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The cores of globular proteins are densely packed, resulting in complicated networks of structural interactions. These
interactions in turn give rise to dynamic structural correlations over a wide range of time scales. Accurate analysis of
these complex correlations is crucial for understanding biomolecular mechanisms and for relating structure to function.
Here we report a highly accurate technique for inferring the major modes of structural correlation in macromolecules
using likelihood-based statistical analysis of sets of structures. This method is generally applicable to any ensemble of
related molecules, including families of nuclear magnetic resonance (NMR) models, different crystal forms of a protein,
and structural alignments of homologous proteins, as well as molecular dynamics trajectories. Dominant modes of
structural correlation are determined using principal components analysis (PCA) of the maximum likelihood estimate of
the correlation matrix. The correlations we identify are inherently independent of the statistical uncertainty and
dynamic heterogeneity associated with the structural coordinates. We additionally present an easily interpretable
method (‘‘PCA plots’’) for displaying these positional correlations by color-coding them onto a macromolecular structure.
Maximum likelihood PCA of structural superpositions, and the structural PCA plots that illustrate the results, will
facilitate the accurate determination of dynamic structural correlations analyzed in diverse fields of structural biology.
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Introduction

Biological macromolecules, like proteins and catalytic
RNAs, are dynamic structures. Each of the atoms in a
macromolecule is coupled with other atoms via covalent
bonds and various non-covalent interactions. This large and
complex network of interconnections produces correlated
structural dynamics, in which a perturbation or movement of
one structural element covaries with the positional displace-
ment of other elements. Thus, over a given time frame,
macromolecules exist as an ensemble of correlated substates
which span a large configurational space. Relevant time scales
for dynamic structural change can range from picoseconds in
molecular dynamics studies, to milliseconds for large struc-
tural movements, to millennia in evolutionary analyses of
conformational perturbations due to amino acid substitu-
tions. Understanding the correlated dynamics of such systems
is essential for mapping structure to function. However,
structural biologists currently have few tools for analyzing the
correlations found in an ensemble of structures.

Previous work characterizing the structural correlations in
macromolecules has been limited to analysis of molecular
dynamics (MD) simulations. Two general methods have been
used to extract major modes of functionally relevant motions:
normal mode analysis [1] and principal components analysis
(PCA) of atomic covariance matrices [2,3]. Studies using these
methods have largely shown that protein motions are
dominated by only a few major distinct modes of correlated
movement. Normal mode analysis assumes that dynamics are
harmonic. In contrast, PCA does not make this assumption,
and it has been found to be useful for finding major modes
when the dynamics are highly anharmonic, which is more
biologically realistic since proteins have multiple energetic
minima [1].

In standard practice, PCA of an MD trajectory first involves

removal of arbitrary rotational and translational effects by
conventional least-squares superpositioning [4–8]. From this
least-squares superposition one then calculates a covariance
matrix, which is subsequently used as input for eigendecom-
position in PCA (also see [9]). However, the use of least
squares is problematic in both theory and practice. As a
statistical technique, least squares relies on two strong
physical assumptions: that all atoms have the same variability,
and that each atom is uncorrelated with the others. When
these assumptions do not hold, least squares can give very
misleading results [10]. In biomolecular applications, individ-
ual atoms in a superposition do not have equal variances, as
some regions superposition closely while others show more
conformational heterogeneity. Similarly, the atoms in macro-
molecular structures are strongly correlated by physical
coupling via chemical bonds. Thus, both of the assumptions
of least squares are violated in real biological data. In fact,
performing PCA of a least-squares superposition is logically
contradictory; the least-squares method assumes that no
correlations exist, yet PCA is then performed on the least-
squares derived covariance matrix to analyze those ‘‘non-
existent’’ correlations.
We use a maximum likelihood (ML) method that overcomes
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the drawbacks of conventional least-squares superpositioning
methods [11–13]. Unlike least squares, ML superpositioning is
valid in the presence of heterogeneous variances and
correlations, thereby providing more accurate superpositions

[12,13] and corresponding covariance (and correlation)
matrices. Rather than performing separate superpositioning
and covariance matrix calculation steps, our ML super-
positioning method simultaneously determines the optimal
superposition and the optimal covariance matrix. We show
that, as expected, PCA of our ML superposition provides
markedly more accurate structural correlations than those
extracted from least-squares superpositions. Furthermore, we
show that use of the correlation matrix, rather than the
covariance matrix, automatically corrects for biases that may
be introduced due to experimental uncertainty in atomic
positions or due to large differences in the magnitude of
dynamic motion. We provide examples of the generality of
the method by applying it to alternate crystal forms of the
same protein, nuclear magnetic resonance (NMR) ensembles,
and distant homologs with differing amino acid sequences.

Results/Discussion

Accuracy of ML Correlation Matrices
We performed two simulation analyses to confirm the

ability of our ML method to accurately determine the
structural correlations found in sets of conformationally
similar molecules. Two sets of conformationally perturbed
protein structures were generated randomly by assuming a
Gaussian distribution with known mean and known cova-
riance matrices (and, hence, based on known correlation
matrices; see Figure 1A and 1E). In this case, the covariance

Figure 1. Plots of Correlation Matrices Inferred from Superpositions

The upper row (A–D) shows plots in which the true correlation matrix has no correlations (all off-diagonal elements are exactly zero), whereas the lower
row (E–H) shows plots where the true correlation matrix has strong, complex, positive, and negative correlations. Positive correlation, zero correlation,
and negative correlation are represented by colors ranging from blue to white to red, respectively.
(A, E) The true, assumed correlation matrix used in the simulation.
(B, F) The correlation matrix calculated from a least-squares superposition, including all atoms, of 300 protein structures simulated using the true
correlation matrix.
(C, G) The estimated correlation matrix, calculated from a least-squares superposition that omitted residues 1–5, which have the highest variance (most
disorder) in the structure.
(D, H) The correlation matrix calculated from a maximum likelihood superposition of the same simulated structures.
doi:10.1371/journal.pcbi.0040043.g001
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Author Summary

Biological macromolecules comprise extensive networks of inter-
connected atoms. These complex coupled networks result in
correlated structural dynamics, where atoms and residues move
and evolve together as concerted conformational changes. The
availability of a wealth of macromolecular structures necessitates the
use of robust strategies for analyzing the correlated modes of motion
found in molecular ensembles. Current strategies use a combination
of least-squares superpositions and statistical analysis of the
structural covariance matrix. However, the least-squares treatment
implicitly requires that atoms are uncorrelated and that each atom
has the same positional uncertainty, two assumptions which are
violated in structural ensembles. For example, the atoms in the
proteins are connected by chemical bonds, covalent and non-
covalent, resulting in strong correlations. Furthermore, different
atoms have different variances, because some atoms are known with
less precision or have greater mobility. Using maximum likelihood
(ML) analysis, we have developed a technique that is markedly more
accurate than the classical least-squares approach by accounting for
both correlations and heterogeneous variances. The improved ability
to accurately analyze the major modes of dynamic structural
correlations will benefit a diverse range of biological disciplines,
including nuclear magnetic resonance (NMR) spectroscopy, crystal-
lography, molecular dynamics, and molecular evolution.

Accurate Structural Correlations



matrix is a mathematical description of the positional
variation and correlations among the atoms in an ensemble
of molecular structures (for more background regarding
covariance and correlation matrices, see Methods). Two
different covariance matrices were used: one with a range of
variances, yet no correlations, and another with the same
range of variances plus strong correlations (the corresponding
‘‘true’’ correlation matrices are plotted in Figure 1A and 1E).
The correlation structure and the range of variances are
typical of NMR solution structures found in the PDB database
(see Methods). We then randomly translated and rotated each
of the perturbed structures. Both least-squares and ML
superpositions were performed independently on these two
sets of simulated protein structures to obtain estimates of the
true covariance/correlation matrix that was used to generate
the structures (Figure 1B–1D and 1F–1H).

We found that, when calculated from an ML superposition,
both the covariance matrix and the corresponding correla-
tion matrix are considerably more accurate than those
calculated from least-squares superpositions (Figure 1). When
compared to the true (known) correlation matrix, the least-
squares correlation matrix is highly biased, showing an
artifactual pattern of correlation (Figure 1B and 1F). As
shown in Figure 1C and 1G, the least-squares correlation
matrix remains artifactually biased even when the majority of
highly variable atoms are excluded from the analysis, as often
done in common practice (‘‘truncated least squares,’’ where

disordered regions are subjectively removed from the analysis
with intent to obtain lower RMSDs). Interestingly, the least-
squares procedure imparts a highly similar, artifactual
correlation structure regardless of the true correlations
(compare Figure 1B and 1C, with no true correlations, to
Figure 1F and 1G, in which the structures had true strong
correlations). In contrast, the ML-based correlation matrix
reliably recapitulates the true complex patterns of correla-
tion (Figure 1D and 1H).

Accuracy of Major Modes of Correlation Found by ML
To extract major modes of structural correlation from a

superposition, we use the statistical method of principal
components analysis (PCA; see Methods). PCA produces
multiple principal components, each of which represents
the predominant modes of structural correlation within the
superposition. Generally, only the first few principal compo-
nents (that is, those with the largest eigenvalues) are of
practical interest, since they usually account for the majority
of correlations in the data. As shown below, when significant
covariation exists in a family of structures, PCA based on a
least-squares superposition will yield erroneous principal
components, resulting in artifactual modes of correlation.
As with the correlation matrices, we found that the

principal components determined from an ML superposition
are likewise more accurate than principal components from a
least-squares superposition (Figure 2). In these images, the
largest (or first) principal component has been plotted in

Figure 2. PCA Plots of Least-Squares and ML Superpositions of Simulated Structures

The first principal component (PC) is plotted on the mean structure for various calculations. As in Figure 1, the upper row (A–D) uses a covariance matrix
in which all correlations are zero (no correlation), whereas the lower row (E–H) uses a covariance matrix with strong correlations. Red regions are self-
correlated, as are blue regions, while blue versus red regions are anti-correlated. White regions indicate no correlation.
(A, E) The true first PC, extracted from the known correlation matrices.
(B, F) The first PC based on the all-atom least-squares superposition.
(C, G) The first PC from a least-squares superposition that excluded residues 1–5 with the largest variance in the simulation.
(D, H) The first PC based on the ML superposition.
doi:10.1371/journal.pcbi.0040043.g002
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color on a single representative structure from the super-
position. We refer to these types of graphs as ‘‘PCA plots.’’ Red
regions are correlated with each other, meaning that these
regions tend to ‘‘move together’’ on average within the set of
structures. Similarly, blue regions are also correlated with
each other. However, the red regions are anti-correlated with
the blue regions, meaning that red and blue regions tend to
‘‘move’’ in opposition to each other. White regions represent
atoms whose positions are completely uncorrelated.

In the first analysis, the PCA plots shown in Figure 2A–2D
were calculated from simulated structures that had no bona
fide correlations among their atoms (using the correlation
structure plotted in Figure 1A). Nevertheless, the largest
principal components from the least-squares superpositions
indicate a substantial, yet completely artifactual, mode of
correlation, even when only the well-ordered residues are
included in the superposition (compare the true first
principal component in Figure 2A with Figure 2B and 2C).
In contrast, the first principal component from the ML
superposition faithfully shows very little correlation, as
indicated by the lack of colored patterns (Figure 2D). PCA
of the ML superposition also avoids the need for a subjective
judgment on which residues to remove from the analysis.

In the second, complementary analysis, protein structures
were simulated which had strong correlations, using the
correlation matrix plotted in Figure 1E. As before, the first
principal component from the least-squares superposition
indicates a large, artifactual mode of correlation, which is still

present even when the highly variable residues are excluded
(Figure 2F and 2G). PCA of the ML superposition, however,
accurately estimates the true correlation (Figure 2H).
Results from our ML method differ most from the

conventional least-squares method when there is a wide
range of variances among the atoms (that is, when some
regions of the structures are well-superpositioned and other
regions are highly disordered) and when correlations are
strong. As the variances for the atoms become more uniform,
and as the correlations approach zero, our method converges
on the conventional least-squares method. Even so, the poor
performance of the least-squares PCA method persists
despite the removal of the majority of the most highly
variable residues (residues 1–5 at the N-terminus; see Figure
2C and 2G). Thus, with the improved accuracy of ML
superpositions, PCA can be used reliably to find the major
modes of positional variation and dynamical correlation
within a family of structures.

Structural Correlations from Alternate Crystal Structures:
The 70S Ribosomal Subunit
The method presented here for identifying major modes of

structural correlation is general, and in principle it can be
used to analyze any structural superposition, including
independent solutions of the same protein, different homol-
ogous proteins, or a series of MD conformations. As one
example, Figure 3 shows the second principal component
from an ML superposition of a series of 10 crystal structures
structures of the 70S ribosomal subunit from Haloarcula
marismortui, including nine structures of the subunit bound to
different antibiotics [14–16]. Remarkably, the majority of the
correlation is localized to the active site of ribosome, the
subunit interface, and the active site cleft, which binds the
actively transcribed mRNA, tRNAs, translation factors, and
the nascent polypeptide. The regions of strong correlated
positional displacement also roughly correspond to regions
of high RNA sequence conservation (see, for example, Figure
5 of [14]). Thus, this PCA plot suggests that conformational
perturbations of the ribosome during binding by various
antibiotics are accompanied by correlated changes in distant
yet functionally important regions.

Figure 3. PCA Plot of the 70S Ribosomal Subunit from Haloarcula

marismortui

The second principal component is plotted for a superposition of 10
subunits of the large ribosomal subunit bound to different antibiotics.
The subunit interface (which binds the small ribosomal subunit) is facing
the viewer, with the 5S RNA at the top of the image. The large horizontal
swath of ‘‘red’’ correlation co-localizes with the active site cleft that
binds the mRNA, tRNAs, and translation factors. The first principal
component (not shown) indicates a relatively simple, large-scale hinge-
like motion in which the top third of the 70S subunit (in the orientation
shown) is positively correlated with the bottom third.
doi:10.1371/journal.pcbi.0040043.g003

Figure 4. ML Superposition and PCA Plot of Homologous Telomere

Domains

(A) An ML superposition of the first OB-fold from 1otc (blue), 1s40
(magenta), and 1qzg (cyan).
(B) A PCA plot of the first principal component based on the ML
superposition in (A), plotted on the mean structure. Two functionally
critical loops, shown in blue, are implicated in telomeric ssDNA substrate
recognition. These loops are highly correlated, indicating that their
conformations have evolved in concert.
doi:10.1371/journal.pcbi.0040043.g004
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Structural Correlations during Evolution: Telomere End-
Binding Proteins

Our method can also be used to analyze the correlated
conformational changes that have occurred during the
evolution of protein homologs. The ML superposition and
first principal component for a set of homologous telomere
end-binding protein OB-fold domains are shown in Figure 4.
The PCA plot indicates a clear correlation between the two
upper loops in blue and also within the red b-barrel, a fact
that is otherwise difficult to ascertain from inspection of the
structural alignment alone. The two blue loops are known to

be critical for recognition of the proteins’ single-stranded
DNA ligand [17,18]. Thus, this PCA analysis implies that these
loops (and also the b-barrel) have co-evolved in terms of
conformation during the divergence of these domains from a
common ancestor [19–21].

Structural Correlations within NMR Ensembles: DER of
Ubiquitin
The correlations found in PCA plots are also useful for

analyzing ensembles of solution structures of macromolecules
solved by NMR spectroscopy. For instance, Figure 5A and 5C
shows the largest principal mode of correlation from solution
structures of ubiquitin solved by dynamic ensemble refine-
ment, which takes into account the dynamic heterogeneity of
a protein as measured by NMR relaxation experiments in
addition to NOE distance constraint data [22]. Two inde-
pendent NMR refinements of the ubiquitin structure are
shown to give a sense of the reproducibility of our ML PCA
method [22,23]. Two key residues in the core of the protein,
Val5 and Ile30, pack against each other and are highly anti-
correlated, indicating that during the ‘‘fluid-like’’ dynamic
motion of the protein’s interior these residues move in
opposition to each other. Val5 and Ile30 are both members of
a small set of core residues that have been implicated in
forming a folding nucleus in ubiquitin [24]. Furthermore,
these residues are notable for being some of the most highly
conserved among ubiquitin homologs [25], for exhibiting the
slowest rates of hydrogen exchange in the protein [26], and
for decreasing the thermodynamic stability of the protein
when mutated [27]. Together with these experimental results,
ML PCA suggests that strongly correlated residues in
ubiquitin are important for its folding and stability.

Advantages of PCA of the Correlation Matrix versus the
Covariance Matrix
Our method is reminiscent of previous work that has used

PCA of covariance matrices to extract major modes of
functionally relevant motions from MD trajectories [2–8].
However, the interpretation of PCA of a covariance matrix is
problematic, as that method results in modes of covariation
that are a convolution of both the correlation and the
variance of the atoms (see Equation 3 in Methods). In
structural superpositions, two very different factors contrib-
ute to the conformational variance: (1) random experimental
uncertainties and (2) dynamic motion or conformational
heterogeneity. Because we use the correlation matrix, rather
than the covariance matrix, our method cleanly separates
pure correlations from the variance, and thus the resulting
principal components can be interpreted as bona fide modes
of correlation.
For instance, often the variances in a covariance matrix are

composed of stochastic contributions that can be physically
irrelevant or uninteresting. In NMR ensembles, the variance
of each atom reflects not only the dynamics of that atom but
also the number of experimental constraints for the position
of that atom. Highly uncertain regions of a structure can
therefore dominate the largest principal component from a
covariance matrix, thereby artifactually inflating the impor-
tance of these imprecise regions. An example is shown in
Figure 5B, where the disordered C-terminal tail of ubiquitin
has a large variance largely due to experimental imprecision
(from a paucity of NOE distance constraints), resulting in its

Figure 5. ML Superpositions and PCA Plots Derived from Two NMR

Structural Ensembles of Ubiquitin

(A) The first principal component from the correlation matrix is plotted
on an ML superposition of the dynamic ensemble refined NMR solution
structure of ubiquitin (PDB ID: 1xqq) [22],
Ile30 (in red), and Val5 (in blue) pack together in the hydrophobic core of
the protein. In this major mode of correlation, these two residues
account for a large fraction of the correlation, and they move, on
average, in opposite directions.
(B) The first principal component from the covariance matrix, for the
same 1xqq ensemble as in (A). The C-terminal tail (at top and in blue) is
disordered largely because of a lack of NOE distance constraints. The low
experimental precision of this region contributes to the large variance
that dominates the largest principal component of the covariance matrix.
The strong covariation in this region (indicated by blue) is thus an
artifactual result of experimental uncertainty and dynamics rather than
true correlated motion.
(C) The first principal component from the correlation matrix is plotted
on an ML superposition of an independent NMR solution structure of
ubiquitin (PDB ID: 2nr2) [23].
(D) The first principal component from the covariance matrix, for the
same 2nr2 ensemble as in (C). Note that in the disordered C-terminal tail
the red versus blue color is arbitrary.
doi:10.1371/journal.pcbi.0040043.g005
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unilateral contribution to the largest principal component of
the covariance matrix. PCA of a correlation matrix, on the
other hand, circumvents this problem by down-weighting
uncertain regions in proportion to their variances (see
Equation 2 and compare Figure 5A and 5C with Figure 5B
and 5D).

Furthermore, in an MD trajectory, a highly mobile loop
with little correlated movement with other parts of the
structure can nevertheless dominate the first mode of
covariation. As a result, the largest principal components
from the covariance matrix will primarily represent large
magnitude motions with little or no real correlated move-
ment. Covariance matrix PCA is useful, then, for analyzing
major modes of motion when coordinate precision is high.
However, covariance PCA is generally uninformative about
true conformational correlation.

In sum, correlation matrix PCA produces modes of pure
correlation that are independent of the uncertainties in
atomic positions, since the variance components have been
normalized away (Equation 2). Our ML method thus provides
correlations that are unlikely to be artifacts of experimental
imprecision or of the magnitude of dynamic motions in
localized regions of the structure.

Conclusion
Our maximum likelihood method provides principal com-

ponents that accurately describe the modes of coordinated
motions and correlations found in an ensemble of structures.
By using correlationmatrices rather than covariance matrices,
the modes of correlation that are found are largely free of
artifacts that can result from experimental imprecision and
the magnitude of dynamic motion. Taken together, various
experimental results suggest that highly correlated residues
from PCA plots are likely to be functionally significant. Thus,
maximum likelihood PCA of structural superpositions, and
the structural PCA plots that illustrate the results, should
prove to be of wide utility in analyzing and comparing
macromolecules in diverse fields of structural biology.

Methods

Covariance and correlation matrices. A covariance matrix is a
mathematical description of the variation and covariation among
members of a dataset. In the case of macromolecular structures, the
covariance matrix describes the positional variation and correlations
among the atoms observed in properly superpositioned family of
structures. For example, given a protein K amino acids in length, here
we consider the K3K covariance matrix representing the covariation
of each of the K a-carbons with each of the others. If the orientations
of the structures are known with certainty, then the diagonal
elements ri,i of the covariance matrix R are simply the variances
for each of the atoms. Each off-diagonal element ri,j 6¼i is the
covariance of the ith atom with the jth atom. The elements ri,j of
the covariance matrix R can be defined as:

ri;j ¼ hðxi � hxiiÞðxj � hxjiÞi ð1Þ

where hyii denotes the arithmetic average of yi over all i, and the xi
here are 3-vectors representing the 3-D x, y, and z coordinates of each
atom.

The correlation matrix C, on the other hand, is a simple function
of the covariance matrix that has been normalized by the variances,
leaving only pure correlations. Each element ci,j of the correlation
matrix C is given by:

ci;j ¼
ri;jffiffiffiffiffiffiffiffiffiffiffiffiffi
ri;irj;j
p ð2Þ

Unlike a covariance matrix, the diagonal elements of a correlation
matrix all equal 1, and the non-diagonal elements range from�1 to 1

(corresponding to perfect negative correlation and positive correla-
tion, respectively). Clearly, the accuracy of both the covariance and
correlation matrices directly depends on the accuracy of the
superposition. Note that, if the covariance matrix is known, then
the correlation matrix is also necessarily known. However, the
transform is not symmetric, as the correlation matrix does not
contain all the information needed to reconstruct the covariance
matrix; the variances are also required:

ri;j ¼ ci;j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ri;irj;j
p ð3Þ

Principal components analysis. Major modes of structural correlation
within a given structural dataset were found using the statistical
method of principal components analysis (PCA). To perform PCA,
the correlation (or covariance) matrix is diagonalized by spectral
decomposition. The resulting eigenvectors are ranked according to
their corresponding eigenvalues, largest to smallest. The eigenvector
with the largest eigenvalue corresponds to the first principal
component, which summarizes the major mode of correlation (or
covariance) in the data. The second principal component corre-
sponds to the second largest mode of correlation, and so on. Unless
otherwise indicated, all examples reported here used PCA of the
correlation matrix, although our program THESEUS will also
perform PCA on the covariance matrix if desired (see Implementa-
tion).

Theory. A statistical likelihood model for superpositioning structures. A
detailed treatment of the following likelihood analysis can be found
elsewhere [12,13]. We present here a simplified account of the ML
method and its rationale, focusing on simultaneous estimation of the
covariance matrix in the macromolecular structural superpositioning
problem. In the following, we specifically consider the superposition-
ing problem per se, as opposed to the structural alignment problem.
We assume that the one-to-one correspondence between atoms or
residues (i.e., the alignment) is known.

Consider superpositioning N different structures (Xi, i ¼ 1. . .N),
each with K corresponding atoms. Each structure is mathematically
represented as a K 3 3 matrix of K rows of atoms. We assume a
statistical perturbation model in which each macromolecular
structure Xi is drawn from a matrix normal (Gaussian) probability
distribution [28,29]. Each structure Xi to be superpositioned is
considered as an arbitrarily rotated and translated Gaussian
perturbation of a mean structure M:

Xi ¼ ðMþ EiÞR9i � 1Kti ð4Þ

where ti is a 1 3 3 translational row vector, 1K denotes the K 3 1
column vector of ones, and Ri is an orthogonal 33 3 rotation matrix.
The entries of the K 3 3 matrix Ei are filled with normal random
errors, each with mean zero, i.e., Ei } NK,3(0, R, I3). The K 3 K
covariance matrix R describes the (spherical) variance of each atom
and the covariances among the atoms.

The likelihood equation for matrix Gaussian superpositioning. In the
superposition problem with arbitrary translations, the covariance
matrix R is poorly identified and singular unless it is parametrically
constrained. Thus, to render the covariance matrix estimable, we
assume that its eigenvalues are hierarchically distributed according to
an inverse gamma probability density. An inverse gamma distribution
is physically reasonable, as extremely small or large variances are
relatively unlikely. The full joint log-likelihood for a structural
superposition is then the sum of the log-likelihood for the
eigenvalues of the atomic covariance matrix and the log-likelihood
for the multivariate matrix normal density [30,31] corresponding to
the statistical model given by Equation 4. The full superposition log-
likelihood ‘ðR; t;M;RjXÞ ¼ ‘S is thus

‘S ¼ �
1
2

XN
i

jjðXi þ lKtiÞRi �Mjj2R�1 �
3NK
2

lnð2pÞ � 3N
2

lnjRj

�ð1þ cÞlnjRj � atrR�1 þ Kclna� KlnCðcÞ ð5Þ

where jUj denotes the determinant of a matrix U, jjUjj2V ¼ trðU9VUÞ
denotes a squared Frobenius Mahalanobis matrix norm, and a and c
are the scale and shape parameters, respectively, of an inverse gamma
distribution for the K eigenvalues (kj) of the atomic covariance matrix
R:

PðkjÞ ¼
ac

CðcÞk
�ð1þcÞ
j e

� a
kj ð6Þ

ML superposition solutions. In the following, we briefly give the ML
solutions for each of the unknown parameters of the superposition
log-likelihood equation from above.
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Each observed structure must be translated to its row-weighted
centroid:

X̆i ¼ Xi þ lK t̂i ð7Þ

where t̂i is the ML estimate of the translation:

t̂i ¼
l9KR�1 X̆i

l9KR�1lK

The optimal rotations are calculated using a singular value
decomposition (SVD). Let the SVD of an arbitrary matrix D be
UKV’. Then, the ML rotations R̂i are estimated by

M̂9R�1Xi ¼ UKV9

R̂i ¼ VU9
ð8Þ

The mean structure is estimated as the arithmetic average of the
optimally translated and rotated structures:

M̂ ¼ 1
N

XN
i

X̆i R̂i ð9Þ

Finally, the ML estimate of the atomic covariance matrix R̂Ic is
given by:

R̂Ic ¼
3N

3N þ 2ðcþ 1Þ
2a
3N

I þ R̂U

� �
ð10Þ

where the unconstrained ML estimate of the covariance matrix R̂U is:

R̂U ¼
1
3N

XN
i

ð X̆i R̂i � M̂Þð X̆i R̂i � M̂Þ9 ð11Þ

Algorithm. Because the estimate of the covariance matrix R is a
function of the other unknown parameters, the ML solutions given
above must be solved simultaneously by numerical methods [12,13].
We use an iterative algorithm based on the Expectation-Max-
imization (EM) method [32,33]. The algorithm assumes that the
alignment (the one-to-one correspondence among atoms/residues in
the structures) is known a priori, and it aims to determine the ML
superposition given that alignment. In brief:

1. Initialize: Set R̂ ¼ I. Randomly choose one of the observed
structures for use as the mean structure M̂.

2. Translate: Translate (i.e., center) each according to Equation 7.
3. Rotate: Calculate each rotation R̂i (Equation 8), and rotate each

translated structure by setting Xi ¼ X̆i R̂.
4. Estimate the mean: Recalculate the average structure M̂

(Equation 9). Return to step 3 and loop until convergence.
5. Estimate the inverse gamma distributed eigenvalues: Estimate

R̂U (Equation 11) and find its sample eigenvalues. Estimate the inverse
gamma parameters by iteratively fitting them to the eigenvalues of
the ML estimate of the covariance matrix, treating the zero
eigenvalues (or the smallest variance) as missing data in an expect-
ation-maximization algorithm.

6. Estimate the atomic covariance matrix: Modify R̂U according to
Equation 10. Return to step 2 and loop until convergence.

7. PCA: Perform a principal components analysis on the
correlation matrix (or corresponding covariance matrix).

If all variances are assumed to be equal and all covariances are
assumed to be zero (i.e., R } I), then this algorithm corresponds to the
classical least-squares algorithm for the simultaneous superposition-
ing of multiple structures [34–37]. The algorithm presented above
(like that of Theobald and Wuttke [13]) is similar to that given in
Theobald and Wuttke [12], with three exceptions. First, the algorithm
of [12] is much more general, e.g., it is applicable to data in an
arbitrary number of dimensions. Here we assume D ¼ 3 for 3-D,
spatial data. Second, here no scaling factors are necessary (i.e., bi¼ 1
for all structures), since molecules are inherently in the same scale, as
bond lengths are fixed by the laws of physics. Third, we further
assume that the variance about each atom is spherical (i.e., N¼ I), an
assumption that greatly simplifies the calculations.

Implementation. The algorithm described above for calculating
ML superpositions and performing PCA of the estimated covariance
matrix is implemented in the command-line UNIX program
THESEUS [12,13]. THESEUS operates in two different modes: (1) a
mode for superpositioning structures with identical sequences and (2)
an ‘‘alignment mode,’’ which superpositions homologous structures
with different residues given a known alignment (for instance, as
determined from a sequence alignment program or from a structure-
based alignment program). THESEUS does not perform structure-

based sequence alignments, which is a distinct bioinformatic problem
[38]. As with all superposition methods, THESEUS requires an a
priori one-to-one mapping among the atoms/residues (i.e., it requires
a known alignment). With NMR models or different crystal structures
of identical proteins, the one-to-one mapping is trivial. When
superpositioning different molecules with different sequences,
however, a sequence alignment must be provided as a guide.
THESEUS accepts sequence alignments in standard CLUSTAL and
A2M (FASTA) formats.

In addition to the ML superposition for a set of structures,
THESEUS will calculate the principal components of either the
covariance or correlation matrix. For input, THESEUS takes a set of
standard PDB formatted structure coordinate files (http://www.
wwpdb.org/docs.html [39,40]). PCA analysis is requested with the ‘‘-
Pn’’ command line option, where ‘‘n’’ is substituted with the number
of principal components desired (usually three are sufficient). PCA of
the correlation matrix is performed by default; the ‘‘-C’’ option
specifies that the covariance matrix should be used. Each principal
component is written into the temperature factor field of two output
files: (1) a PDB formatted file of the optimal ML superposition (each
structure is represented as a different MODEL) and (2) a PDB
formatted file of the estimate of the mean structure. Principal
components can then be visualized as PCA plots (described in Results/
Discussion) with any visualization software, such as PyMOL [41],
RasMol [42], or MolScript [43], that can color the structures by values
in the temperature factor field.

Simulated structural data. Two artificial datasets of protein
coordinates were prepared as described previously [12]. Briefly, for
each set, 300 protein structures were generated randomly, assuming a
matrix Gaussian error distribution with a known mean protein
structure and known atomic covariance matrix. The a-carbon atoms
from model 1 of PDB:ID 2sdf (the human cytokine stromal cell-
derived factor-1 protein [44]) were used as the mean protein
structure (67 atoms/landmarks, squared radius of gyration ¼ 152
Å2). The 67 3 67 atomic covariance matrices were based on values
calculated from the superposition given in 2sdf, with variances
ranging from 0.0452 to 79.2 Å and correlations from 0 to 0.99. Thus,
in this simulation, the variances range over 3.2 orders of magnitude, a
value that is typical for NMR solution structure ensembles (of 3,150
single-domain NMR families in the PDB database, the average range
for the variance is 2.9 6 1.1 (SD) orders of magnitude). The first
simulated set of structures used a diagonal covariance matrix in
which all covariances were set to zero. The second simulated set of
structures used the full covariance matrix. Hence, both sets were
generated with the same variances, differing only in their correlation
structure. After generating the perturbed protein structures, each
was then randomly translated and rotated.

Our ML superposition procedure was then performed on these
simulated data sets, providing estimates of the atomic covariance
matrix, along with estimates of the coordinates of the mean structure
and of the original ‘‘true’’ superposition before translations and
rotations had been applied. Default THESEUS parameters were used
(version 1.2.6), except that the full covariance and correlation
matrices were estimated with the ‘‘-c’’ command line option. For
comparison, conventional least-squares superpositions were also
calculated for the same dataset. The corresponding sample cova-
riance and correlation matrices were calculated based on these least-
squares superpositions. In order to show the effect of discarding a
subset of highly variable (‘‘disordered’’) regions, separate least-
squares analyses were performed using all atoms and also excluding
residues 1–5 from the N-terminus, the atoms with the highest
variance (referred to as ‘‘truncated least squares’’).

Illustrations. Images of rendered macromolecules in Figures 2, 4,
and 5 were made with POVScriptþ [43,45] and Raster3D [46]. Figure 3
was made with PyMOL [41].
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