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Abstract
Purpose of review  Cancer vaccines are one of the most extensively studied immunotherapy type in solid tumors. Despite 
favorable presuppositions, so far, the use of cancer vaccines has been associated with disappointing results. However, a new 
generation of vaccines has been developed, promising to revolutionize the immunotherapy field.
Recent findings  In this review, we aim to highlight the advances in cancer vaccines and the remaining hurdles to overcome.
Summary  Cancer vaccination has experienced tremendous progress in the last decade, with myriad promising developments. 
Future efforts should focus on optimization of target identification, streamlining of most appropriate vaccination strategies, 
and adjuvant development, as well as predictive biomarker identification. Cautious optimism is warranted in the face of early 
successes seen in recent clinical trials for oncolytic vaccines. If an approach were to prove successful, it could revolutionize 
cancer therapy the way ICIs did in the previous decade.

Keywords  Vaccines · NSCLC · Lung cancer · Immunotherapy

Introduction

Immunotherapy in oncology can be defined as the manipula-
tion of the immune system to recognize and destroy cancer 
cells [1]. In this context, the application of cancer vaccines 
represents the logical evolution and extension of their use in 
infectious diseases. However, attempts to reproduce the same 
results registered in the latter have been rather disappoint-
ing. There are a few exceptions, which are the generation of 
prophylactic vaccines against hepatitis B virus (HBV) and 
human papillomavirus (HPV), which subsequently impact 
the incidence and mortality of liver and cervical cancer, 
respectively [2]. While these are hailed as successes, their 
oncologic efficacy is indirect, through the prevention of viral 
infections. The choice of the right target antigen is essential 
while designing a vaccine [3]. Tumor-associated antigens 
(TAAs) are self-antigens abnormally expressed by tumor 
cells. Since high-affinity T cells recognizing self-antigens 
are eliminated during development by our immune system’s 
central and peripheral tolerance mechanisms, TAA-directed 
cancer vaccines face the challenge of activating any remain-
ing low affinity T cells. Despite these challenges, the TAA 
vaccines are the most studied cancer vaccines thus far. On 
the other hand, tumor-specific antigens (TSAs) are often 
patient specific, coming from nonsynonymous mutations or 
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genetic alterations, or even virally introduced genetic infor-
mation in cancer cells. In this situation, the TSAs recognized 
by high-affinity T cells are less likely to be subject to central 
tolerance and induce autoimmunity [4].

Cancer vaccines can be categorized as cellular, viral vec-
tor, or molecular (peptide, DNA, or RNA) (Fig. 1) [3]. In 
this review, we aim to highlight the advances in cancer vac-
cines and the remaining hurdles to overcome.

TAA Vaccines

As mentioned above, most cancer vaccines have targeted 
TAAs, which include cancer/germline antigens normally 
expressed only in immune privileged germline cells such 
as MAGE-A1, MAGE-A3, and NY-ESO-1 [5–7], cell 
lineage differentiation antigens, normally not expressed 
in adult tissues, such as tyrosinase, gp100, and MART-1 
(PSA and prostatic acid phosphatase (PAP)) [8–10], 
and antigens that are overexpressed in cancer cells such 
as hTERT, HER2, mesothelin, and MUC-1 [11–13]. 

Developing such vaccines presents several challenges. 
TAAs, as self-antigens, B cells, and T cells that strongly 
recognize these antigens may have been removed from 
the immune repertoire by central and peripheral tolerance. 
Given this problem, any cancer vaccine TAA should be 
able to break the tolerance through stimulation of the low 
affinity or even rare TAA-reactive T cells remaining [14]. 
A mechanism to stimulate and increase T cell affinity is 
the use of strong adjuvants, co-stimulators, and repeated 
vaccination [15]. Despite this, though, in many cases the 
immune responses registered have been low and the clini-
cal benefit marginal.

The most relevant and reliable measure of T cell acti-
vation is the quantity and quality of tumor-infiltrating T 
cells (TILs). Such analyses have become common in cancer 
vaccine development. A further challenge is that targeting 
TAAs, even ones overexpressed by the cancer itself, might 
result in increased toxicity. On-target, off-tumor toxicity has 
been observed in clinical studies. Chimeric antigen recep-
tor–engineered T cell therapy (CAR-T) targeting colorectal 
carcinoembryonic antigen (CEA) causes severe colitis in a 

Fig. 1   Different categories of cancer vaccines on the basis of the vector used (Credit: created with BioRender.com)
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high percentage of patients, as this antigen is also expressed 
in normal intestinal tissue [16].

Oncogenic Viral Antigens

The potential impact and importance of developing cancer-
preventing vaccines targeting viral antigens are quite sim-
ple to understand if we consider that approximately 10% 
of human cancers worldwide are caused by viral infections 
[17]. Those antigens are potentially highly immunogenic, 
and sometimes molecular drivers of oncogenesis. An exam-
ple of a successful vaccine is the one comprising HBV sur-
face antigens, highly effective in preventing infection and 
reducing the incidence of hepatocellular carcinoma (HCC). 
Similarly, a vaccine comprising HPV-like particles has pro-
vided protection against HPV infections and pre-cancerous 
lesions [18–21]. These vaccines are effective in preventing 
cancer, but have a main limitation: they lack or have only a 
very modest activity on established cancers. This is likely 
due to the fact that humoral immunity cannot efficiently 
eradicate large numbers of virus-infected cancer cells, which 
instead require cell-mediated immune responses. An alterna-
tive strategy, for instance in HPV-induced cancer, has been 
the development of distinct HPV vaccines targeting T cell 
epitopes of the viral E6 and E7 oncoproteins. These onco-
proteins are expressed within infected cells and then pro-
cessed and presented to stimulate cytotoxic T cells. Several 
different E6 and E7 vaccines are being tested in patients with 
cervical intraepithelial neoplasia (CIN), cervical cancer, and 
head and neck cancer [22–24] (Table 1).

For established cancer, in 2018, the FDA approved the 
first oncolytic virus for cancer treatment, talimogene laher-
parepvec (T-VEC) [25]. It relies on direct intratumoral injec-
tions to overcome dilution and neutralization in blood. It 
induces cell lysis and promotes antitumor immune responses 
locally and in distant lesions [26••, 27, 28•]. In a rand-
omized phase II trial, T-VEC was combined with an anti-
CTLA4, ipilimumab, in first or second line, and the com-
bination showed a significantly higher objective response 
rate (ORR) compared to ipilimumab alone in patients with 
metastatic melanoma [27]. In the same patient population, 
the phase III OPTiM study demonstrated improved progres-
sion-free survival (PFS), ORR, and overall survival (OS) of 
T-VEC alone compared to GM-CSF [28•].

It is essential to stress that data coming from relatively 
small phase II studies should be confirmed, whenever possi-
ble, in larger phase III trials. It is not rare for preclinical and 
clinical data on small patient samples not to be confirmed 
in larger studies. A good example is the PROSTVAC-VF/
Tricom vaccine that used recombinant poxviruses express-
ing prostate-specific antigen (PSA) for priming, followed by 
subsequent booster doses of a fowlpox virus encoding PSA. 

The study showed OS benefit in prostate cancer [29], but 
a more recent phase III trial of PROSTVAC in castration-
resistant prostate cancer was discontinued due to futility at 
interim analysis [30].

To disrupt the tumor microenvironment (TME), viruses 
have been engineered to express targeted antigens and immu-
nomodulatory molecules. Examples are the vaccine TG4010 
that contains the modified vaccinia virus (MVA)–expressing 
tumor antigen, MUC-1, the immunostimulatory cytokine, 
IL2 [31], the TroVax which is an MVA-expressing oncofe-
tal antigen 5T4 (MVA-5T4) [32], and the MG1 that is a 
version of the oncolytic Maraba virus engineered with 
added transgene capacity for targeted expression of TAAs 
and immunomodulatory agents [33]. The latter has been 
assessed in non-small cell lung cancer and human papilloma 
virus (HPV)–associated tumors [34, 35]. Furthermore, the 
MEDI5395, an attenuated Newcastle disease virus (NDV) 
engineered to express GM-CSF, entered phase I clinical tri-
als in 2019 and results are awaited in 2021. Lastly, the B 
cell/monocyte-based vaccine, BVAC-C, transfected with 
recombinant viruses, such as HPV 16/18 E6/E7, has shown 
some activity in activating virus-specific T cells in a phase I 
study of patients with recurrent cervical cancer. In the trial, 
10 patients who had experienced recurrence after at least one 
prior platinum-based combination chemotherapy received 
three intravenous infusion of BVAC-C. It was well tolerated, 
and of the 8 patients evaluable, one partial response (12.5%) 
and four stable diseases (50%) were seen. Immunologic 
response analysis showed that BVAC-C induced activation 
of natural killer T cells, natural killer cells, and HPV E6/
E7 specific CD4 and CD8 T cells upon vaccinations in all 
patients evaluated. A phase II study is underway [36], as it 
is a phase I study of BVAC-B, transfected with recombinant 
HER2/neu, in patients with gastric cancer [37].

Peptide‑Based Vaccines

Many peptide vaccine clinical trials have been conducted 
with demonstration of immune responses, yet significant 
clinical benefit has been elusive. Often, only single anti-
gen–based short peptides are used. These may not be able 
to overcome antigen heterogeneity or loss of antigen expres-
sion within the tumor or stimulate robust immune responses 
[38, 39]. In contrast to short peptides, the use of multivalent 
synthetic long peptides (SLPs), containing both MHC class I 
and class II epitopes, can elicit a balanced induction of both 
CD8 and CD4 T cells [40].

SLP immune-therapeutics have been developed. They 
consist of highly immunogenic long peptides engineered to 
avoid central tolerance mechanisms by efficiently deliver-
ing antigens to dendritic cells (DCs), inducing CD4 + and 
CD8 + T cell responses [41]. Early clinical trials have 
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shown a good safety profile and promising activity. For 
instance, in a phase II trial, the SLP vaccine ISA101 com-
bined with the anti-PD-1 immune checkpoint antibody 
nivolumab was well tolerated in 24 patients with HPV-
16–positive cancer. The efficacy appeared superior to that 
of nivolumab monotherapy [42•]. Furthermore, a phase 
I/II study of ISA101 combined with standard platinum-
based chemotherapy in 77 patients with metastatic HPV-
16–positive cervical cancer showed a strong correlation 
between strong vaccine-induced HPV-16–specific T cell 
response and OS [43].

The SVN53-67/M57-KLH (SurVaxM) is another pep-
tide-based vaccine consisting of an SLP mimic engineered 
to trigger an immune response by targeting survivin, which 
is highly expressed in many cancers [44, 45]. The vac-
cine SurVaxM is under investigation in a phase I study 
in patients with survivin-positive neuroendocrine tumors 
(NCT03879694) [46].

A novel technology platform, T-win, was developed 
to allow identification, design, and validation of immune 
modulatory peptide-based vaccine candidates targeting 
the TME [47]. T-win vaccination has led to an antitumor 
response in vitro and vivo and synergizes with anti-PD-1 
antibody treatment [48]. It is likely that T-win vaccination 
may lead to the expansion of T cells counteracting and 
modulating the immune suppressive environment within 
the TME.

The major T-win technology challenge is to activate the 
most potent anti-Treg immune response, while minimizing 
autoimmunity and subsequent toxicity.

DNA Vaccines

Similar to peptide vaccines, DNA and RNA vaccines have 
the advantage of relatively simple and inexpensive produc-
tion. They can also trip nucleic acid sensors that activate 
DCs, including certain TLRs, STING, AIM2, and DAI 
pathways; hence, adjuvant co-stimulators are often less 
important.

DNA vaccination holds great promise in cancer. They 
use plasmids to ensure the delivery of tumor antigen–encod-
ing genes. DNA vaccines allow the encoded antigen to be 
presented by MHC classes I and II, with subsequent activa-
tion of both CD4 and CD8 T cells and, indirectly, humoral 
immunity [49]. Furthermore, the intrinsic elements of plas-
mid DNA can also activate the innate immune response due 
to the recognition of the double-stranded DNA structure by 
cytosolic sensors [50]. Despite encouraging preclinical data 
and the improvement in the delivery techniques, DNA vac-
cines have not revealed high immunogenicity in human trials 
so far [51].

RNA Vaccines

RNA cancer vaccines offer advantages over DNA vaccines. 
In fact, RNA is more susceptible to degradation by ubiq-
uitous RNases and this could be undermined by chemical 
modifications and incorporation of modified nucleosides 
such as pseudouridine [52, 53]. RNA, unlike DNA, cannot 
be integrated into the genome; therefore, it has no onco-
genic potential. Furthermore, RNA only needs to enter the 
cytoplasm, whereas DNA needs to enter the nucleus, thus 
facing an additional barrier, the nuclear membrane. Many 
mRNA vaccine platforms have been developed recently 
and validated [54–56]. The possibility of engineering the 
RNA sequence has made synthetic mRNA more managea-
ble than before. Furthermore, efficient and non-toxic RNA 
carriers have been developed that allow prolonged antigen 
expression in vivo [57].

RNA vaccines have traditionally been based on mRNA 
in trials to date. This approach is being challenged by the 
use of RNA replicons [58]. As the latter are self-repli-
cating, they are thought to be longer lasting than mRNA 
vaccines and may require fewer vaccinations to elicit the 
desired response. Transfection efficiency and the duration 
of RNA replicons before degradation could be further 
improved with novel vaccine delivery approaches. Two 
possibilities consist of condensing RNA with protamine 
and encapsulating it into liposomal particles.

Recently, a phase I trial in metastatic melanoma patients 
assessed mRNA expressing a variety of TAAs grouped 
together in a liposome [59]. The antigens triggered T cell 
responses which were accompanied by disease control or 
tumor response.

Conclusion and Future Perspectives

Cancer immunotherapy has experienced tremendous 
progress in the last decade, with improvement of our 
understanding of cancer biology and immune escape 
mechanisms. It is therefore an exciting time in the field of 
immune therapies, including cancer vaccines, with myriad 
promising developments.

Considering the increasing number of approved mono-
clonal antibodies for cancer treatment, the development of 
antibody inducing vaccines represents an important oppor-
tunity to improve the armamentarium of therapeutic strate-
gies against many tumor types. Of note, the effectivity of a 
polyclonal antibody response is expected to exceed the one 
of monoclonal antibodies, as reported in both preclinical 
studies that demonstrate pronounced antitumor responses 
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and in early clinical trials showing benefit in patients with 
advanced cancer [60].

Furthermore, the exponential expansion over the past 
decade in the ability to sequence the genetic profile of an 
individual cancer patient has opened the door to a deeper 
understanding of cancer’s underlying biology through the 
checkpoint blockade therapy response, as well as to finding 
better antigens to target, though computational assessment 
of the mutations that have the most potential in stimulating 
the immune response of each patient.

With the concept of personalized cancer therapy and 
immunotherapy, panels of genomic and proteomic biomark-
ers predictive for response following molecular profiling of 
tumor and host cells using next-generation sequencing are 
expected to further help to shape the treatment and improve 
outcomes for patients with cancer. Moreover, vaccination 
strategies are expected to reduce hospital visits, resulting 
in enhanced quality of life, and most of these strategies are 
extremely cost-effective, keeping affordable costs for anti-
cancer treatments, and offering socio-economic benefits, 
especially when compared to the prohibitively high drug 
costs of most recently developed anticancer agents.

As a future perspective, it is likely that some cancer vac-
cines could become the next preferred combination partner 
for long-term cancer treatments, serving as a platform that is 
easily combinable with existing therapies, such as immune 
checkpoint inhibitors, which have already dramatically risen 
therapeutic expectations in numerous cancers. This would pro-
vide innovative treatment options in which either combination 
therapy can be given as multi-target vaccines or vaccination 
is combined with conventional therapy or immunotherapy.

There are still hurdles to overcome in order to maximize 
success.

Future efforts should focus on optimization of target 
identification, streamlining of most appropriate vaccination 
strategies, and adjuvant development.

Another major concern is the current lack of validated 
biomarkers predictive of vaccine efficacy. The concept that 
vaccine-induced TILs increase is a plausible possibility, 
but the quantity and quality of TILs required for clinical 
efficacy are still unknown and probably vary for different 
vaccines and cancer settings. Furthermore, understanding 
which subtypes of T cells are more relevant for an effective 
cancer vaccine, and how to more selectively stimulate them, 
remains a little-understood challenge.

New strategies to improve outcomes are essential. These 
may include combinations of cancer vaccines with agents 
that increase MHC expression. Each novel approach will 
be accompanied by potential toxicities and unexpected 
challenges. Cautious optimism is warranted in the face of 
early successes seen in recent clinical trials for oncolytic 
vaccines. If an approach were to prove successful, it could 

revolutionize cancer therapy this decade the way checkpoint 
inhibition did in the previous decade.
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