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Abstract 18 

Brain structural circuitry shapes a richly patterned functional synchronization, supporting for 19 

complex cognitive and behavioural abilities. However, how coupling of structural connectome (SC) 20 

and functional connectome (FC) develops and its relationships with cognitive functions and 21 

transcriptomic architecture remain unclear. We used multimodal magnetic resonance imaging data 22 

from 439 participants aged 5.7 to 21.9 years to predict functional connectivity by incorporating 23 

intracortical and extracortical structural connectivity, characterizing SC-FC coupling. Our findings 24 

revealed that SC-FC coupling was strongest in the visual and somatomotor networks, consistent 25 

with evolutionary expansion, myelin content, and functional principal gradient. As development 26 

progressed, SC-FC coupling exhibited heterogeneous alterations dominated by an increase in 27 

cortical regions, broadly distributed across the somatomotor, frontoparietal, dorsal attention, and 28 

default mode networks. Moreover, we discovered that SC-FC coupling significantly predicted 29 

individual variability in general intelligence, mainly influencing frontoparietal and default mode 30 

networks. Finally, our results demonstrated that the heterogeneous development of SC-FC coupling 31 

is positively associated with genes in oligodendrocyte-related pathways and negatively associated 32 

with astrocyte-related genes. This study offers insight into the maturational principles of SC-FC 33 

coupling in typical development. 34 

Keywords: structure-function coupling, brain connectome, development, cognitive function, gene 35 

transcriptome 36 
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Introduction 37 

In neural circuitry, long-range (extracortical) interconnections among local (intracortical) 38 

microcircuits shape and constrain the large-scale functional organization of neural activity across 39 

the cortex[1-5]. The coupling of structural connectome (SC) and functional connectome (FC) varies 40 

greatly across different cortical regions reflecting anatomical and functional hierarchies[1, 6-9] and 41 

is regulated in part by genes[6, 8], as well as its individual differences relates to cognitive function[8, 42 

9]. Despite its fundamental importance, our understanding of the changes in SC-FC coupling with 43 

development is currently limited. Specifically, the alterations in SC-FC coupling during 44 

development, its association with cognitive functions, and the underlying spatial transcriptomic 45 

mechanisms remain largely unknown.  46 

 Network modelling of the brain enables the characterization of complex information 47 

interactions at a system level and provides natural correspondences between structure and function 48 

in the cortex[7, 10]. Advances in diffusion MRI (dMRI) and tractography techniques have allowed 49 

the in vivo mapping of the white matter (WM) connectome (WMC), which depicts extracortical 50 

excitatory projections between regions[11]. The T1- to T2-weighted (T1w/T2w) ratio of MRI has 51 

been proposed as a means of quantifying microstructure profile covariance (MPC), which reflects a 52 

simplified recapitulation in cellular changes across intracortical laminar structure[6, 12-15]. Resting 53 

state functional MRI (rs-fMRI) can be used to derive the FC, which captures the synchronization of 54 

neural activity[16]. A variety of statistical[6, 8, 9], communication[1, 7], and biophysical[5, 17] 55 

models have been proposed to study the SC-FC coupling. The communication model is particularly 56 

useful because it not only depicts indirect information transmission but also takes into account 57 

biodynamic information within acceptable computational complexity[7, 18]. However, most studies 58 

have relied on WMC-derived extracortical communications as SC to predict FC, while ignoring the 59 

intracortical microcircuits, the MPC. In the present study, we propose that incorporating both 60 

intracortical and extracortical SC provides a more comprehensive perspective for characterizing the 61 

development of SC-FC coupling. 62 

 Previous studies in adults have revealed that the SC-FC coupling is strongest in sensory cortex 63 

regions and weakest in association cortex regions, following the general functional and 64 

cytoarchitectonic hierarchies of cortical organization[1]. This organization may occur due to 65 
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structural constraints, wherein cortical areas with lower myelination and weaker WM connectivity 66 

tend to have more dynamic and complex functional connectivity[1, 8]. Large-scale association 67 

networks emerged over evolution by breaking away from the rigid developmental programming 68 

found in lower order sensory systems[19], facilitating regional and individual specialization[20]. In 69 

terms of developmental changes in SC-FC coupling, a statistical model-based study[9] identified 70 

positive age-related changes in some regions, while fewer regions exhibited negative changes. 71 

Furthermore, there is evidence that SC-FC coupling is linked to cognitive functions in healthy 72 

children[21], adults[8, 22] and patients[23], suggesting that it may be a critical brain indicator that 73 

encodes individual cognitive differences. Nonetheless, a more comprehensive investigation is 74 

needed to understand the precise pattern of SC-FC coupling over development and its association 75 

with cognitive functions. 76 

 Cortical SC-FC coupling is highly heritable[8] and related to heritable connectivity profiles[6], 77 

suggesting that the development of coupling may be genetically regulated. The Allen Human Brain 78 

Atlas (AHBA)[24] is a valuable resource for identifying genes that co-vary with brain imaging 79 

phenotypes and for exploring potential functional pathways and cellular processes via enrichment 80 

analyses[25-27]. For instance, a myeloarchitectural study showed that enhanced myelin thickness 81 

in mid-to-deeper layers is specifically associated with the gene expression of oligodendrocytes[28]. 82 

Another functional study found that the expression levels of genes involved in calcium ion-regulated 83 

exocytosis and synaptic transmission are associated with the development of a differentiation 84 

gradient[29]. However, the transcriptomic architecture underlying the development of SC-FC 85 

coupling remains largely unknown. 86 

 In this study, we analysed data obtained from the Lifespan Human Connectome Project 87 

Development (HCP-D)[30], which enrolled healthy participants ranging in age from 5.7 to 21.9 88 

years. Our main objective was to investigate the SC-FC coupling of brain connectome and 89 

characterize its developmental landscapes. Specifically, we aimed to determine whether the SC-FC 90 

coupling encodes individual differences in cognition during development. Finally, we explored the 91 

genetic and cellular mechanisms underlying the development of SC-FC coupling of brain 92 

connectome. To assess the reproducibility of our findings, sensitivity and replication analyses were 93 

performed with a different tractography algorithm and a split-half independent validation method. 94 
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 95 

Results 96 

We selected 439 participants (5.7 – 21.9 years of age, 207 males) in the HCP-D dataset who met 97 

our inclusion criteria: available high-quality T1/T2, dMRI, and rs-fMRI data that met the quality 98 

control thresholds. For each participant, we generated multiple connectomes using 210 cortical 99 

regions from the Human Brainnetome Atlas (BNA)[31], which comprised MPC, WMC, and FC. 100 

Intracortical connectivity was represented by MPC. According to the WMC, twenty-seven weighted 101 

communication models[7] were calculated to characterize geometric, topological, or dynamic 102 

connectivity properties. Further details on these models can be found in Text S1. After analysis, we 103 

found that communicability[32], mean first passage times of random walkers[33], and flow graphs 104 

(timescales=1) provided the optimal combination of extracortical connectivity properties because 105 

of significantly predicting FC (p<0.05, 1,000 spin test permutations, Table S1). We used these three 106 

models to represent the extracortical connectivity properties in subsequent discovery and 107 

reproducibility analyses (Figure S1).  108 

Spatial pattern of cortical SC-FC coupling. We used SCs (MPC and three WMC 109 

communication models) to predict FC per node based on a multilinear model[1] (Figure 1), and 110 

quantified the nodewise SC-FC coupling as an adjusted coefficient of determination 𝑟2 . We 111 

observed that the grouped SC-FC coupling varied across cortical regions (mean adjusted 𝑟2 = 0.14 112 

± 0.08, adjusted 𝑟2 range = [0.03, 0.45], Figure 2A), and regions with significant coupling were 113 

located in the middle frontal gyrus, precentral gyrus, paracentral lobule, superior temporal gyrus, 114 

superior parietal lobule, postcentral gyrus, cingulate gyrus, and occipital lobe (p<0.05, 1,000 spin 115 

test permutations, Figure 2B). Similar heterogeneous patterns of coupling were observed when 116 

categorizing cortical regions into seven functional subnetworks[34] (visual, somatomotor, dorsal 117 

attention, ventral attention, limbic, frontoparietal and default mode networks). In the visual, 118 

somatomotor, default mode and ventral attention networks, SC significantly predict FC variance 119 

(p<0.05, 1,000 spin test permutations, Figure 2C). The visual and somatomotor networks had higher 120 

coupling values than the other networks (p<0.05, Kruskal-Wallis ANOVA, Figure 2C). We further 121 

investigated the alignment between SC-FC coupling and three fundamental properties of brain 122 

organization: evolution expansion[35], myelin content[36], and functional principal gradient[37]. 123 
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Our findings reveal a negative association between regional distribution of SC-FC coupling and 124 

evolution expansion (Spearman’s r=-0.52, p<0.001, 1,000 spin test permutations, Figure 2D), as 125 

well as with the functional principal gradient (Spearman’s r=-0.46, p<0.001, 1,000 spin test 126 

permutations, Figure 2F). Conversely, nodes exhibiting higher SC-FC coupling tended to exhibit 127 

higher myelin content (Spearman’s r=0.49, p<0.001, 1,000 spin test permutations, Figure 2E). In 128 

addition, the coupling pattern based on other models (using only MPC or only SCs to predict FC) 129 

and the comparison between the models were shown in Figure S2A-C. 130 

 131 

Figure 1. SC-FC coupling framework. The framework used to quantify nodal SC-FC coupling in 132 

the human brain. The MPC was used to map similarity networks of intracortical microstructure 133 

(voxel intensity sampled in different cortical depth) for each cortical node. The WMC represents 134 

the extracortical excitatory projection structure, and communication models were then constructed 135 

to represent the complex process of communication. A multilinear model was constructed to 136 

examine the association of individual nodewise SC (MPC and communication models) profiles with 137 

FC profiles. 138 

Additionally, we applied Haufe’s inversion transform[38] to yield predictor weights of various 139 

SCs, where higher or lower values indicate stronger positive or negative correlations with FC. Our 140 

results demonstrated that different SCs had preferential contributions to FC variance across cortical 141 

regions to explain FC variance (p<0.05, FDR corrected, Kruskal-Wallis ANOVA, Figure 2G). 142 

Specifically, in the MPC, regions with positive correlation were the orbital gyrus, precentral gyrus, 143 

right middle temporal gyrus and temporoparietal junction, while regions with negative correlations 144 

were the left superior frontal gyrus, inferior parietal lobule and bilateral cingulate gyrus. Regarding 145 

WMC communication models, the communicability and flow graphs tended to stronger higher 146 
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positive correlations in the visual, limbic and default mode networks, whereas the mean first passage 147 

time had stronger negative correlations in the somatomotor, limbic and frontoparietal networks. 148 

 149 

Figure 2. Cortical SC-FC coupling in young individuals. (A) Spatial pattern of SC-FC coupling. 150 

(B) Spatial patterns with significant predictions (p<0.05, spin test). (C) SC-FC coupling 151 

comparisons among functional networks. The error bars represent 95% confidence intervals. (D-F) 152 

SC-FC coupling aligns with evolution expansion, myelin content and functional principal gradient. 153 

(G) Preferential contributions of cortical regions across different structural connections. Note: ***: 154 

p<0.001; **: p<0.01; *: p<0.05; n.s.: p>0.05. VIS, visual network; SM, somatomotor network; DA, 155 

dorsal attention network; VA, ventral attention network; LIM, limbic network; FP, frontoparietal 156 

network; DM, default mode network. 157 

Age-related changes in SC-FC coupling with development. To track changes in SC-FC 158 

coupling during development, we used a general linear model to assess the effect of age on nodal 159 

SC-FC coupling, while controlling for sex, intracranial volume, and in-scanner head motion. Our 160 

results revealed that the whole-cortex average coupling increased during development (𝛽𝑎𝑔𝑒=1.05E-161 

03, F=3.76, p=1.93E-04, r=0.20, p=3.20E-05, Figure 3A). Regionally, the SC-FC coupling of most 162 
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cortical regions increased with age (p<0.05, FDR corrected, Figure 3B), particularly that in the 163 

frontal lobe, middle temporal gyrus, inferior temporal gyrus, parietal lobe, cingulate gyrus and 164 

lateral occipital cortex. Conversely, cortical regions with significantly decreased SC-FC coupling 165 

(p<0.05, FDR corrected, Figure 3B) were located in left orbital gyrus, left precentral gyrus, right 166 

superior and inferior temporal gyrus, left fusiform gyrus, left superior parietal lobule, left postcentral 167 

gyrus, insular gyrus, and cingulate gyrus. Age correlation coefficients distributed within functional 168 

subnetworks were shown in Figure 3C. Regarding mean SC-FC coupling within functional 169 

subnetworks, the somatomotor (𝛽𝑎𝑔𝑒=2.39E-03, F=4.73, p=3.10E-06, r=0.25, p=1.67E-07, Figure 170 

3E), dorsal attention ( 𝛽𝑎𝑔𝑒 =1.40E-03, F=4.63, p=4.86E-06, r=0.24, p=2.91E-07, Figure 3F), 171 

frontoparietal (𝛽𝑎𝑔𝑒=2.11E-03, F=6.46, p=2.80E-10, r=0.33, p=1.64E-12, Figure 3I) and default 172 

mode (𝛽𝑎𝑔𝑒=9.71E-04, F=2.90, p=3.94E-03, r=0.15, p=1.19E-03, Figure 3J) networks significantly 173 

increased with age and exhibited greater increase. No significant correlations were found between 174 

developmental changes in SC-FC coupling and the fundamental properties of cortical organization. 175 

Additionally, weights of different SCs varied with age, showing that MPC weight was positively 176 

correlated with age and that the weights of WMC communication models were stable (Figure S3-177 

S6). The age-related patterns of SC-FC coupling based other coupling models were shown in Figure 178 

S2D-F. 179 

 180 
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 181 

Figure 3. Aged-related changes in SC-FC coupling. (A) Increases in whole-brain coupling with 182 

age. (B) Correlation of age with SC-FC coupling across all regions and significant regions (p<0.05, 183 

FDR corrected). (C) Comparisons of age-related changes in SC-FC coupling among functional 184 

networks. The boxes show the median and interquartile range (IQR; 25–75%), and the whiskers 185 

depict 1.5× IQR from the first or third quartile. (D-J) Correlation of age with SC-FC coupling across 186 

the VIS, SM, DA, VA, LIM, FP and DM. VIS, visual network; SM, somatomotor network; DA, 187 

dorsal attention network; VA, ventral attention network; LIM, limbic network; FP, frontoparietal 188 

network; DM, default mode network. 189 

SC-FC coupling predicts individual differences in cognitive functions. As we found that 190 

SC-FC coupling can encode brain maturation, we next evaluated the implications of coupling for 191 

individual cognition using Elastic-Net algorithm[11]. After controlling for sex, intracranial volume 192 

and in-scanner head motion, we found the SC-FC coupling significantly predicted individual 193 

differences in fluid intelligence, crystal intelligence and general intelligence (Pearson’s r=0.3~0.4, 194 

p<0.001, FDR corrected, Figure 4A). Furthermore, even after controlling for age, SC-FC coupling 195 

remained a significant predictor of general intelligence better than at chance (Pearson’s r=0.11±196 

0.04, p=0.01, FDR corrected, Figure 4A). For fluid intelligence and crystal intelligence, the 197 

predictive performances of SC-FC coupling were not better than at chance (Figure 4A). The 198 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 12, 2024. ; https://doi.org/10.1101/2023.09.11.557107doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.11.557107
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

predictive performances for other cognitive subscores are shown in Figure S7. To identify the 199 

regions with the greatest contributions to individual differences in age-adjusted general intelligence, 200 

we utilized Haufe’s inversion transform[38] to extract predictor weights across various regions. Our 201 

analysis revealed that SC-FC coupling within the prefrontal lobe, temporal lobe and lateral occipital 202 

lobe was the most predictive of individual differences in general intelligence (Figure 4B). In 203 

addition, we found that the weights of frontoparietal and default mode networks significantly 204 

contributed to the prediction of the general intelligence (p<0.01, 1,000 spin test permutations, Figure 205 

4C). 206 

 207 

 208 

Figure 4. Encoding individual differences in intelligence using regional SC-FC coupling. (A) 209 

Predictive accuracy of fluid, crystallized, and general intelligence composite scores. (B) Regional 210 

distribution of predictive weight. (C) Predictive contribution of functional networks. The boxes 211 

show the median and interquartile range (IQR; 25–75%), and the whiskers depict the 1.5× IQR from 212 

the first or third quartile. 213 

Transcriptomic and cellular architectures of SC-FC coupling development. We employed 214 

partial least square (PLS) analysis[39] to establish a link between the spatial pattern of SC-FC 215 

coupling development and gene transcriptomic profiles (Figure 5A) obtained from the AHBA using 216 

a recommended pipeline[40]. The gene expression score of the first PLS component (PLS1) 217 
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explained the most spatial variance, at 22.26%. After correcting for spatial autocorrelation[41], we 218 

found a positive correlation (Pearson’s r=0.41, p=0.006, 10,000 spin test permutations, Figure 5B) 219 

between the PLS1 score of genes and the spatial pattern of SC-FC coupling development. In addition, 220 

we identified potential transcriptomic architectures using a Gene Ontology (GO) enrichment 221 

analysis of biological processes and pathway[42], analysing the significant positive and negative 222 

genes in PLS1. The positive weight genes (364 genes) were prominently enriched for “myelination”, 223 

“monoatomic cation transport”, “supramolecular fiber organization”, etc (p<0.05, FDR corrected, 224 

Figure 5C). The negative correlation genes (456 genes) were relatively weakly enriched in “cellular 225 

macromolecule biosynthetic process” and other pathways (p<0.05, FDR corrected, Figure 5C). 226 

To further investigate cell-specific expression patterns associated with SC-FC coupling 227 

development, the selected genes in the AHBA were agglomerated into seven canonical cell 228 

classes[43-48]: astrocytes, endothelial cells, excitatory neurons, inhibitory neurons, microglia, 229 

oligodendrocytes and oligodendrocyte precursors (OPCs). Our findings showed that the genes with 230 

positive weights were significantly expressed in oligodendrocytes (75 genes, p<0.001, permutation 231 

test, Figure 5D). The genes with negative weights were expressed in astrocytes (43 genes, p<0.001, 232 

permutation test, Figure 5D). Additionally, genes enriched in positive pathways were intensively 233 

overexpressed in oligodendrocytes, while genes enriched in three negative pathways were expressed 234 

in astrocytes, inhibitory neurons and microglia (p<0.05, permutation test, Figure S8). 235 
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 236 

Figure 5. Association between developmental changes in SC-FC coupling and gene 237 

transcriptional profiles. (A) The map of developmental changes (absolute value of correlation 238 

coefficients) in SC-FC coupling across 105 left brain regions (left panel), and the normalized gene 239 

transcriptional profiles containing 10,027 genes in 105 left brain regions (right panel). (B) The 240 

correlation between developmental changes in SC-FC coupling and the first PLS component from 241 

the PLS regression analysis. (C) Enriched terms of significant genes. (D) Cell type-specific 242 

expression of significant genes. Note, pspin: spin test; pfdr: FDR corrected. 243 

Reproducibility analyses. Different parcellation templates. To evaluate the robustness of our 244 

findings to different parcellation templates, using the multimodal parcellation from the Human 245 

Connectome Project (HCPMMP)[49], we repeated the analyses of the cortical patterns of SC-FC 246 

coupling, correlation of age with SC-FC coupling, and gene weights. We observed a similar 247 

distribution in SC-FC coupling in which visual and somatomotor networks had higher coupling 248 

values than other networks (Figure S9A). The SC-FC coupling of most cortical regions increased 249 

with age (Figure S9B), and the significant regions were similar to those in the main findings (Figure 250 

S9C, p<0.05, FDR corrected). The gene weights of HCPMMP was consistent with that of BNA (r 251 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted March 12, 2024. ; https://doi.org/10.1101/2023.09.11.557107doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.11.557107
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

= 0.25, p < 0.001). 252 

Different tractography strategies. To evaluate the sensitivity of our results to tractography 253 

strategies, we reconstructed fibres using deterministic tractography with a ball-and-stick model and 254 

generated a fibre number-weighted network for each participant. This same pipeline was employed 255 

for subsequent SC-FC coupling, prediction, and gene analyses. These two tractography strategies 256 

yielded similar findings, as indicated by significant correlations in the mean SC-FC coupling 257 

(r=0.85, p<0.001, spin test, Figure S10A), the correlation of between age and SC-FC coupling 258 

(r=0.79, p<0.001, spin test, Figure S10B), predictive weights on the general intelligence (r=0.85, 259 

p<0.001, spin test, Figure S10C), and gene weights (r=0.80, p<0.001, Figure S10D). 260 

Split-half validation. To assess the reproducibility of our findings, we performed a split-half 261 

independent validation using the whole dataset (WD). Specifically, we randomly partitioned WD 262 

into two independent subsets (S1 and S2), and this process was repeated 1,000 times to mitigate any 263 

potential bias due to data partitioning. We then quantified SC-FC coupling, correlation between age 264 

and SC-FC coupling, and gene weights in S1 and S2 using the same procedures. Remarkably, we 265 

observed high levels of agreement among the datasets (S1, S2, and the WD) as demonstrated in 266 

Figure S11. 267 

 268 

Discussion 269 

In the present study, we characterized alterations of SC-FC coupling of brain connectome during 270 

development by combining intracortical and extracortical SC to predict FC based on the HCP-D 271 

dataset. We observed that SC-FC coupling was stronger in the visual and somatomotor networks 272 

than in other networks, and followed fundamental properties of cortical organization. With 273 

development, SC-FC coupling exhibited heterogeneous changes in cortical regions, with significant 274 

increases in the somatomotor, frontoparietal, dorsal attention and default mode networks. 275 

Furthermore, we found that SC-FC coupling can predict individual differences in general 276 

intelligence, mainly with the frontoparietal and default mode networks contributing higher weights. 277 

Finally, we demonstrated that the spatial heterogeneity of changes in SC-FC coupling with age was 278 

associated with transcriptomic architectures, with genes with positive weights enriched in 279 

oligodendrocyte-related pathways and genes with negative weights expressed in astrocytes. 280 
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Together, these findings characterized the spatial and temporal pattern of SC-FC coupling of brain 281 

connectome during development and the heterogeneity in the development of SC-FC coupling is 282 

associated with individual differences in intelligence and transcriptomic architecture. 283 

 Intracortical microcircuits are interconnected through extracortical WM connections, which 284 

give rise to richly patterned functional networks[1, 3]. Despite extensive research on this topic, the 285 

relationship between SC and FC remains unclear. Although many studies have attempted to directly 286 

correlate FC with the WMC, this correspondence is far from perfect due to the presence of 287 

polysynaptic (indirect) structural connections and circuit-level modulation of neural signals[2, 9, 16, 288 

50]. Biological models can realistically generate these complex structural interconnections, but they 289 

have significant temporal and spatial complexity when solving for model parameters[51-54]. 290 

Communication models using the WMC integrate the advantages of different communication 291 

strategies and are easy to construct[18]. As there are numerous communication models, we 292 

identified an optimal combination consisting of three decentralized communication models based 293 

on predictive significance: communicability, mean first passage times of random walkers and flow 294 

graphs. We excluded a centralized model (shortest paths), which was not biologically plausible since 295 

it requires global knowledge of the shortest path structure[7, 55, 56]. In our study, we excluded the 296 

Euclidean distance and geodesic distance because spatial autocorrelation is inhibited. This study 297 

provides a complementary perspective (in addition to the role of WMC in shaping FC) that 298 

emphasizes the importance of intrinsic properties within intracortical circuit in shaping the large-299 

scale functional organization of the human cortex. MPC can link intracortical circuits variance at 300 

specific cortical depths from a graph-theoretical perspective, enabling reflection of intracortical 301 

microcircuit differentiation at molecular, cellular, and laminar levels[6, 12-15]. Coupling models 302 

that incorporate these microarchitectural properties yield more accurate predictions of FC from 303 

SC[3, 57]. 304 

 SC-FC coupling may reflect anatomical and functional hierarchies. SC-FC coupling in 305 

association areas, which have lower structural connectivity, was lower than that in sensory areas. 306 

This configuration effectively releases the association cortex from strong structural constraints 307 

imposed by early activity cascades, promoting higher cognitive functions that transcend simple 308 

sensori-motor exchanges[19]. A macroscale functional principal gradient[37, 58] in the human brain 309 
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has been shown to align with anatomical hierarchies. Our study revealed a similar pattern, where 310 

SC-FC coupling was positively associated with evolutionary expansion and myelin content, and 311 

negatively associated with functional principal gradient during development. These findings are 312 

consistent with previous studies on WMC-FC coupling[9] and MPC-FC coupling[6]. Notably, we 313 

also found that the coupling pattern differed from that in adults, as illustrated by the moderate 314 

coupling of the sensorimotor network in the adult population[8]. SC-FC coupling is dynamic and 315 

changes throughout the lifespan[7], particularly during adolescence[6, 9], suggesting that perfect 316 

SC-FC coupling may require sufficient structural descriptors. Moreover, our results suggested that 317 

regional preferential contributions across different SCs lead to variations in the underlying 318 

communication process. Interestingly, the two extremes of regions in terms of MPC correlations 319 

corresponded to the two anchor points of the gradient[28]. The preferential regions in WM 320 

communication models were consistent with the adult results[7].  321 

In addition, we observed developmental changes in SC-FC coupling dominated by a positive 322 

increase in cortical regions[9], broadly distributed across somatomotor, frontoparietal, dorsal 323 

attention, and default mode networks[9]. In a lifespan study, the global SC-FC coupling alterations 324 

with age were driven by reduced coupling in the sensorimotor network[7]. This finding is consistent 325 

across age ranges, indicating that sensorimotor coupling changes appear throughout development 326 

and ageing. Furthermore, we investigated the relationships of coupling alterations with evolutionary 327 

expansion and functional principal gradient but found no significant correlations, in contrast to a 328 

previous study[9]. These discrepancies likely arise from differences in coupling methods. We also 329 

found the SC-FC coupling with age across regions within subnetworks has more variability than the 330 

differences between networks, suggesting that the coupling with age is more likely region-331 

dependent than network-dependent. 332 

The neural circuits in the human brain support a wide repertoire of human behaviour[59]. Our 333 

study demonstrates that the degree of SC-FC coupling in cortical regions can significantly predict 334 

cognitive scores across various domains, suggesting that it serves as a sensitive indicator of brain 335 

maturity. Moreover, even after controlling for age effects, SC-FC coupling significantly predicted 336 

general intelligence, suggesting that it can partly explain individual differences in intelligence, as 337 

shown in previous studies[8]. In another study[9], positive correlations between executive function 338 
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and SC-FC coupling were mainly observed in the rostro-lateral frontal and medial occipital regions, 339 

whereas negative associations were found in only the right primary motor cortex. While SC-FC 340 

coupling was not found to predict age-adjusted executive function in our study, we observed that 341 

the frontoparietal network and the default mode network specifically contributed higher positive 342 

prediction weights for general intelligence, whereas the somatomotor network had negative 343 

prediction weights[8]. The maturation of the frontoparietal network and default mode network 344 

continues into early adulthood, providing an extended window for the activity-dependent 345 

reconstruction of distributed neural circuits in the cross-modal association cortex[19]. As we 346 

observed increasing coupling in these networks, this may have contributed to the improvements in 347 

general intelligence, highlighting the flexible and integrated role of these networks. 348 

Classic twin studies have reported that the heritability of coupling differs among cortical 349 

regions, with higher heritability in the visual network than in other cortical networks[8]. An inverse 350 

correlation between the pattern of SC-FC coupling and heritable connectivity profiles has been 351 

reported[6]. This led us to hypothesize that the development of SC-FC coupling may be influenced 352 

by the expression patterns of the genetic transcriptome across various cell types with different spatial 353 

distributions. Our findings suggest that the spatial development of SC-FC coupling is associated 354 

with underlying transcriptome structure. Specifically, genes positively associated with the 355 

development of SC-FC coupling were enriched in oligodendrocyte-related pathways. 356 

Oligodendrocytes, specialized glial cells in the central nervous system, play a crucial role in 357 

myelination by producing myelin sheaths that enable saltatory conduction and provide metabolic 358 

support to axons[60]. Defects in myelination have been linked to developmental disorders[61]. This 359 

seems to indicate that significant alterations in SC-FC coupling during development may reflect 360 

neural plasticity, such as activity-dependent myelination of axons connecting functionally coupled 361 

regions[62, 63]. Conversely, we found that genes negatively correlated with SC-FC coupling were 362 

enriched in two specific gene pathways within astrocytes, inhibitory neurons and microglia. Both 363 

astrocytes and microglia have been implicated in synaptic pruning, a critical developmental process 364 

for the formation of fully functional neuronal circuits that eliminates weak and inappropriate 365 

synapses[64-66]. Importantly, the precise establishment of synapses is crucial for establishing the 366 

intercellular connectivity patterns of GABAergic neurons[67]. These findings suggest that the subtle 367 
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alterations observed in SC-FC coupling are closely associated with the refinement of mature neural 368 

circuits. 369 

Several methodological issues must be addressed. First, we implemented a conservative quality 370 

control procedure to address head motion, which unavoidably resulted in the loss of some valuable 371 

data. Given the confounding influence of head motion in fMRI studies, especially those involving 372 

developing populations, we applied censoring of high-motion frames and included motion as a 373 

covariate in the GLM analysis and cognitive prediction to minimize its effects[7, 59, 68, 69]. Second, 374 

Second, although we observed SC-FC coupling across development by integrating intra- and 375 

extracortical SC to predict FC, it is worth noting that combining deep learning models[2], 376 

biophysical models[5, 17], or dynamic coupling[3, 13] perspectives may provide complementary 377 

insights. Third, the appropriateness of structurally defined regions for the functional analysis is also 378 

a topic of important debate. Fourth, we focused solely on cortico-cortical pathways, excluding 379 

subcortical nuclei from analysis. This decision stemmed from the difficulty of reconstructing the 380 

surface of subcortical regions[70] and characterizing their connections using MPC technique, as 381 

well as the challenge of accurately resolving the connections of small structures within subcortical 382 

regions using whole-brain diffusion imaging and tractography techniques[71, 72]. In addition, the 383 

reconstruction of short connections between hemispheres is a notable challenge. Fifth, it is important 384 

to acknowledge that changes in gene expression levels during development may introduce bias in 385 

the results. Finally, validation of sensitivity across independent datasets is a crucial step in ensuring 386 

the reliability of our results. To address this, we employed an alternative split-half validation strategy 387 

and the results supported the reliability of the current findings. However, future verification of 388 

current findings on independent datasets are still needed. 389 

 390 

Conclusions 391 

 Overall, this study sheds light on the development of SC-FC coupling in the brain and its 392 

relationship to cognitive function and gene expression patterns. The results improve our 393 

understanding of the fundamental principles of brain development and provide a basis for future 394 

research in this area. Further investigations are needed to fully explore the clinical implications of 395 

SC-FC coupling for a range of developmental disorders. 396 
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 397 

Materials and Methods 398 

Participants. We selected 439 participants (207 males, mean age = 14.8 ± 4.2 years, age range = 399 

[5.7, 21.9]) from the HCP-D Release 2.0 data (https://www.humanconnectome.org/study/hcp-400 

lifespan-development) after conducting rigorous checks for data completeness and quality control. 401 

The HCP-D dataset comprised 652 healthy participants who underwent multimodal MRI scans and 402 

cognitive assessments, and the detailed inclusion and exclusion criteria for this cohort have been 403 

described in[30]. All participants or their parents (for participants under the age of 18 years) 404 

provided written informed consent and assent. The study was approved by the Institutional Review 405 

Board of Washington University in St. Louis. 406 

Cognitive scores. We included 11 cognitive scores which were assessed with the National Institutes 407 

of Health (NIH) Toolbox Cognition Battery (https://www.healthmeasures.net/exploremeasurement-408 

systems/nih-toolbox), including episodic memory, executive function/cognitive flexibility, 409 

executive function/inhibition, language/reading decoding, processing speed, language/vocabulary 410 

comprehension, working memory, fluid intelligence composite score, crystal intelligence composite 411 

score, early child intelligence composite score and total intelligence composite score. Distributions 412 

of these cognitive scores and their relationship with age are illustrated in Figure S12. 413 

Imaging acquisition. The MRI data were obtained with a Siemens 3T Prisma with a 32-channel 414 

phased array head coil, and detailed imaging parameters are available in[73]. High-resolution T1w 415 

images were acquired using a 3D multiecho MPRAGE sequence (0.8 mm isotropic voxels, 416 

repetition time (TR)/inversion time (TI) = 2500/1000 ms, echo time (TE) = 1.8/3.6/5.4/7.2 ms, flip 417 

angle = 8°, up to 30 reacquired TRs). The structural T2w images were collected with a variable-flip-418 

angle turbo-spin‒echo 3D SPACE sequence (0.8 mm isotropic voxels, TR/TE = 3200/564 ms, up to 419 

25 reacquired TRs). The dMRI scans included four consecutive runs with a 2D 4× multiband spin‒420 

echo echo-planar imaging (EPI) sequence (1.5 mm isotropic voxels, 185 diffusion directions with b 421 

= 1500/3000 s/mm2 and 28 b = 0 s/mm2 volumes, TR = 3.23 s, flip angle = 78°). The rs-fMR images 422 

were acquired using a 2D 8× multiband gradient-recalled echo EPI sequence (2.0 mm isotropic 423 

voxels, TR/TE = 800/37 ms, flip angle = 52°). Each rs-fMRI scan duration was 26 minutes (four 424 

runs of 6.5 minutes) for participants over 8 years old and 21 minutes (six runs of 3.5 minutes) for 425 
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participants who were 5~7 years old.  426 

Imaging preprocessing. All structural, diffusion and functional images underwent minimal 427 

preprocessing[70]. We specifically processed dMRI data referring to the publicly available code 428 

from https://github.com/Washington-University/HCPpipelines since the HCP-D has not released 429 

preprocessed dMRI results. Briefly, structural T1w and T2w images went through gradient 430 

distortion correction, alignment, bias field correction, registration to Montreal Neurological Institute 431 

(MNI) space, white matter and pial surface reconstruction, segment structures, and surface 432 

registration and downsampling to 32k_fs_LR mesh. A T1w/T2w ratio image, which indicates 433 

intracortical myelin, was produced for each participant[36]. The BNA[31] was projected on native 434 

space according to the official scripts (http://www.brainnetome.org/resource/) and the native BNA 435 

was checked by visual inspection. Regarding fMRI data, the preprocessing pipeline included spatial 436 

distortion correction, motion correction, EPI distortion correction, registration to MNI space, 437 

intensity normalization, mapping volume time series to 32k_fs_LR mesh, and smoothing using a 2 438 

mm average surface vertex. Following our previous methodological evaluation study[11], the dMRI 439 

procedures consisted of intensity normalization of the mean b0 image, correction of EPI distortion 440 

and eddy current, motion correction, gradient nonlinearity correction, and linear registration to T1w 441 

space. 442 

Network computation. Microstructure profile covariance (MPC). The MPC can capture 443 

cytoarchitectural similarity between cortical areas[12]. We first reconstructed 14 cortical surfaces 444 

from the white matter to the pial surface using a robust equivolumetric model[12, 74]. Then, the 445 

T1w/T2w ratio image was used to sample intracortical myelin intensities at these surfaces. We 446 

averaged the intensity profiles of vertices over 210 cortical regions according to the BNA[31]. 447 

Finally, we computed pairwise partial correlations between regional intensity profiles, while 448 

controlling for the average intensity profile. After removing negative correlations, we used Fisher’s 449 

r-to-z-transformation to generate an individual MPC. 450 

White matter connectome (WMC). Following our previous methodological evaluation 451 

study[11], the ball-and-stick model estimated from the bedpostx command-line in the FDT toolbox 452 

of FSL (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT) was used to estimate fibre orientations (three 453 

fibres modelled per voxel)[75-78]. The BNA atlas was applied to individual volume space by 454 
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inverse transformation derived from preprocessed steps. Next, probabilistic tractography 455 

(probtrackx)[77, 79] was implemented in the FDT toolbox to estimate the probability of connectivity 456 

between two regions by sampling 5,000 fibres for each voxel within each region, correcting for 457 

distance, dividing by the total fibres number in source region, and calculating the average 458 

bidirectional probability[11]. Notably, the connections in subcortical areas were removed. A 459 

consistency-based thresholding approach (weight of the coefficient of variation at the 75th 460 

percentile) was used to remove spurious connections, and retain consistently reconstructed 461 

connections across subjects[9, 80]. Finally, twenty-seven communication models[7] were 462 

subsequently derived from the weighted probabilistic network, including shortest path length 463 

(gamma values = {0.12, 0.25, 0.5, 1, 2, 4}), communicability[32], cosine similarity, search 464 

information (weight-to-cost transformations = {0.12, 0.25, 0.5, 1, 2, 4})[81], path transitivity 465 

(weight-to-cost transformations = {0.12, 0.25, 0.5, 1, 2, 4})[55], matching index[82], greedy 466 

navigation[83], mean first passage times of random walkers[33], and flow graphs (timescales = {1, 467 

2.5, 5, 10})[84]; for more details see Text S1. 468 

Functional network (FC). To further clean the functional signal, we performed frame censoring, 469 

regressed out nuisance variables (including white matter, cerebrospinal fluid, global signal, and 12 470 

motion parameters), and executed temporal bandpass filtering (0.01~0.1 Hz). Specifically, we 471 

identified censored frames with motion greater than 0.15 mm[7] based on the 472 

Movement_RelativeRMS.txt file. We flagged one frame before and two frames after each censored 473 

frame, along with any uncensored segments of fewer than five contiguous frames, as censored 474 

frames as well[69]. We discarded fMRI runs with more than half of the frames flagged as censored 475 

frames, and excluded participants with fewer than 300 frames (less than 4 minutes). The nuisance 476 

variables were removed from time series based on general linear model. We averaged the time series 477 

of vertices into 210 cortical regions according to the BNA[31]. We then computed pairwise 478 

Pearson's correlations between regional time series, and applied Fisher's r-to-z-transformation to the 479 

resulting correlations to generate individual FC. 480 

Quality control. The exclusion of participants in the whole multimodal data processing pipeline 481 

was depicted in Figure S13. In the context of fMRI data, we computed Pearson’s correlation 482 

between motion and age, as well as between the number of remaining frames and age, for the 483 
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included participants aged 5 to 22 years and 8 to 22 years, respectively. These correlations were 484 

presented in Figure S14. 485 

SC-FC coupling. A multilinear model[1] was constructed to examine the relationship of individual 486 

nodewise SC profiles and FC profiles. For a given node, the predictive variable was nodal SC 𝐒 =487 

{𝒔1, 𝒔2, ⋯ , 𝒔𝑖 , ⋯ , 𝒔𝑛}, 𝒔𝑖 ∈ R𝑚 where 𝒔𝑖 is the 𝑖th SC profiles, 𝑛 is the number of SC profiles, 488 

and 𝑚 is the node number. The nodal functional profile 𝒇 is the dependent variable.  489 

𝒇 = 𝑏0 + 𝑏1𝒔1 + 𝑏2𝒔2 + ⋯ + 𝑏𝑖𝒔𝑖 + ⋯ + 𝑏𝑛𝒔𝑛 (1) 

where the intercept 𝑏0 and regression coefficients 𝑏𝑖 are estimated model parameters. For each 490 

participant, goodness of fit per node represents the nodal coupling between SC and FC, quantified 491 

as the adjusted coefficient of determination[7] 492 

𝑅𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑
2 = 1 −

(1 − 𝑅2)(𝑁𝑐 − 1)

𝑁𝑐 − 𝑁𝑝 − 1
  (2) 

where 𝑅2 is the unadjusted coefficient of determination, 𝑁𝑐 is the number of connection (𝑁𝑐 = 493 

245 for BNA), and 𝑁𝑝 is the number of predictors.  494 

 In the present study, WMC communication models that represented diverse geometric, 495 

topological, or dynamic factors, were used to explain nodal FC variation. Notably, too many 496 

predictors will result in overfitting and blindly increase the explained variance. And covariance 497 

structure among the predictors may lead to unreliable predictor weights. Thus, we applied Haufe's 498 

inversion transform[38] to address these issues and identified reliable communication mechanisms. 499 

Specifically, we used all twenty-seven communication models to predict FC at the node level for 500 

each participant. We applied Haufe's inversion transform[38] to obtain predictor weights for each 501 

model, with higher or lower values indicating stronger positive or negative correlations with FC. 502 

Next, we generated 1,000 FC permutations through a spin test[85] for each nodal prediction in each 503 

subject and obtained random distributions of model weights. These weights were averaged over the 504 

group and were investigated the enrichment of the highest weights per region to assess whether the 505 

number of highest weights across communication models was significantly larger than that in a 506 

random discovery. 507 

The significant communication models were used to represent WMC communication 508 

properties and to predict functional profiles in conjunction with MPC as structural profiles 509 

(predictors). To test the significance of the resulting adjusted 𝑅2 values and system-specific of 510 
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coupling, we generated a null predictive model using a spin test[85] with 1,000 spatially-constrained 511 

repetitions. We also used Kruskal-Wallis nonparametric one-way analysis of variance (Kruskal-512 

Wallis ANOVA) to compare coupling differences between systems. To investigate the contributions 513 

of various structural predictors, we applied Kruskal-Wallis ANOVA to test the predictive weights 514 

derived by Haufe's inversion transform, identifying optimal predictors across regions. We corrected 515 

for multiple comparisons using FDR correction. Additionally, we used a general linear model to 516 

explore age-related developmental patterns of SC-FC coupling, while controlling for sex, 517 

intracranial volume, and in-scanner head motion. Similarly, the system-specific significance of 518 

coupling alteration was calculated based on the 1,000 repetitions of the spin test. In addition, we 519 

have constructed the models using only MPC or SCs to predict FC, respectively. Spearman’s 520 

correlation was used to assess the consistency between spatial patterns based on different models. 521 

We examined the associations of SC-FC coupling and its developmental pattern with evolution 522 

expansion[35], myelin content[36], and functional principal gradient[37]. Spearman's correlation 523 

analyses were used to quantify the strength of correlations, with significance corrected for spatial 524 

autocorrelation with 1,000 repetitions of the spin test. 525 

Prediction of cognitive function. Based on our predictive evaluation work[11], the Elastic-Net 526 

algorithm was applied to predict cognitive performance using nodal SC-FC coupling, which tends 527 

to yield robust prediction performance across various dimensions of cognitive tasks. The objective 528 

function is as follows: 529 

𝐿(𝐘, 𝑓(𝐗, 𝐰)) = ∑(𝑦𝑖 − 𝑓(𝒙𝑖))2

𝑛

𝑖=0

+ 𝛼 ∑(𝛽|𝑤𝑗| +
1

2
(1 − 𝛽) ||𝑤𝑗||

2
)

𝑚

𝑗=1

 (3) 

where 𝐱 = {𝒙1, 𝒙2, … , 𝒙𝑛} represents an observation set (e.g., SC-FC coupling) with a sample size 530 

of 𝑛, and 𝐲 = {𝑦1, 𝑦2, … , 𝑦𝑛} is a label set (e.g., cognitive measure). The model solves the fitting 531 

coefficient 𝐰 = (𝑤1, 𝑤2, … , 𝑤𝑚) under the minimization objective function 𝐿(𝐘, 𝑓(𝐗, 𝐰)). The 532 

L1 regularization term |∙|  and L2 regularization term ||∙||
2
  constraint the fitting coefficient to 533 

ensure model generalization ability. 𝛼  represents regularization strength, controlling the 534 

compression loss scale, and 𝛽 denotes a trade-off parameter between the L1 and L2 terms.  535 

 We employed a nested fivefold cross validation (CV) framework comprising an external CV 536 

and an internal CV[11]. In the external CV, observations were randomly partitioned into five folds, 537 
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with four of them included in the training set used to develop the model and the remaining fold used 538 

as a testing set to assess the predictive accuracy of the model. This process was repeated 100 times, 539 

and the final model performance was evaluated by averaging the predictive accuracy across the 100 540 

models. In the internal CV, the hyperparameter spaces were first defined as α ∈ {𝑥|𝑥 = 2𝑛, 𝑛 ∈541 

𝐙, 𝑛 ∈ [−10,5]}  and 𝛽 ∈ {𝑥|𝑥 = 0.1𝑛, 𝑛 ∈ 𝐙, 𝑛 ∈ [0,10]} . Then, the training set was further 542 

divided into five folds. Four folds composed the internal training set, which was used to generate 543 

models by successively applying 16×11 hyperparametric combinations, and the remaining fold was 544 

defined as the validation set and used to find the optimal combination. Subsequently, we retrained 545 

the model on the training set using the optimal hyperparametric combination and assessed its 546 

predictive performance on the testing set by performing Pearson's correlation analyses of the 547 

relationship between the predicted and labelled values.  548 

Prior to applying the nested fivefold cross-validation framework to each behaviour measure, 549 

we regressed out covariates including sex, intracranial volume, and in-scanner head motion from 550 

the behaviour measure[59, 69]. Specifically, we estimated the regression coefficients of the 551 

covariates using the training set and applied them to the testing set. This regression procedure was 552 

repeated for each fold. Additionally, we conducted control analyses using age-adjusted behavioral 553 

measures to investigate the effect of age on the predictive performance of SC-FC coupling. 554 

 To evaluate whether our model performed better than at chance on each behaviour measure, 555 

we performed 1,000 permutation tests by randomly shuffling the behaviour measure across 556 

participants, generating a null model of predicted performance using the same procedures. We then 557 

used the corrected resampled t test to determine statistical significance[86, 87]. We corrected for 558 

multiple comparisons using FDR correction. For model interpretability, we applied Haufe’s 559 

inversion transform[38] to obtain predicted weights for various brain regions. The significance of 560 

the weights for each system was assessed by comparing them to those generated by a spin test[85] 561 

with 1,000 repetitions.  562 

Association between alterations of SC-FC coupling and gene expression. We preprocessed 563 

the anatomic and genomic information of the Allen Human Brain Atlas (AHBA) dataset following 564 

a recommended pipeline[40]. Specifically, we used FreeSurfer 565 

(https://surfer.nmr.mgh.harvard.edu/fswiki/) to generate preprocessed structural data for each donor 566 
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and projected the BNA template onto native fsaverage space using official scripts 567 

(http://www.brainnetome.org/resource/). Finally, we produced an averaged gene expression profile 568 

for 10,027 genes covering 105 left cortical regions. Restricting analyses to the left hemisphere will 569 

minimize variability across regions (and hemispheres) in terms of the number of samples 570 

available[40]. 571 

PLS analysis[39] was performed to mine the linear association between the spatial 572 

development pattern of SC-FC coupling and gene expression profiles. We used absolute values of 573 

the correlation between age and SC-FC coupling in 105 left cortical regions as predicted variables 574 

and the gene expression profiles of the corresponding regions as predictor variables. Pearson’s 575 

correlation coefficient was calculated to determine the association between the PLS score and the 576 

absolute correlation value between age and SC-FC coupling. To correct for spatial autocorrelation, 577 

we compared the empirically observed value to spatially constrained null models generated by 578 

10,000 spin permutations[85]. We then transformed the gene weight on PLS1 into a z score by 579 

dividing the standard deviation of the corresponding weights estimated from bootstrapping, and 580 

ranked all genes accordingly. We identified significant genes at a threshold of p < 0.05 and classified 581 

them as having positive or negative gene weights. To understand the functional significance of these 582 

genes, we performed gene functional enrichment analysis (GO analysis of biological processes and 583 

pathways) using Metascape[42]. We focused on the selected genes with positive or negative weights 584 

and retained enrichment pathways with an FDR-corrected < 0.05. 585 

To investigate the cell type-specific expression of the selected genes, we assigned them to 58 586 

cell types derived from five studies[43-47] focusing on single-cell research using the human 587 

postnatal cortex. To avoid potential bias in cell-type assignment, we grouped these cell types into 588 

seven canonical classes: astrocytes, endothelial cells, excitatory neurons, inhibitory neurons, 589 

microglia, oligodendrocytes, and OPCs[48, 88]. We generated a null model by performing 10,000 590 

random resamplings of genes within each cell type. We then tested the significance of our results 591 

against this null model. Additionally, we subjected the genes associated with each enriched term to 592 

the same analysis to explore the specificity of the cell type. 593 

Reproducibility analyses. To evaluate the robustness of our findings under different parcellation 594 

templates, we computed MPC, SCs (WMC, communicability[32], mean first passage times of 595 
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random walkers[33], and flow graphs (timescales=1)) and FC using the multimodal parcellation 596 

from the Human Connectome Project (HCPMMP)[49]. We used the multilinear model to examine 597 

the association of individual nodewise SC profiles and FC profiles. Then, a general linear model 598 

was used to explore age-related developmental patterns of SC-FC coupling, while controlling for 599 

sex, intracranial volume, and in-scanner head motion. We corrected for multiple comparisons using 600 

FDR correlation. Finally, we produced an averaged gene expression profile for 10,027 genes 601 

covering 176 left cortical regions based on HCPMMP and obtained the gene weights by PLS 602 

analysis. We performed Pearson's correlation analyses to assess the consistency of gene weights 603 

between HCPMMP and BNA. 604 

To evaluate the sensitivity of our results to deterministic tractography, we used the Camino 605 

toolbox (http://camino.cs.ucl.ac.uk/) to reconstruct fibres with a ball-and-stick model estimated 606 

from bedpostx results[78] and to generate a fibre number-weighted network using the BNA atlas. 607 

We then calculated the communication properties of the WMC including communicability, mean 608 

first passage times of random walkers, and flow graphs (timescales=1). The same pipeline was used 609 

for subsequent SC-FC coupling, prediction, and gene analysis. To assess the consistency of our 610 

results between deterministic tractography and probabilistic tractography, we performed Pearson's 611 

correlation analyses with significance corrected for spatial autocorrelation through 1,000 repetitions 612 

of the spin test. 613 

 To evaluate the generalizability of our findings, we adopted a split-half cross-validation 614 

strategy by randomly partitioning the whole dataset (WD) into two independent subsets (S1 and S2). 615 

This process was repeated 1,000 times to minimize bias due to data partitioning. Based on MPC, 616 

three communication properties of the WMC, and FC, we then used the same procedures to quantify 617 

SC-FC coupling, the correlation between age and SC-FC coupling and gene weights in both S1 and 618 

S2. Finally, we assessed the consistency of results by calculating Pearson's correlation coefficients 619 

of the relationships between S1 and WD, S2 and WD, and S1 and S2.  620 

 621 
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Data and Code availability 622 

The HCP-D 2.0 release data that support the findings of this study are publicly available at 623 

https://www.humanconnectome.org/study/hcp-lifespan-development. R4.1.2 software 624 

(https://www.r-project.org/) was used to construct the general linear model. MATLAB scripts used 625 

for preprocessing of the AHBA dataset can be found at 626 

https://github.com/BMHLab/AHBAprocessing. Python scripts used to perform PLS regression can 627 

be found at https://scikit-628 

learn.org/stable/modules/generated/sklearn.cross_decomposition.PLSRegression.html#sklearn.cro629 

ss_decomposition.PLSRegression. The minimal preprocessing pipelines can be accessed at 630 

https://github.com/Washington-University/HCPpipelines. The code relevant to this study can be 631 

accessed through the following GitHub repository: https://github.com/FelixFengCN/SC-FC-632 

coupling-development. 633 

 634 
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