starter cell type has an enormous impact on reprogram-
ming, differentiation and in vivo functionality because of epigenetic
memory. Until now, there are no data on the best starter cell type for
a particular clinical application. Hence, more research needs to be
conducted to determine suitable starter cell type based on the type of
clinical application [30]. While iPSC-derived cell source are emerging
as a replacement cell source, their traits of self-renewal and pluripo-
tency after in vivo transplantation often leads to tumorigenicity and
genomic instability might result in low clinical utility [3]. The nature of
pluripotency transgene elements present in the iMSCs is arduous to
predict. Hence, iMSCs have been thoroughly characterized for silenc-
ing of the transgene expression and safe transgene integration [33].
Presently, only initial studies are reported on preclinical applications
of iMSCs. Hence, long-term, multicentric, pre-clinical and clinical
studies are required for accurate prediction of iMSCs for the
translational purpose [33]. The recent development of non-viral-
based generation of iPSCs might pave the way for considering iPSCs
as a suitable candidate for biotherapeutics [86, 208–210]. Newer
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Table 4 Disease modelling using hiPSCs

Disease modelling References

Neurological

Development Fragile X/ataxia syndrome (FXA) [74, 113]

Rett syndrome (RS) [75]

Angleman syndrome [76]

Prader–Willi syndrome [76]

Timothy syndrome (TS) [77]

Microcephaly (MC) [78]

Hereditary spastic paraplegias (HSP) [79]

Olivopontocerebellar atrophy (OPCA) [80]

Pelizaeus–Merzbacher disorder (PMD) [81]

Mitochondrial encephalopathy with lactic
acidosis and stroke-like episodes (MELAS)

[82]

Glioblastoma iPSCs [114]

Childhood cerebral adrenoleukodystrophy
(CCALD)

[115]

Multiple sclerosis [116]

Autism spectrum disorder (ASD) [117]

Cernunnos deficiency syndrome (XLF) [118]

William–Beuren syndrome (WBS) [119]

William–Beuren region duplication
syndrome (WBDS)

[119]

Degenerative Alzheimer’s (AD) [120–122]

Schizophrenia (SCZD) [123]

Spinal muscular atrophy (SMA) [124]

Parkinson disease (PD) [125–127]

Huntington disease (HD) [125, 128]

Amyotrophic lateral sclerosis (ALS) [129]

Familial dysautonomia (FD) [130]

X-linked adrenoleukodystrophy (X-ALD) [131]

Machado–Joseph disease (MJD) [132]

Friedreich’s Ataxia (FRDA) [133]

Familial transthyretin amyloidosis (ATTR) [134]

Tauopathies (TAP) [135]

Diabetic polyneuropathy (DPN) [19]
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Table 4. Continued

Disease modelling References

Gaint axonal neuropathy (GAN) [136]

Menkes disease (MD) [137]

Frontotemporal dementia (FTD) [138, 139]

Spinal cerebral ataxia type2 (SCA2) [140]

Ataxia telangiectasia (AT) [141]

Dravet syndrome (DVS) [142]

Hematological Swachman–Bodian–Diamond syndrome (SBD) [125]

Adenosine deaminase deficiency (ADA) severe
combined immunodeficiency (SCID)

[125]

Fanconi anemia (FA) [143]

Sickle cell anaemia (SCA) [144]

Beta-thalassaemia (BT) [145]

Polycythaemia vera (PV) [146]

Congenital amegakaryocytic thrombocytopenia
(CAMT)

[147]

Paroxysmal nocturnal haemoglobinuria (PNH) [148]

Dyskeratosis congenita (DC) [149]

a-Thalassaemia (AT) [150]

Aplastic anaemia (AA) [151]

Myeloproliferative disorder (MPN) [152]

Chronic myeloid leukaemia (CML) [153]

Juveline myelomonocytic leukaemia (JMML) [154]

Chronic infantile neurological, cutaneous and articular syndrome (CINCA) [155]

X-linked chronic granulomatous disease (X-CGD) [156]

Severe congenital neutropaenia (SCN) [157]

Wiskott–Aldrich syndrome (WAS) [158]

Metabolic Gaucher disease type III (GD) [125]

Juvenile diabetes mellitus (JDM) [125]

Lesch–Nyhan syndrome (LNS) [125]

Aplha1-Antitrypsin deficiency (A1ATD) [159]

Pompe disease (PomD) [160]

Familial hypercholesterolaemia (FH) [161]

Tyrosinaemia (TYS) [162]

Glycogen storage disease type1 (GSD) [162]
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Table 4. Continued

Disease modelling References

Progressive familial cholestasis (PFD) [162]

Crigler–Najjar syndrome (CN) [162]

Hurler syndrome (HS) [163]

Neuronal ceroid lipofuscinosis (NCL) [164]

Wilson’s disease (WD) [165]

Mitochondrial diabetes (MT) [166]

Fabry disease (FD) [87]

Mucopolysaccharidosis type IIIB disease (MPS) [167]

Cardiovascular LEOPARD syndrome (LS) [78]

Long QT syndrome type 1 (LQTS1) [168]

Long QT syndrome type 2 (LQTS2) [169]

Long QT syndrome type 3 (LQTS3) [170]

Supervascular aortic stenosis (SVAS) [171]

Hypertrophic cardiomyopathy (HCM) [172]

Diabetic cardiomyopathy (DCM) [173]

Hypoplastic left heart syndrome (HLHS) [174]

Moyamoya disease (MMD) [175]

Catecholaminergic polymorphic ventricular
tachycardia (CPVT)

[176]

Familial dilated cardiomyopathy (DCM) [177]

Familial hypertrophic cardiomyopathy (HCM) [178]

Primary immunodeficiency SCID/Leaky SCID [179]

Omenn syndrome (OS) [179]

Cartilage–hair hypoplasia (CHH) [179]

Herpes simplex encephalitis (HSE) [179]

Musculoskeletal disorder Craniometaphyseal dysplasia (CMD) [88]

Duchenne muscular dystrophy (DMD) [125]

Becker muscular dystrophy (BMD) [125]

Osteogenesis imperfect (OI) [180]

Thanatophoric dysplasia (THD) [181]

Achondroplasia (ACH) [181]

Hutchinson–Gilford progeria syndrome
(HGPS)

[182]

Werner syndrome (WS) [183]
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technologies without viral transgene such as chemicals, plasmids and
recombinant protein-based approaches might augment the clinical
utilization of these safe iPSCs [85, 211, 212]. The low efficiency of
iPSCs generation might be a serve-debilitating factor to consider
iPSCs/iMSCs for translational applications. Hence, more
research needs to be focused on scaling and optimizing the quality of
iPSCs [58].

Regulatory issues for future safe therapies using
hiPSCs

The iPSCs present unique sets of technical and regulatory hurdles
when compared to even ESCs for translational applications [213].
The issues regarding the cell and gene therapy in every country
are governed by its sovereign regulatory body. In the United

Table 4. Continued

Disease modelling References

Facioscapulohumeral muscular dystrophy
(FSHD)

[184]

Limb-girdle muscular dystrophy (LGMD) [185]

Myotonic dystrophy type 1 (MyD1) [186]

Marfan syndrome (MFS) [187]

Fibrodysplsia ossificans progressiva
(FOP)

[188]

Lung disorder Cystic fibrosis (CF) [189]

Pulmonary alveolar proteinosis (PAP) [190]

Emphysema (EP) [191]

Dermatological Disorder Recessive dystrophic epidermolysis
bullosa (RDEB)

[192, 193]

Scleroderma (SC) [191]

Focal dermal hypoplasia (FDH) [194]

Hermansky–Pudlak syndrome (HPS) [195]

Chediak–Higashi syndrome (CHS) [195]

Cancer Breast cancer (BC) [196]

Opthalmological disorder Retinitis pigmentosa (RP) [53, 197, 198]

Gyrate atrophy (GA) [199]

Best disease (BD) [200]

Cataract (Cat) [201]

Ectrodactyly-ectodermal dysplasia-cleft
syndrome (EEC)

[202]

Nephrology End stage renal disease (ESRD) [203]

Aneuploidy Turner syndrome (TS) [204]

Warkany syndrome (WKS) [204]

Patau syndrome (PS) [204]

Emanuel syndrome (ES) [204]

Klinefelter’s syndrome (KS) [205]

Down’s syndrome [125]
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States, the human iPSC products are regulated by Centre for Bio-
logics Evaluation and Research at the United States Food and
Drug Administration (USFDA) [214]. Before proceeding with the
clinical trials, the iPSC-derived products are subjected to preclini-
cal testing that requires extensive examination of safety, feasibility
and efficacy [215]. Pre-clinical studies involve a comparative anal-
ysis of the various parameters between healthy animals and dis-
ease models. According to the FDA guidelines, the same cells
used in preclinical trials should be used during clinical trials
[215]. Small animal models, such as rodents are used in preclini-
cal studies. However, rodent models, although could be used for
basic biological studies have a poor predictive outcome in term of
clinical efficacy [215]. Consequently, pre-clinical studies consisting
of large animal models such as swine, primates, etc., are favour-
able as they have relatively longer life span and displays physio-
logical similarities to humans albeit a limited number of disease
models and inability to modify the genome with ease constitute
major road block in the usage of large animal models [215]. For a
particular disease condition, a single satisfactory model is not pre-
sent. Hence, pre-clinical testing must be carried out using suitable
alternative models to highlight potential limitations and assist in
finding suitable alternative avenues for handling the disorder
[215]. Necessary precautions must be undertaken before

extrapolating the results from animal models to clinical trials
[215].

Efficacy of the transplanted cells in vivo is not well documented. A
few studies have demonstrated that transplantation of PSCs and dif-
ferentiated cells resulted in poor survival of the cells [216–219]. The
fate of the transplanted cells must be evaluated to ascertain the tangi-
ble effectiveness of the cells in vivo following transplantation. Hence,
suitable surgical/imaging techniques should be developed for in vivo
fate mapping of the cells [215].

Current good manufacturing protocol guidelines must be followed
to generate and characterize iPSC-based products [215] for any
future clinical applications. The quality of cell products and homo-
geneity of the cell population will determine the effect, risk and
potency of the iPSC-based therapy [215]. Method and duration of
storage, viability, cell line contamination and risks of transmissible
infections are some of the other possible confounding factors that
can affect the cell therapy [215]. Before scaling up towards clinical tri-
als questions such as ideal cell source, efficient reprogramming and
differentiation protocols, demonstration of safety and functionality
have to be addressed [215].

Generation of iPSCs from somatic cells requires a signifi-
cant amount of molecular manipulations [213] either by viral
vectors containing reprogramming genes [34] or transfection of

Fig. 2 Potential application overview of

iMSCs derived from hiPSCs.
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reprogramming mRNAs [84] or purified reprogramming factors [85]
or transfection by non-viral vectors containing reprogramming gene
methods [86]. The viral-based reprogramming strategies form the
basis of added concerns because of random integration into the host
genome [34]. On the contrary use of retroviral-based genetically
modified cells is technically permitted for human clinical trials under
the existing National Institutes of Health (NIH), guidelines [213].
Recent strategies for using small molecule-based reprogramming &
differentiation must be explored to develop and differentiate into clini-
cal relevant cell types [220]. Generation of iPSCs require a significant
amount of manipulations [213]. The viral-based reprogramming
strategies form the basis of added concerns because of random inte-
gration into the host genome [34]. On the contrary, use of retroviral-
based genetically modified cells is technically permitted for human
clinical trials under the existing NIH, guidelines [213]. Recent strate-
gies for using small molecule-based reprogramming & differentiation
must be explored to develop and differentiate into clinical relevant cell
types [220]. Every iPSC line would exhibit unique genetic and epige-
netic constitution. Hence, each and every cell line has to be subjected
to independent characterization to determine its precise characteristic
features [213]. It is necessary to determine to what extent iPSCs are
similar to ESCs. Besides safety, efficacy, stability, heritability and
absence of biased lineage differentiation have to examine and docu-
mented [213].

Immune response against transplanted cells presents a critical
challenge that can detrimentally affect the outcome of therapy. Some
of the important questions as to why the donor cells pose a risk of
immune response or genetic diseases, cell efficiency, cells exhibiting
risk of contamination, effectiveness and safety of transplanted cells
has to be answered, if they are perceived to develop into potential
therapeutic agents [221–223]. Tumour formation remains one of the
most important concerns while using the pluripotent cells or PSC-
derived products. It has been well documented that the reminiscent
PSCs present in differentiated cells could effectively give rise to
tumour formation [217, 219, 224–228].

One of the biggest advantages of iPSCs is the possibility of
generation of patient-specific autologous cell lines. Hence, the cum-
bersome procedure of screening against different cell lines for a
proper match is excluded [34, 213, 229]. The method of selection
and characterization criteria needs good manufacturing protocol
[213]. The combination of a proven gene therapy with proven PSC-
derived products might hold a great potential for therapeutic applica-
tion albeit certain technical and regulatory hurdles. Hence, suitable

regulatory guidelines should be established for the application of
genetically modified stem cells [213].

Conclusion

The invention of cellular reprogramming of adult cells from the
terminally differentiated state of PSCs state with the help of tran-
scription factors, biological factors and small molecules open up a
large window of opportunity in the field of regenerative medicine.
By incorporating the advantages of both iPSCs and MSCs, the
resulting iMSCs are emerging as a novel stem cell population [3].
The iMSCs generated from iPSCs successfully exhibited all the
fundamental criteria for defining the MSC population based on the
existing knowledge [3]. Data indicate that iMSCs can be used as
a promising alternative strategy for treatment of various immune-
mediated diseases [33]. Although, the concept of iMSCs is at its
nascent stage, recent studies nevertheless provide the proof of
concept that functional iMSCs could be successfully generated
from iPSCs that exhibit robust proliferation and differentiation
potential, which could be used for tissue repair and engineering
applications [58]. The development of iMSCs offers promise of
patient-specific, cost-efficient and batch to batch consistency [58].
Presently, the scope of iMSCs is limited to the pre-clinical utility
for tissue engineering-based treatment approaches. Further pre-
clinical and clinical studies are required before scaling it towards
routine clinical utility.
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