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Abstract: In this work, we report an available technique for the effective reduction of graphene
oxide (GO) and the fabrication of nanostructured zirconia reduced graphene oxide powder via a
hydrothermal method. Characterization of the obtained nano-hybrid structure materials was carried
out using a scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray
diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Fourier-transform
infrared spectroscopy (FTIR). The confirmation that GO was reduced and the uniform distribution
of zirconia nanoparticles on graphene oxide sheets during synthesis was obtained due to these
techniques. This has presented new opportunities and prospects to use this uncomplicated and
inexpensive technique for the development of zirconia/graphene nanocomposite powders.

Keywords: one-step hydrothermal synthesis; graphene oxide; zirconia nanoparticles;
zirconia-reduced graphene oxide nanocomposite

1. Introduction

Over the past years carbon-based nanostructured materials such as carbon, CNTs (carbon
nanotubes), graphene, CNFs (carbon nanofibers), fullerenes, etc. have accomplished swift evolution
and extensive use because of their Van der Waals force and covalent bonding, chemical stability, and
high stiffness and strength together with their low weight.

The formation of graphene [1] raised new perspectives with respect to design of new class of
materials with improved characteristics with a large diversity of essential functionalities, including
physical, mechanical, thermal, and optical properties as well as chemical and bioperformance [2–9].

The sp2 hybridisation that occurs during the formation of carbon atoms is in charge of its stand-out
in-plane elastic and mechanical properties, namely Young modulus (0.5–1 TPa [10]) and tensile strength
(130 GPa [9]). Meanwhile, a large surface area of 2D structure of graphene gives a more matrix-second
phase interaction area regardless of the interaction accompanied by transfer of electrons, phonons or
mechanical stresses compared to CNTs or graphite [3,11]. As a result of these remarkable properties,
graphene is very attractive candidate as reinforcement phase for composites with all kinds of matrix,
whether ceramic, polymer or metal.

Recently, zirconia ceramics (ZrO2) have received significant attention from the scientific circles as a
potential material for various structural applications, because of their high mechanical characteristics,
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physical and chemical wear, and thermal stability coupled with corrosion resistance and zero
toxicity [12–22]. Enhancing in mechanical performance and effective control on electrical and thermal
properties is a need in order for the possible future large-scale application of ZrO2.

It was stated that the presence of graphene phase can contribute to important improvements
in bulk ceramic properties, such as mechanical, tribological, electrical, thermal, etc. There has
been significant growth in the number of works on graphene-reinforced composites with concrete
references to the various graphene synthesis techniques and processing methods of ceramic/graphene
composites, including available sintering options after the isolation of graphene in 2004 [23–28].
The good bonded interfaces in matrix/graphene composites along with outstanding mechanical and
the amazing structural features of graphene has been considered as a strengthening mechanism of
graphene reinforcement.

Lately, graphene/ZrO2 composites were prepared using various methods. Achieving the
homogeneous distribution of graphene in the initial powder is essential to produce in order to
have a uniform composite upon sintering.

For example, Liu et al. [29] and Walker et al. [30] showed that the nanostructured matrix,
the GNPs (graphene nanoplatelets) generate three-dimensional cracks deflection, and the resulting
in an improvement in fracture toughness. Shin and Hong fabricated reduced graphene oxide
(rGO)-reinforced yttria-stabilized zirconia by spark plasma sintering, and reported a 34% increase in
fracture toughness [31]. Kwon et al. demonstrated that the enhanced mechanical properties of ZrO2

composites can be achieved by addition of 3 wt.% graphene as a strengthening phase [32]. Chen et al.
prepared graphene-reinforced zirconia ceramics using field-assisted sintering and fracture toughness
values were higher in comparison to GNPs-free 3Y-TZP samples [33].

Rincón et al. produced multilaminates graphene oxide (GO)/ 8 mol% yttria stabilized zirconia by
colloidal processing subsequent spark plasma sintering and reported that the addition of GO-enriched
layer into zirconia laminates is slowing down the probabilities of crack generation and propagation [34].

In the work of Rao et al., the surface modified graphene zirconium oxide was synthesized
and characterized as a nanocomposite material. It was utilized as an adsorbent for the removal of
chlorophenols from aqueous solution. The removal efficiency was maximum towards 4-chlorophenol
at pH 1.0 and decreased with increasing pH [35].

Teymourian et al. reported the synthesis of the high performance zirconium dioxide-reduced
graphene oxide composite and its application as a novel architecture for electrochemical sensing and
biosensing purposes [36].

Furthermore, Li et al. prepared zirconia/graphene nanosheets composite coatings using a plasma
spraying technique. The obtained composite coating demonstrated low friction coefficient and
improved wear resistance [37].

Additionally, in recent years the production of nanostructured crystalline particles has gained
attention, as they possess enhanced performance abilities over conventional coarser grain materials.
In order to prepare nanocrystalline zirconia-based nanocomposites, different methods such as the
sol/gel method [38], vapor phase method [39], pyrolysis [40], spray pyrolysis [41], hydrolysis [42], and
microwave plasma [43] have been proposed. However, these methods have many limitation factors
such as complex arrangements, high temperature for the process, extended reaction time, poisonous
constituents and by-products, and high costs of production, which made it difficult to prepare zirconia
nanoparticles on a large-scale production.

Therefore, in order to produce effectively isolated nanoparticles with a narrower size distribution,
the hydrothermal methods are mentioned as having great potential [44,45]. This technique is
straightforward and low-cost.

All that is required for synthesis is to take a Teflon-lined stainless-steel autoclave and put the
materials and precurcors in inside of it.

Uniform nucleation processes and very low grain size highlighted are highlighted as the main
benefits of this method. Therefore, the purpose of this work was to produce graphene oxide (GO) with
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the subsequent production of reduced graphene oxide (rGO), which is used as a support to anchor
zirconia nanoparticles and leading to their uniform distribution on the surface of rGO. This special
nano-hybrid structure provides the opportunity to obtain a uniform composite ceramic/graphene
nanopowder that can be used as a raw material to fabricate dense multi-purpose zirconia-based
composites reinforced with nanostructure graphene, which combine the desired properties of each
component. Thus, the aim of the present work is to obtain a nanocomposite material when there is
phase uniformity and good interfacial bonding between the graphene and matrix after sintering.

2. Materials and Methods

2.1. Preparation of Graphene Oxide

Hummers’ method was used as synthesis technique of graphene oxide (GO) from graphite powder
which was oxidized. Briefly, this approach involves Hummer’s reagents with low levels of NaNO3 and
KMnO4 in concentrated H2SO4. Pure graphite powder was steadily added (along with NaNO3) into
a hot concentration of H2SO4 solution that would be cooled in an ice bath. Afterward, KMnO4 was
slowly added, in small doses, to keep the reaction temperature below 20 ◦C. Then the suspension was
treated with a hydrogen peroxide (H2O2) solution and washed with HCl and H2O in order to complete
the reaction with KMnO4. After filtration and drying, GO sheets were obtained. In the previous works,
this process is decribed in further detail [28,46,47].

2.2. Synthesis of ZrO2/rGO Nanocomposite Powders

The as-prepared GO was exfoliated ultrasonically for 2 h in order to obtain a stable GO
colloidal suspension with a concentration of 2.33 mg·mL−1. The synthesis of reduced graphene
oxide-nanozirconia (ZrO2/rGO) composites was carried out by means of a simple hydrothermal
process, in which the GO suspension was used as the rGO precursor, N2H4·H2O and ZrOCl2·8H2O
acted as the reducing agent and the nZrO2 precursor, respectively. Firstly, 40 mL of GO colloidal
suspension was mixed with 20 mL of a ZrOCl2 solution (0.01 M) to obtain a mixed solution of GO
and ZrOCl2 with a volume ratio of 2:1. After being sonicated for 30 min, 1 mL hydrazine hydrate was
added to the mixture and was poured into a 200 mL stainless steel teflon-lined autoclave, which was
sealed and maintained at 180 ◦C for 18 h, and then naturally cooled at room temperature. For the
purpose of removing Cl-ions, the obtained material was washed, centrifuged, and re-dispersed five
times in deionized water. Finally, the ZrO2/rGO nanocomposite powders were dried in a FreeZone2.5
freeze-drying system (LabConco, Kansas, MO, USA). The collector temperature is continuously set at
−50 ± 2 ◦C.

Furthermore, the shell temperature and the chamber pressure were kept at 23 ± 2 ◦C and 0.02
± 0.01 mbar, respectively, during the entire process [30]. For comparison purposes, non-reduced
graphene oxide-nanozirconia (ZrO2/GO) composite powder was prepared following the same cycle
without the addition of N2H4·H2O.

2.3. Microstructural Characterization of the As-Prepared Nanocomposite Powders

The microstructure, crystalline structure, and surface morphology characterizations of the
as-synthesized samples were evaluated by transmission electron microscopy JEM 3010 (JEOL, Tokyo,
Japan, accelerating voltage 200 kV). To this end, nanopowders were placed on a TEM grid (perforated
carbon film on the copper mesh, Plano GmbH, Wetzlar, Germany) [22].

As was described previously, the particle diameter distribution of the nanocrystalline zirconia was
determined from TEM micrographs by measuring the diameters of about 800 zirconia nanoparticles in
both synthesized nanopowders. From these data, the density distribution of the particle diameters on
number basis q0 and on surface area basis q2 were compiled. A Gaussian normal distribution was fitted
to the measured distribution in order to obtain the corresponding geometric mean particle diameters
µg(q0) and µg(q2). The cumulative distribution of the particle diameters q0 was fitted with a sigmoid
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function to obtain the characteristic particle diameter d50. The specific surface area STEM of the zirconia
nanoparticles was calculated from µg(q2) using the density of 5.68 g/cm2 and assuming spherical
particles [22]. Further, the field emission scanning electron microscopy (FE-SEM) observations were
performed by LYRA3 (Tescan, Brno, Czech Republic).

2.4. X-ray Diffraction (XRD), Raman, X-ray Photoelectron Spectroscopy (XPS) and Fourier Transform Infrared
(FTIR) Characterization

X-ray diffraction measurements were conducted using an Empyrean diffractometer (PANalytical,
Almelo, Netherlands) ranging from 5◦ to 70◦. The step size was 0.05 with a scan speed of 0.06 /min.
The diffractometer used Cu Kα radiation (λ = 1.5405981) working at 40 kV and with an intensity of
30 mA [48].

Raman spectra of studied materials were collected to identify the phase composition. The Raman
setup is composed of a laser (DXRTM2 Raman Microscope, Thermo FisherScientific, Waltham, MA,
USA) with a wavelength of 532 nm and a laser power of 2.0 mW. The laser beam was focused through
an optical microscope’s 50× objective lens to a spot size of 2 µm on the studied area (from different
spots, at an interval of 10 µm). The accumulation time for each Raman spectrum was about 10 s [26].

All X-ray photoelectron spectroscopy (XPS) measurements were carried out on a K-Alpha (Thermo
FisherScientific, Waltham, MA, USA) photoelectron spectrometer equipped with a micro-focused
monochromator Al KαX-ray source. Peak fitting of the C1s and Zr3d spectra for ZrO2/rGO and ZrO2/GO
nanopowders were conducted separately using a Gaussian–Lorentzian function after performing a
Shirley background correction.

Fourier transform infrared (FTIR) spectra of the synthesized nanocomposite powders were
measured (Vertex 70 spectrometer, Bruker AXS Inc., Madison, WI, USA) in the wavenumber range
500 cm−1 to 4000 cm−1 (transmission mode, resolution 2 cm−1, 120 scans per sample). For this purpose,
potassium bromide (KBr) pellets (diameter 1.0–1.3 cm) of each powder sample were prepared using a
uniaxial press [49].

3. Results and Discussion

The nanozirconia crystals have a particularly spherical shape and they are uniformly dispersed.
Almost no difference was found in particle size distribution and specific surface area. The
geometric mean diameters µg(q0) and µg(q2) of the particle size distribution are 5.1 nm ± 0.8nm
and 4.8 nm ± 1.2 nm, respectively, and the d50 diameter is 5.0 nm with an uncertainty of ± 0.8 nm for
both ZrO2/GO and for ZrO2/rGO nanopowders. The specific surface area STEM of the nanopowders
was calculated from the geometric mean diameter µg(q2) and reached a value of 110.0 m2/g.

Figure 1 shows a representative diffraction pattern of a fabricated nanopowders.
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The most intense apparent peak located at 2θ = 10.8◦ in the curve of GO, and corresponds to
the (001) reflection of GO [50]. The result confirms the oxidation and the fact that raw graphite was
converted into graphene oxide becouse of the appearance of oxygen-containing functional groups [51].
The rGO pattern accompanied with a major (002) peak centered at around 25◦ assigned to the reduction
of GO sheets and restacking into an ordered crystalline structure [52]. On the X-Ray diffractogram
of ZrO2/rGO nanocomposite powder diffraction peaks in the region up to 20◦ are not presented as
indicated in the case of GO and enables to say that the GO was well reduced during the reaction.
In addition, analys of intensities and peaks location appearing in XRD data were compared with
the infromation from the International Centre for Diffraction Data (ICDD) for tetragonal (PDF file
no.01-083-0113) and monoclinic (PDF file no. 00-024-1165) structures.

The Raman spectra of all the studied materials are shown in Figure 2.
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and ZrO2/rGO (d) nanopowders. “D”, “G”, “2D” and “S3” correspond to the graphene-based structure.

Raman spectrum of the graphite sample shows the characteristic peaks for this material. For
instance, the peak located at ~1584 cm−1 is the G band and it is the more intence than the 2D (2720 cm−1)
and D (~1350 cm−1) bands (Figure 1a). In the case of graphene (Figure 1b–d), a imperceptible
second-order zone and a broad G peak are peculiarity of hybridized carbon-carbon bonds (sp1, sp2 and
sp3) [24]. The more intense D bands (Figure 2c,d) at ~1350 cm−1 means that sp2 bonds were broken
and, consequently, it indicates that a intended transformation of sp2 hybridization to sp3 was occurred,
which shows a rise of the disorder in the sp2-hybridized carbon system [26]. This difference in intensity
between D and G bands is particularly marked in ZrO2/rGO (Figure 2d) powders, which illustrates the
creation of new defects in the sp2 carbon lattice during the reduction process.

It was suggested that, besides some defects in reduced graphene oxide, the presence of ZrO2

nanoparticles onto the surface of the rGO causes additional changes in the characteristics of the
vibrations in the material’s lattice. Therefore, the intensity of D bands after the reduction process is
higher in comparison to the unreduced ZrO2/GO nanocomposite powders.
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It should be noted that after the graphite’s chemical oxidation process, the presence of peaks
attributed to 2D band were not observed in GO (Figure 2b). It can be assumed that diverse kind of
oxygen-containing functional groups were embedded among the graphitic sheets in their basal plane or
edges, and the presence of these groups causes the breaking of the sp2 carbon lattice and consequently
its structural changes. However, the elimination of oxygen containing groups leads to the restoration
of ordered graphitic stacking in rGO and causes the appearance of 2D peak [53–55].

Another band, known as conjunction between D and G intensities and appears near 2900 cm−1 is
a second-order peak and denoted by S3.

S3/2D intesity ratio is related to the diminution in defects and involves a lower quantity of oxygen
in graphene [56]. Raman shifts at 149 cm−1, 269 cm−1, 407 cm−1 and 616 cm−1 were interpreted as
tetragonal zirconia phases [57,58].

To investigate the chemical changes between reduced and not reduced graphene oxide powder
XPS measurements have been carried out (Figure 3).
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The appearance of oxygen, zirconia, and carbon structures in the sample was confirmed by Zr3d,
O1s, and C1s characteristic peaks in the full-scan XPS spectrum of ZrO2/GO (Figure 3A). However, the
presence of an additional peak at 399.5 eV that corresponds to the nitrogen bond was detected in the
hydrazine-treated ZrO2/rGO sample (Figure 3D). The presence of other peaks, different to Zr, oxygen,
carbon and, in the case of ZrO2/rGO powder-nitrogen, was not found. Therefore, the processing
method would be considered appropriate.

For further interpretation and to better understand the mechanism of formation and the chemical
states of elements, comprehensive analysis of C and Zr XPS spectra were carried out. The detailed
C1s spectra of not-reduced and chemically reduced powders are shown in Figure 3B,E, respectively.
Although these obtained spectra are practically identical and show the appearance of diffent functional
groups, the peak intensities in the reduced powder are smaller and consequently confirm de-oxygenation
by the reduction process. The peak-fitting spectra at the binding energies of 284.4 eV, 284.7 eV and
~288 eV were assigned to carbon atoms in different functional groups: C=C/C-C (sp2 C) peak, C-C (sp3

C) peak and C=O (the carbonyl groups), respectively [59,60]. Moreover, shake-up satellites (π-π*) with
a binding energy of 292 eV were observed [61–63], which is a characteristic satellite peak for carbon
structures or aromatic compounds [64].
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The occurence of these peaks confirmed the hexagonal structure of the graphene [65–68].
Meanwhile, the high resolution of the C1s spectrum of ZrO2/rGO powder had an additional peak
at 285.9 eV (Figure 3E) may be assigned to the C in the C=N bond formation due to the presence
of hydrazine [69], that is also proven by XPS survey spectrum (Figure 3D). High-resolution XPS
spectral analysis for the Zr3d shows the spin-orbit splitting the components, Zr3d3/2 and Zr3d5/2, in
the ZrO2/GO and ZrO2/rGO materials (Figure 3C,F, respectively). Two different chemical states of
zirconia were found in the ZrO2/GO sample (Figure 3C). The first of them at 182.6 eV can be assigned
to the zirconia sub-oxide. Meanwhile, the second one relates to the binding energy and could be
determined as stoichiometric ZrO2 and implies that valence of zirconium remained Zr4+ [70,71]. The
intensity of binding energy peak at 183.9 eV corresponds to the formation of the zirconia. A chi-square
approximation by using a doublet with spacing between lines of 2.4 eV was obtained for ZrO2/rGO
(Figure 3F). The position of the lines is attributed to the zirconia sub-oxide. The width of the lines
(1.4 eV) demonstrates the high uniformity of the stoichiometric state of the sample. It can be assumed,
comparing the spectra of both samples, that the line within the binding energy interval between
182.2 eV and 182.6 eV correlates to zirconia thin films.

The existence of functional groups in both the raw and synthesized samples has been determined
using a FTIR technique (Figure 4).
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Obviously, the clear expresed absorption that appeared at peaks at 3420, 1635 and 1558 cm−1

correspond to the stretching (υ (−OH)) and bending (δ (−OH)) vibrations of coordinated or absorbed
water molecules retained on the ZrO2 suface [72]. The peak appeared at 1387 cm−1 indicates the
existence of OH deformations in the C–OH groups [60]. The Zr-O vibration of zirconia shows the
intensities at 505, 580, and 750 cm−1 [73–75]. Meanwhile, the CH2 stretching mode demonstrates the
broad absorption peaks around 2930 cm−1 [60].
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The C=O stretching vibration of –COOH and C=O was observed at 1735 cm−1, while the
O–H bending vibration of water molecules and the C=C skeleton stretching mode was assigned
at 1626 cm-1 [76]. The O–H bending mode of –COOH and C–OH bonds show the intense peak
at 1420 cm−1. The peak located at 1227 cm−1 belongs to the C–O–C stretching vibration. The
absorption bands at 1121 and 1072 cm−1 corespond to the epoxy C-O and the alkoxy C-O stretching
vibration, respectively [77–83]. Unlike the GO bands, the spectrum of rGO exhibits that the vibrational
frequencies of peaks weakened and slightly vanished. The appearance of the absorption bands at 1623
and 1556 cm−1 was recognized to stretching of the aromatic C=C mode, while the band at 1234 cm−1

corresponds to the epoxy C−O and C=O, indicates that GO was reduced incompletely [72,84–86]. On
the other hand, the characteristic band located at 1727 cm−1 was assigend to C=O stretching frequency
belonging to the ZrO2/rGO nanocomposite was shifted to 1746 cm-1 because the relationship between
the C=O group and Zr and its relative intensity was also decreased [87]. The hydrolysis of the ZrOCl2
solution provides the interaction between the oxygen-containing groups of GO and Zr(IV) and the
appearance of two vibrational bands located at 1460 and 1395 cm−1, which were assigned to the
creation of either a monodentate or bidentate complex [78–81]. The vibrational bands at 1686 and
470 cm−1 can be assigned to the C=C stretching mode and Zr–O vibration, respectively [60,72]. By this
means, after the characterization of the resultant hybrid material, it can be argued that the synergies
between ZrO2 nanoparticles and rGO nanosheets occured, i.e., ceramic nanoparticles were directly
attached to the surface of the rGO nanosheets.

Moreover, there is even further evidence to support the findings after the various characterization
techniques-the SEM and TEM images where the rGO sheets and ZrO2 nanoparticles were seen
(Figure 5). The SEM image of the GO (inset of Figure 5A) exhibited the characteristic rippled, curved
and crumpled sheet-like texture, whereas the SEM image of ZrO2/rGO (inset of Figure 5B) showed a
uniform distribution of the ZrO2 nanoparticles, which are anchored onto flat and not curled rGO sheets.
Furthermore, the EDX spectrum of GO (Figure 5A) provided peaks of C and O, whereas the presence
of C, O, and Zr in the ZrO2/rGO sample (Figure 5B) suggested the bonding of ZrO2 nanoparticles
on the grapnene oxide surface. The TEM images exhibited intimate interfacial contact between rGO
and ZrO2 nanoparticles (Figure 5C,D). The high resolution TEM image (Figure 5D) shows the lattice
of 0.29 nm spacing which is very close to the lattice spacing corresponding to the (111) plane of the
tetragonal structure of ZrO2 [36,88]. According to the above observations, it can be said that the surface
GO sheets were uniformly covered by zirconia nanoparticles synthesized via hydrothermal reaction.
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The development of ZrO2/rGO nanocomposite powders by the hydrothermal reaction technique
provides the opportunity to design new materials with a large panoply of precise properties to fulfill
specific requirements. In particular, for achieving the synergistic toughening effect, load-bearing
capacity and high wear resistance in bulk multiphase ceramic-matrix composites for their application
as engineering components [28,89]. Therefore, it is planned to focus on the fabrication of the various
bulk ceramic matrix composites and to evaluate of their multifunctional properties.

4. Summary

In the present work, a nanostructured ZrO2/rGO powder was fabricated using a low-cost and
simple method, namely the hydrothermal synthesis technique. This process can be summarized in a
few steps: As a result of the ZrOCl2 solution hydrolysis process, the positively charged zirconia ions
were generated and collected at a surface of negatively charged GO sheets due to electrostatic attraction.
After that, the ZrO2/rGO nanocomposite powder was formed because of generation of nuclei, continued
growth, and redox reactions in a hydrothermal process. The as-prepared nanocomposite powder was
characterized by XRD, Raman, FTIR, and XPS measurements. All characterizations clearly confirmed
that zirconia nanoparticles were successfully bonded into the reduced graphene oxide sheets during
hydrothermal reaction. The uniformity distribution of ZrO2 nanoparticles, which completely cover
the graphene oxide sheets, was also clearly evidenced by the SEM and TEM observations. Moreover,
the lattice spacing displayed in the TEM image belongs to the tetragonal structure of zirconia with
the (111) plane surface. We believe that this synthesis route will allow for the effective production of
uniform ceramic/graphene nanopowders that can be used as a building block to fabricate zirconia
matrix composites reinforced with a homogenous nanostructure graphene after sintering.
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