

Adherence to Mediterranean Diet and Breast Cancer Risk: A Meta-Analysis of Prospective Observational Studies

Mehdi Karimi^{1,2} | Omid Asbaghi² | Farnaz Hooshmand³ | Amir Hossein Aghayan⁴ | Amir Ahmad Shariati⁵ | Kimia Kazemi⁶ | Mahdi Amirpour⁷ | Sayed Hosein Davoodi⁸ | Bagher Larijani⁹

¹Faculty of Medicine, Bogomolets National Medical University (NMU), Kyiv, Ukraine | ²Cancer Research Center, Shahid Beheshti University of Medical Sciences (SBUMS), Tehran, Iran | ³Faculty of Medicine, Golestan University of Medical Science, Gorgan, Iran | ⁴Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran | ⁵Department of Nutrition Sciences, School of Health, Arak University of Medical Sciences, Arak, Iran | ⁶Department of Food Science and Technology, Islamic Azad University, Ayatollah Amoli Branch, Amol, Iran | ⁷Department of Clinical Nutrition & Dietetics, Shahid Beheshti University of Medical Sciences (SBUMS), Tehran, Iran | ⁸National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences (SBUMS), Tehran, Iran | ⁹Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran

Correspondence: Mehdi Karimi (Karimi9010@gmail.com) | Sayed Hosein Davoodi (hdavoodi@sbmu.ac.ir) | Bagher Larijani (Larijanib1340@gmail.com)

Received: 18 November 2024 | Revised: 28 March 2025 | Accepted: 7 April 2025

Funding: The authors received no specific funding for this work.

Keywords: cancer risk | clinical nutrition | dietary pattern | epidemiology | Mediterranean diet | oncology

ABSTRACT

Background and Aim: The Mediterranean diet (MD) is widely recognized for its health benefits and potential protective effects against various chronic diseases such as cardiovascular conditions and cancer. This meta-analysis evaluates the association between MD adherence and breast cancer risk in women.

Methods: A comprehensive search of major databases was conducted until November 2024 to identify cohort or case-control studies. The meta-analysis employed a random-effects model to pool multivariable-adjusted effect sizes, reporting them as hazard ratios (HR) while evaluating heterogeneity using the I² statistic and assessing publication bias.

Results: The pooled analysis of 31 studies indicated a significant association between adherence to the MD and a 13% risk reduction in risk of breast cancer (HR: 0.87, 95% CI: 0.82–0.92; $I^2 = 70\%$). Specifically, postmenopausal women exhibited a 12% significant reduction in the risk of breast cancer (HR: 0.88; 95% CI: 0.84, 0.92), while premenopausal women showed no significant effect (HR: 0.98, 95% CI: 0.90, 1.06). Geographically, the effect was most pronounced in Asia (OR: 0.59, 95% CI: 0.50, 0.68), while from America (OR: 0.92, 95% CI: 0.82, 1.02) and Europe (OR: 0.90, 95% CI: 0.83, 0.97) showed moderate associations. Subgroup analysis suggested a stronger significant association in case-control studies (HR: 0.77, 95% CI: 0.70, 0.85), whereas no significant association was observed in cohort studies (HR: 0.96, 95% CI: 0.90, 1.02).

Conclusion: Adherence to the Mediterranean diet is associated with a significant reduction in breast cancer risk, particularly among postmenopausal women and in regions such as Asia. These findings suggest that the Mediterranean diet may be an important dietary factor in reducing breast cancer risk, especially in certain populations. However, further research is needed to confirm its impact in different study designs and geographical areas.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2025 The Author(s). Health Science Reports published by Wiley Periodicals LLC.

1 | Introduction

Breast cancer remains a significant global health challenge, accounting for a substantial proportion of cancer diagnoses among women [1]. The search for effective prevention strategies is therefore critical, with particular attention to lifestyle factors, especially diet, that might modulate cancer risk [2, 3]. Among dietary patterns, the Mediterranean diet (MD) has garnered considerable interest in research due to its association with numerous health benefits, including potential protective effects against cardiovascular and cancer [4–7]. A clear understanding of how the MD might influence breast cancer risk is essential, as it could refine public health recommendations, thereby empowering individuals to adopt lifestyle practices that promote long-term health and potentially mitigate cancer risk.

The MD emphasizes a high intake of plant-based foods such as fruits, vegetables, whole grains, and legumes, paired with healthy fats from sources like olive oil and nuts [8]. This diet is distinctively rich in antioxidants, fiber, and monounsaturated fats, all of which are linked to anti-inflammatory and anticarcinogenic effects that could be especially pertinent to reducing cancer risks [7]. Adherence to the MD has been associated with a reduced risk of chronic diseases, including cardiovascular diseases, Type 2 diabetes, and various forms of cancer [4–7, 9, 10]. Importantly, breast cancer has emerged as a primary focus within this body of research.

Numerous observational studies and clinical trials have investigated the relationship between adherence to the MD and breast cancer risk, frequently uncovering an inverse association. Although previous research suggests that following this diet may contribute to a reduced risk of developing breast cancer, some inconsistencies remain [11–14]. These variations can be attributed to differences in study populations, levels of adherence to the diet, and potential confounding factors.

This highlights the urgent need for updated, large-scale analyses to better clarify the MD's influence on breast cancer risk. Conducting a systematic review and meta-analysis involving more extensive and diverse populations is essential to validate these findings and address the ongoing controversies surrounding this issue. To address these discrepancies, this systematic review and meta-analysis compile and examine the available evidence on the MD's relationship with breast cancer risk. By analyzing data across diverse observational studies, this study aims to clarify whether an MD pattern significantly reduces the risk of breast cancer and to what extent.

2 | Methods

2.1 | Study Design and Protocol

This systematic review and meta-analysis of observational studies was conducted to investigate the association between MD and breast cancer, based on the Cochrane Collaboration [15], and was written in accordance with reporting items outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement [16].

2.2 | Search Strategy

A thorough literature search was carried out using major databases, including MEDLINE/PubMed, ISI Web of Science, and Scopus, to identify studies published from their inception until November 2024. The search strategy utilized Medical Subject Headings (MeSH) terms along with relevant synonyms related to MD and breast cancer. The keywords included ("Mediterranean" OR "Mediterranean diet" OR "Mediterranean dietary" OR "Mediterranean adherence") AND ("Breast cancer" OR "breast tumor" OR "breast malignancy" OR "breast neoplasm" OR "breast carcinoma" OR "breast adenocarcinoma"). To enhance the comprehensiveness of the review, supplementary searches were conducted on Google Scholar, and reference lists of pertinent studies were manually examined to identify additional relevant articles, including gray literature. No language restrictions were imposed to ensure a broad scope of study inclusion. A detailed outline of the search strategy and database-specific search queries is available in Supporting Information S1: Tables S1 and S2.

2.3 | Eligibility Criteria

Studies were included based on the following criteria: (1) cohorts or case-control studies; (2) examined adherence to the MD (as reported in the original study); (3) assessed the association between MD adherence and risk of breast cancer in women; (4) reporting of risk estimates using a hazard ratio (HR), relative risk (RR), or odds ratio (OR) and corresponding 95% confidence intervals (CI); (5) written in English. Moreover, all variations of MD were considered eligible for inclusion. Exclusion criteria were as follows: (1) articles not published in English, (2) studies involving exposures to other dietary patterns, (3) non-original studies such as reviews or meta-analyses, and (4) articles lacking quantitative data or sufficient details.

2.4 | Data Extraction

Two reviewers (A.A.S. and K.K.) independently extracted relevant data to ensure accuracy and consistency. The extracted data included the first author's name, year of publication, study design (e.g., cohort, case-control), country of the study, sample size, duration of dietary exposure assessment, and the number of cases and controls. Additional extracted variables included participants' age, menopausal status, the method used for dietary assessment (e.g., food frequency questionnaire or dietary recall), and alcohol consumption as a potential confounding factor. Furthermore, multivariable risk estimates, such as ORs, RRs, or HRs, were collected along with the corresponding 95% CIs, specifically comparing the highest and lowest adherence to the MD groups. This detailed extraction aimed to facilitate robust analysis across studies, capturing comprehensive information on study characteristics and risk metrics.

2.5 | Quality Assessment

The quality assessment of the included studies was investigated according to Newcastle-Ottawa Scale (NOS) criteria [17]. The

NOS is a tool used to assess the risk of bias in observational studies, assigning a quality score from zero to nine points based on the identified biases. Studies scored greater than 6 out of 9 points were considered to be high-quality studies.

2.6 | Statistical Analysis

The meta-analysis was performed by pooling the multivariable-adjusted RRs, HRs, or ORs comparing the highest and lowest categories of MD adherence based on a random-effects model using the Der Simonian-Laird method [18]. We calculated the standard errors for the logarithm of the RR/OR/HR, interpreted as an estimated variance (ER) of the logarithm of the RR/OR/HR to determine the weight of each study [18]. Heterogeneity across studies was evaluated by using the I^2 statistic, with values above 50% indicating a substantial statistical heterogeneity [19]. Therefore, subgroup analysis by menopausal status, study design, and regions was performed to assess whether these variables modify the overall risk estimate. Potential publication bias was examined by graphical evaluation of the Funnel plots and Begg's test for the overall, premenopausal, and postmenopausal categories. All analyses were conducted in R version 4.4.

3 | Result

3.1 | Study Selection

A comprehensive search across major databases—PubMed (n = 428), ISI Web of Science (n = 908), and Scopus (n = 853)—yielded a total of 2189 records. After eliminating 724

duplicates, 1465 unique records remained for an initial screening based on titles and abstracts. At this stage, 1422 documents were excluded for various reasons, including being review articles, non-human experimental studies (such as in vitro and in vivo research), letters to the editor, or other unrelated study types. This resulted in 43 studies advancing to full-text evaluation for eligibility in the meta-analysis. During this review, 12 studies were excluded due to insufficient data, incomplete reporting, or failure to meet the cohort study design criteria. In the end, 31 studies met all inclusion criteria and were included in the final quantitative synthesis (meta-analysis). The study selection process is illustrated in the PRISMA flow diagram (Figure 1).

3.2 | Study Characteristics

The detailed characteristics of the included studies are presented in Table 1. This systematic review and meta-analysis incorporated 31 observational studies, comprising 12 cohort studies and 19 case-control studies, with a total of 36 effect sizes published between 2006 and 2023. The follow-up duration for cohort studies ranged from 8 to 33 years. The age of the women studied varied from 20 to 104 years. Geographically, nine studies were conducted in the Americas, four in Asia, and 26 in Europe, with the majority originating from the United States and Spain.

3.3 | Quality Assessment

The quality assessment of cohort and case-control studies using the NOS indicated generally high methodological rigor, with

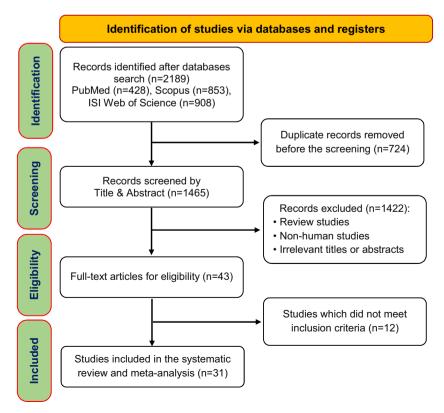


FIGURE 1 | PRISMA flow chart of the study selection process for inclusion studies in the systematic review.

 TABLE 1
 Basic characteristics of included cohort and case-control studies.

	Adjustment	Age, BMI, PA, smoking, energy intake, family history, weight change, multivitamin use, history of BBD.	Age, educational level, region, BMI, height, family history of BC, pregnancy, parity, HRT, history of BBD, OCPs use, lifetime duration of breastfeeding, frequency of Papanicolaou testing at baseline as an indicator of adherence to gynecologic screening, PA, smoking, energy intake, phytoestrogen supplements, vitamin/mineral supplements.	Age (at baseline, first delivery), educational level, smoking, BMI, height, metabolic equivalents of task hours per day, energy intake, parity, menopausal, HRT.	Age (age at baseline, menarche), energy intake, menopausal status, calorie-adjusted fat, BMI, PA, OCPs, HRT, smoking, parity, ethanol, breastfeeding, socioeconomic, education.	NR	BMI, height, education, PA, smoking, menopausal, OCPs use, breastfeeding, age (at menopause, menarche), first full-term pregnancy, HRT use, saturated fat intake, alcohol intake, energy intake.	Family history of BC, history of BBD, smoking status, BMI, height, age at first birth, number of children, educational level, age at menarche, energy intake, consumption of beverages, potatoes, sweets, and eggs.	Additionally for Alcohol intake	BMI at age 18, weight change since age 18, PA, energy intake, parity/age at first birth, HRT, OCPs use, age at menarche, age at menopause, family history of BC, BBD.	Age, smoking, height, BMI, non-occupational PA, highest level of education, family history of BC, history of BBD, age at menarche, parity, age at first birth, age at menopause, OCP use, postmenopausal HRT, energy intake	Alcohol intake	Age (at baseline, menarche), race, BC family history, OCPs use, parity, smoking, socioeconomic, PA, energy intake Additionally for alcohol intake
	Effect size (95% CI)	RR: 0.98 (0.88, 1.10)	HR: 0.85 (0.75, 0.95)	HR: 0.88 (0.75, 1.03)	HR: 0.96 (0.7, 1.32)	RR: 0.90 (0.82, 0.99)	HR: 0.94 (0.88, 1.00)	RR: 1.42 (0.99, 2.05)	RR: 1.42 (0.99, 2.03)	HR: 1.07 (0.92, 1.25)	HR: 0.88 (0.73, 1.06)	HR: 0.87 (0.72, 1.06)	Premenopausal women: HR: 1.14 (0.95–1.38) Postmenopausal women: HR: 1.04 (0.87–1.25)
	Cases	3580	2381	240	828	7182	10,225	1278		2372	2321		3869
	Sample size	71,058	65,374	14,807	33,731	184,932	335,062	49,258		100,643	62,573		96,959
	Age (y)	30–55	51-55	20–86	35–69	50-71	35-70	30-49		30-55	55-69		22–104
Study	design	Cohort	Cohort	Cohort	Cohort	Cohort	Cohort	Cohort		Cohort	Cohort		Cohort
	Country	USA	France	Greece	UK	NR	European	Sweden		USA	The Netherlands		USA
	Study	Fung et al. [2006]	Cottet et al. [2009]	Trichopoulou et al. [2010]	Cade et al. [2011]	Wu et al. [2011]	Buckland et al. [2013]	Couto et al. [2013]		Hirko et al. [2016]	van den Brandt et al. [2017]		Haridass et al. [2018]

TABLE 1 (Continued)	(p						
Study	Country	Study design	Age (y)	Sample size	Cases	Effect size (95% CI)	Adjustment
Lavalette et al. [2018]	France	Cohort	> 40	30,525	488	HR: 1.13 (0.84, 1.53)	Age, sex, education, smoking, number of 24-h dietary records, height, family history of BC, BMI, PA, energy intake, number of parity, menopausal status, HRT use, OCPs use.
Petimar et al. [2019]	USA	Cohort	35-74	50,884	1700	HR: 0.90 (0.77, 1.06)	Age (at baseline, first live birth, menopause, menarche), energy intake, race/ethnicity, income, smoking, BMI, PA, height, education, family history of BC, parity, HRT, OCPs use, lifetime duration of breastfeeding, and time of last mammogram.
						HR: 0.89 (0.76, 1.05)	Additionally for alcohol intake
Dela Cruz et al. [2020]	USA	Cohort	45–75	101,291	7749	HR: 1.01 (0.94, 1.09)	Age (at baseline, menarche, menopause, first live birth), total energy intake, BMI, smoking status, PA, education, parity, family history of BC, HRT use, DQI depending on the model.
Gardeazabal et al. [2020]	Spain	Cohort	NR	10,713	100	HR: 0.64 (0.30, 1.37)	Age (at baseline, menarche, first live birth, menopause), energy intake, BMI, smoking, PA, education, parity, family history of BC, HRT use, DQI, energy intake, diabetes.
Männistö et al. [2021]	Finland	Cohort	50 <	6374	274	HR: 0.88 (0.59, 1.30)	Age, education, smoking, height, BMI, leisure time exercise, parity, HRT, energy intake
van den Brandt et al. [2023]	The Netherlands	Cohort	55-69	62,573	2321	HR: 0.88 (0.73, 1.08)	Age (at baseline, menarche, first birth, menopause), parity, smoking, height, education, family history of BC, history of BBD, OCPs use, HRT use, energy intake, lifestyle factors.
Yiannakou et al. [2023]	USA	Cohort	30 <	1567	87	HR: 0.91 (0.51, 1.60)	Age (at baseline, menopause), calorie intake, waist-to-height ratio, smoking, PA, diabetes status, supplement use.
Castelló et al. [2024]	Spain	Cohort	29–69	24,892	639	HR: 0.95 (0.72, 1.27)	Alcohol intake, energy intake, BMI, PA, smoking, education, age at first delivery. HRT use, menopausal status, adherence to the Western dietary pattern.
Quartiroli et al. [2024]	Italy	Cohort	35-69	9144	587	HR: 0.76 (0.60–0.97) HR: 0.88 (0.69–1.13)	Age and non-alcoholic energy intake. Further adjusted for age at menarche, parity, age at first birth, smoking status, education, and BMI
Nkondjock et al. [2006]	Canada	Case- control	< 65	183	68	OR: 0.54 (0.17–1.72)	Age, PA, energy intake
Murtaugh et al. [2008]	USA	Case- control	25–79	4746	2281	OR: 0.76 (0.63-0.92)	Age, center, education, smoking, PA, calories, dietary fiber and calcium, height, BMI, parity, HRT, family history of BC, menopausal status
Wu et al. [2009]	USA	Case- control	25–74	2396	1248	OR: 0.65 (0.44-0.95)	Age (at menopause, menarche), Asian ethnicity, education, birthplace, years of residence in the USA, PA, marital status, parity, type of menopause, BMI.
							(comit mod)

(Continued)
_
E 1
BE
TA

Sundy Case Age Age Case Age Ca								
Country design Age (y) Sample size Cases Effect size (95% CJ) Cyprus Case- 40-70 2286 935 OR: 0.99 (0.70, 1.40) France Case- 40-70 2286 1359 437 OR: 0.99 (0.70, 1.40) Spain Case- NR 2038 1019 OR: 0.44 (0.30-0.65) NR Case- NR 2034 1017 OR: 0.44 (0.30-0.65) Spain Case- NR 2034 1017 OR: 0.40 (0.90-0.79) Greece Case- 56 ± 12 500 250 OR: 0.40 (0.90-0.79) UK Case- 57.2 & 56.6 2501 610 OR: 0.20 (0.86-0.71) Poland Case- 20-85 2532 253 OR: 0.20 (0.69-1.17) Spain Case- 40-79 420 190 OR: 0.50 (0.69-1.17) Spain Case- 18-70 1946 973 OR: 0.50 (0.96-1.18) Spain Case- 23-78 6426 973 OR: 0.60 (0.96-1	,		Study					:
Cyprus Case- 40-70 2286 935 OR: 0.99 (0.70, 140) France Case- 25-85 1359 437 OR: 0.90 (0.77, 133) Spain Case- NR 2038 1019 OR: 0.44 (0.30-0.65) Spain Case- 56 ± 12 500 250 OR: 0.23 (0.879-0.968) Spain Case- 56 ± 12 500 250 OR: 0.24 (0.40-0.79) Greece Case- 56 ± 12 500 250 OR: 0.24 (0.40-0.79) UK Case- 56 ± 12 500 250 OR: 0.24 (0.40-0.79) Spain Case- 57.2 & 56.6 250 0R: 0.20 (0.69-0.13) OK Case- 57.2 & 56.6 253 258 OR: 0.02 (0.69-0.13) Spain Case- 18-70 40-79 420 0R: 0.50 (0.69-0.13) Spain Case- 18-70 1946 973 OR: 0.00 (0.69-0.13) China Case- 18-70 1946 0R: 0.50 (0.71-0.95) China Ca	Study	Country	design	Age (y)	Sample size	Cases	Effect size (95% CI)	Adjustment
Spain Case- control 25-85 1359 437 OR: 0.97 (0.63-1.48) NR Case- control NR 2038 1019 OR: 0.927 (0.63-1.48) NR Case- control 56 ± 12 500 250 OR: 0.923 (0.879-0.968) Spain Case- control NR 2034 1017 OR: 0.921 (0.86-0.97) UK Case- control 55 ± 12 500 250 OR: 0.92 (0.86-0.97) UK Case- control 57.2 & 56.6 2501 610 OR: 1.05 (0.77-1.43) Spain Case- control 20-85 2532 258 OR: 0.90 (0.69-1.17) Spain Case- control 40-79 420 190 OR: 0.00 (0.69-1.17) Spain Case- control 18-70 1946 973 OR: 0.06 (0.96-1.18) Spain Case- control 18-70 1946 973 OR: 0.06 (0.96-1.18) Spain Case- control 18-70 1946 973 OR: 0.06 (0.96-1.18) China Case- control 18-70 18-	Demetriou et al. [2012]	Cyprus	Case- control	40-70	2286	935	OR: 0.99 (0.70, 1.40) OR: 0.63 (0.77, 1.53)	Age (age at FFTP, menarche), family history, HRT use, exercise, height, BMI in post-menopausal women only.
Spain Case- control NR 2038 1019 OR: 0.44 (0.30-0.65) NR Case- control 56 ± 12 500 250 OR: 0.923 (0.879-0.968) Spain Case- control 56 ± 12 500 250 OR: 0.56 (0.40-0.79) UK Case- control 57.2 & 56.6 2501 610 OR: 0.92 (0.86-0.97) Spain Case- control 20-85 2532 258 OR: 0.90 (0.69-1.17) Spain Case- control 40-79 420 190 OR: 0.50 (0.69-1.17) Spain Case- control 18-70 1946 973 OR: 0.06 (0.69-1.18) Italy Case- control 23-78 6426 3034 OR: 0.06 (0.71-0.95) Italy Case- control 1753 818 OR: 0.61 (0.50-0.76)	Bessaoud et al. [2012]	France	Case- control	25–85	1359	437	OR: 0.97 (0.63–1.48)	Energy intake, education, parity, breastfeeding age at first full-term pregnancy, duration of ovulatory activity, BMI, PA, family history of BC.
NR Case- control 56 ± 12 500 250 OR: 0.923 (0.879-0.968) Spain Case- control NR 2034 1017 OR: 0.56 (0.40-0.79) Greece Case- control 56 ± 12 500 250 OR: 0.92 (0.86-0.77) UK Case- control 57.2 & 56.6 2501 610 OR: 1.05 (0.77-1.43) Spain Case- control 20-85 2532 258 OR: 0.90 (0.69-1.17) I Poland Case- control 40-79 420 190 OR: 0.50 (0.59-1.13) Spain Case- control 18-70 1946 973 OR: 0.06 (0.96-1.18) Ialy Case- control 23-78 6426 3034 OR: 0.50 (0.71-0.95) China Case- NR 1753 818 OR: 0.61 (0.50-0.76)	Castelló et al. [2013]	Spain	Case- control	NR	2038	1019	OR: 0.44 (0.30–0.65)	NR
Spain Case- control NR 2034 1017 OR: 0.56 (0.40-0.79) Greece Case- control 56 ± 12 500 250 OR: 0.74 (0.46-1.18) UK Case- control 57.2 & 56.6 2501 610 OR: 1.05 (0.77-1.43) Spain Case- control 20-85 2532 253 OR: 0.90 (0.69-1.17) Spain Case- control 40-79 420 190 OR: 0.52 (0.25-1.07) Spain Case- control 18-70 1946 973 OR: 1.06 (0.96-1.18) Italy Case- control 23-78 6426 3034 OR: 0.61 (0.50-0.76) China Case- control NR 1753 818 OR: 0.61 (0.50-0.76)	Mourouti et al. [2013]	NR	Case- control	56 ± 12	500	250	OR: 0.923 (0.879–0.968)	Age, socioeconomic level, family history of BC, BMI, PA, smoking.
Greece control control control 56 ± 12 so 6 550 250 OR: 0.92 (0.86-0.97) UK Case- control control 57.2 & 56.6 2501 610 OR: 1.05 (0.77-1.43) Spain Case- control control 40-79 420 190 OR: 0.90 (0.69-1.17) Spain Case- control 18-70 1946 973 OR: 0.52 (0.25-1.07) Itally Case- control 23-78 6426 3034 OR: 0.60 (0.69-1.18) China China Case- NR NR 1753 818 OR: 0.61 (0.50-0.76)	Castelló et al. [2014]	Spain	Case- control	NR	2034	1017	OR: 0.56 (0.40-0.79) OR: 0.74 (0.46-1.18)	Total calories, alcohol consumption, BMI from self-reported weight and height, average PA in the past year, smoking, education, history of BBD and BC, age (at menarche, first delivery)
UK Case- control 57.2 & 56.6 2501 610 OR: 1.05 (0.77-1.43) 7] Spain Case- control 20-85 2532 258 OR: 0.06 (0.69-1.52) 918] Poland Case- 40-79 420 190 OR: 0.52 (0.55-1.07) 101 Case- control 18-70 1946 973 OR: 1.06 (0.96-1.18) 11aly Case- control 23-78 6426 3034 OR: 0.61 (0.50-0.76) China Case- NR 1753 818 OR: 0.61 (0.50-0.76)	Mourouti et al. [2014]	Greece	Case- control	56 ± 12	500	250	OR: 0.92 (0.86–0.97)	Age, education, BMI, smoking, PA, family history of BC, age (at menarche and menopause, HRT use.
OR: 1.02 (0.69–1.52) Control Spain Case- 40–79 420 190 OR: 0.90 (0.69–1.17) Control Spain Case- 18–70 1946 973 OR: 1.06 (0.96–1.18) Control Italy Case- 23–78 6426 3034 OR: 0.60–1.18) Control Case- Control Case- 18–70 1946 973 OR: 1.06 (0.96–1.18) Control Contr	Pot et al. [2014]	UK	Case- control		2501	610	OR: 1.05 (0.77–1.43)	Exact age, parity, use of HRT, weight, height, PA, menopausal status, family history of BC, breastfeeding, and education level
Spain Case- 20-85 2532 258 OR: 0.90 (0.69-1.17)							OR: 1.02 (0.69-1.52)	Additionally, for alcohol intake
Poland Case- 40-79 420 190 OR: 0.52 (0.25-1.07) Case- 18-70 1946 973 OR: 1.06 (0.96-1.18) Italy Case- 23-78 6426 3034 OR: 0.82 (0.71-0.95) China Case- NR 1753 818 OR: 0.61 (0.50-0.76)	Castelló et al. [2017]	Spain	Case- control	20–85	2532	258	OR: 0.90 (0.69-1.17)	Age, education, BMI, age at first delivery, family history of BC, PA, smoking, caloric intake, alcohol intake, province of residence as a random effect term.
Spain Case- 18-70 1946 973 OR: 1.06 (0.96-1.18) Italy Case- 23-78 6426 3034 OR: 0.82 (0.71-0.95) China Case- NR 1753 818 OR: 0.61 (0.50-0.76)	Krusinska et al. [2018]	Poland	Case-control	40-79	420	190	OR: 0.52 (0.25–1.07)	Age, BMI, socioeconomic status, PA, smoking, abuse of alcohol, age at menarche, menopausal status, number of children, OCPs use, HRT use, family history of BC, vitamin/mineral supplements use, BC subtypes, 'Metabolic-Syndrome' and 'High-Hormone' Profiles Score, excluding the modeled variable from confounders set, respectively
Italy Case- 23-78 6426 3034 OR: 0.82 (0.71-0.95) control China Case- NR 1753 818 OR: 0.61 (0.50-0.76)	Lope et al. [2019]	Spain	Case- control	18–70	1946	973	OR: 1.06 (0.96–1.18)	Menopausal status, education, BMI, smoking, age (at first birth, menarche), family history of BC and BBD, HRT use, PA, Mediterranean dietary pattern.
China Case- NR 1753 818 OR: 0.61 (0.50–0.76) control	Turati et al. [2018]	Italy	Case- control	23–78	6426	3034	OR: 0.82 (0.71–0.95)	Study center, age, education, BMI, PA, smoking, parity, OCPs use, HRT use, diabetes, family history of BC, non-alcohol energy intake
	Cao et al. [2021]	China	Case- control	NR	1753	818	OR: 0.61 (0.50-0.76)	Age (at menarche, at first full-term delivery, menopausal age), area, education, tobacco smoking, PA, OCPs use, HRT, family history of BC and BBD, number of parity, breastfeeding, BMI

(pe
ntinue
(Con
_
-
LE

I

		Study					
Study	Country	design	Age (y)	Sample size	Cases	Effect size (95% CI)	Adjustment
Torre et al. [2021]	Italy	Case- control	55.8 & 57.9	182	94	OR: 0.29 (0.12-0.69)	NR
Caldas et al. [2022]	Brazil	Case- control	27–76	181	06	OR: 2.136 (0.863–5.287)	Age, first-grader parent with BC, OCPs use, hysterectomy, calories, menopausal status.
Cao et al. [2022]	China	Case- control	< 25	1753	818	OR: OR: 0.64 (0.49-0.84)	Age at diagnosis, area, education, tobacco smoking, PA, OCPs use, HRT, family history of BC and BBD, age (at menarche, at first full-term delivery, menopausal age), number Parity, breastfeeding, BMI.
Djafari et al. [2023]	Iran	Case- control	46.6 ± 10.7	300	150	OR: 0.45 (0.21-0.94)	Age, BMI, energy intake, education, residency, family history of BC, PA, marital status, smoking, alcohol consumption, supplement use, length of breastfeeding, history of HRT
Sadeghi et al. [2023]	Iran	Case- control	< 30	1050	350	OR: 0.43 (0.28–0.67)	Age, energy, region, marital status, education, disease history, PA, family history of BC, menopausal status, smoking, alcohol consumption, socioeconomic status, BMI
Abbreviations: BBD, benign breast of PA, physical activity, RR, risk ratio.	breast disease; BC, breask ratio.	ast cancer; BMI, l	body mass index; L	QI, diet quality inc	dex; HR: haz	ard ratio; HRT, hormone replace	Abbreviations: BBD, benign breast disease; BC, breast cancer; BMI, body mass index; DQI, diet quality index; HR: hazard ratio; HRT, hormone replacement therapy; NR, non-reported; OCPs, oral contraceptives; OR, odd ratio; PA, physical activity, RR, risk ratio.

most cohort studies scoring between 6 and 8 (Table 2) and case-control studies ranging from 3 to 9 (Table 3). High-scoring studies demonstrated strong exposure assessment, adequate follow-up, and effective control for confounders, while lower-scoring studies had limitations in follow-up adequacy, control selection, or exposure assessment. Despite some methodological weaknesses, the overall quality of the included studies was robust, supporting the reliability of the findings on the association between MD adherence and breast cancer risk.

3.4 | Meta-Analysis

The findings of our primary analysis are derived from 39 studies included in this meta-analysis. Women were grouped into three categories: overall (combining premenopausal and postmenopausal), premenopausal, and postmenopausal, to evaluate the effect of the MD on breast cancer risk. The overall pooled analysis revealed a significant association between adherence to the MD and a lower risk of breast cancer across all women. The HR was 0.87 (95% CI: 0.83, 0.92), corresponding to a 13% reduction in breast cancer risk. The heterogeneity among the studies was substantial, with an I^2 value of 66.4% (Figure 2).

For premenopausal women, the HR was 0.98 (95% CI: 0.90, 1.06), suggesting no statistically significant decrease in breast cancer risk within this subgroup. The moderate level of heterogeneity ($I^2 = 61.5\%$) points to some variability across the included studies (Figure 3). In postmenopausal women, the HR was 0.88 (95% CI: 0.84, 0.92), indicating a significant reduction in breast cancer risk linked to the MD (Figure 4). The heterogeneity was again moderate, with an I^2 value of 45.2%.

3.5 | Subgroup Analysis

A subgroup analysis based on the study design (cohort vs. case-control) demonstrated that for cohort studies, the HR was 0.96 (95% CI: 0.90, 1.02) with low heterogeneity among studies ($I^2=36.8\%$), while in case-control studies showed an HR of 0.77 (95% CI: 0.70, 0.85) with a substantial heterogeneity ($I^2=77.2\%$) (Figure 5A). Furthermore, no significant difference was found in breast cancer risk between cohort studies with follow-up durations of less than 20 years compared to those over 20 years (Figure 5B, Table 4).

The subgroup analysis based on the geographical region revealed that studies conducted in Asia showed the strongest association between Mediterranean diet adherence and a reduced risk of breast cancer (HR: 0.59, 95% CI: 0.50, 0.68). In contrast, the association was moderate in Europe (HR: 0.90, 95% CI: 0.83, 0.97) and insignificant in America (HR: 0.92, 95% CI: 0.82, 1.02) (Figure 5C). In addition, the subgroup analysis by alcohol adjustment (inclusion vs. exclusion) showed no significant effect on breast cancer risk in women (Figure 5D, Table 4).

In premenopausal women, cohort studies (HR: 1.05, 95% CI: 0.88, 1.24) did not show any significant effect of the MD on reducing breast cancer risk. Similarly, the marginal association seen in case-control studies (HR: 1.09, 95% CI: 0.95, 1.24)

TABLE 2 | Quality assessment of the cohort studies according to the Newcastle-Ottawa Scale (NOS) criteria.

Cohort studies	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Score
Fung et al. [2006]	_	*	*	*	*	*	*	*	7
Cottet et al. [2009]	*	*	*	*	*	*	*	*	8
Trichopoulou et al. [2010]	*	*	*	*	*	*	*	*	8
Cade et al. [2011]	_	*	*	*	*	_	*	*	6
Wu et al. [2011]	_	*	*	*	_	*	*	*	7
Buckland et al. [2013]	*	*	*	*	*	*	*	*	8
Couto et al. [2013]	*	*	*	*	*	_	*	*	7
Hirko et al. [2016]	_	*	*	*	*	*	*	*	7
van den Brandt et al. [2017]	_	*	*	*	*	*	*	*	7
Haridass et al. [2018]	_	*	*	*	*	*	*	_	6
Lavalette et al. [2018]	_	*	*	*	*	*	*	_	6
Petimar et al. [2019]	_	*	*	*	*	*	*	*	7
Dela Cruz et al. [2020]	*	*	*	*	*	*	*	_	7
Gardeazabal et al. [2020]	_	*	*	*	*	*	*	_	6
Männistö et al. [2021]	_	*	*	*	*	*	*	*	7
van den Brandt et al. [2023]	*	*	*	*	*	*	*	*	8
Yiannakou et al. [2023]	_	*	*	*	*	*	*	_	6
Castelló et al. [2024]	*	*	*	*	*	*	*	*	8
Quartiroli et al. [2024]	*	*	*	*	*	*	*	*	8

Note: Q1: Representativeness of the exposed cohort. Q2: Selection of the non-exposed cohort. Q3: Ascertainment of exposure. Q4: Demonstration that outcome of interest was not present at start of study. Q5: Comparability of cohorts on the basis of the design or analysis. Q6: Assessment of outcome. Q7: Was follow-up long enough for outcomes to occur (> 5 years). Q8: Adequacy of follow-up of cohorts (loss-to-follow-up < 20%). Q9: Total score. Q9: Total score.

TABLE 3 | Quality assessment of the case-control studies according to the Newcastle-Ottawa Scale (NOS) criteria.

Case-control studies	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Score
Nkondjock et al. [2006]	*	_	*	*	*	*	*	*	*	8
Murtaugh et al. [2008]	*	*	*	_	*	*	*	*	_	7
Wu et al. [2009]	*	*	*	_	*	*	*	*	_	7
Demetriou et al. [2012]	*	_	*	*	*	*	*	*	*	8
Bessaoud et al. [2012]	*	*	*	_	*	*	*	*	_	7
Castelló et al. [2013]	_	*	*	_	*	*	*	*	_	6
Mourouti et al. [2013]	_	*	*	_	*	*	*	*	_	6
Castelló et al. [2014]	*	*	*	_	*	*	*	*	*	8
Mourouti et al. [2014]	*	*	*	*	*	*	*	*	*	9
Pot et al. [2014]	*	_	*	*	*	*	*	*	*	8
Castelló et al. [2017]	*	*	*	_	*	*	*	*	_	7
Krusinska et al. [2018]	*	_	*	*	*	*	*	*	_	7
Lope et al. [2019]	*	*	*	_	*	*	*	*	_	7
Turati et al. [2018]	*	*	*	*	*	*	*	*	*	9
Cao et al. [2021]	*	*	*	*	*	*	*	*	_	8
Torre et al. [2021]	_	_	*	_	_	_	*	*	_	3
Caldas et al. [2022]	*	*	*	*	*	*	*	*	*	9
Cao et al. [2022]	*	*	*	_	*	*	*	*	_	7
Djafari et al. [2023]	*	_	*	_	*	*	*	*	_	6
Sadeghi et al. [2023]	*	*	*	*	*	*	*	*	*	9

Note: Q1: Is the case definition adequate? Q2: Representativeness of the cases. Q3: Selection of controls. Q4: Definition of controls. Q5: Comparability of cases and controls on the basis of the design or analysis controlled for confounders. Q6: Study controls for any additional factor. Q7: Ascertainment of exposure. Q8: Same method of ascertainment for cases and controls. Q9: Non-response rate.

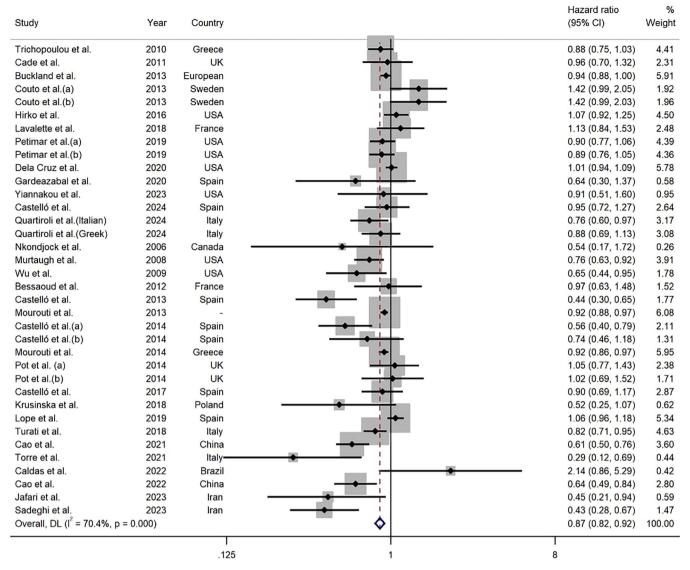


FIGURE 2 | Forrest plot demonstrating the hazard ratio (HR) and 95% confidence interval (95% CI) for the overall association between adherence to the Mediterranean diet (MD) and risk of breast cancer in women.

appears overestimated. The subgroup analysis by region for premenopausal women showed no significant reduction in risk across America (HR: 0.92, 95% CI: 0.82, 1.02), Europe (HR: 0.98, 95% CI: 0.88, 1.10), or Asia (HR: 0.88, 95% CI: 0.63, 1.21). These findings suggest that adherence to the MD in premenopausal women in America and Europe does not significantly reduce breast cancer risk. Likewise, the inclusion or exclusion of alcohol did not result in significant differences in risk. For studies that included alcohol, the HR was 1.12 (95% CI: 0.90, 1.40), while those excluding alcohol had an HR of 0.94 (95% CI: 0.86–1.03) (Table 4, Supporting Information S1: Figure S1).

In postmenopausal women, cohort studies indicated a modest reduction in breast cancer risk with MD adherence (HR: 0.91, 95% CI: 0.88, 0.95), while case-control studies suggested a stronger protective effect (HR: 0.82, 95% CI: 0.75, 0.90). Regional subgroup analysis revealed varying associations, with Europe showing a moderate reduction (HR: 0.90, 95% CI: 0.87, 0.93), a weaker and non-significant effect in America (HR: 0.95, 95% CI: 0.89, 1.02), and a notably strong association in Asia (HR: 0.49, 95% CI: 0.37, 0.64), which may be influenced by

regional dietary patterns or study limitations. Furthermore, subgroup analysis based on alcohol inclusion demonstrated a significant difference in breast cancer risk reduction. When alcohol adjustment was included in the MD pattern, the risk was more substantially reduced (HR: 0.80, 95% CI: 0.72, 0.90), whereas excluding alcohol resulted in a higher HR of 0.92 (95% CI: 0.88, 0.95), suggesting that moderate alcohol consumption within the MD framework may contribute to its protective effect (Table 4, Supporting Information S1: Figure S2).

3.6 | Publication Bias

Three common methods were used to assess publication bias across these groups. The funnel plots for the overall, premenopausal, and postmenopausal categories displayed a symmetric distribution of studies, suggesting that publication bias was unlikely to be a major concern (Figure 6). This was further supported by Begg's test for the overall group (p=0.18), premenopausal group (p=0.76), and postmenopausal group (p=0.06), indicating minimal risk of publication bias in all



FIGURE 3 | Forrest plot demonstrating the hazard ratio (HR) and 95% confidence interval (95% CI) for the overall association between adherence to the Mediterranean diet (MD) and risk of breast cancer in premenopausal women.

three groups. Additionally, the results of the trim-and-fill method confirmed these findings, reinforcing that publication bias was not significant in any of the groups (Supporting Information S1: Table S3).

3.7 | Sensitivity Analysis

A sensitivity analysis was conducted using the leave-one-out method, revealing that no outlier studies were identified in any of the three groups: overall, premenopausal, and postmenopausal (Supporting Information S1: Figures S3 and S4).

4 | Discussion

This systematic review and meta-analysis examined the association between adherence to the Mediterranean diet and breast cancer risk in women. The findings demonstrated a significant 13% reduction in breast cancer risk, with the protective effect being more pronounced in postmenopausal women, while no significant association was observed in premenopausal women. Geographically, the strongest protective effect was identified in Asian populations, with moderate associations in European and American populations. Additionally, subgroup analysis indicated a stronger association in case-control studies, whereas

cohort studies did not show a significant effect, highlighting potential differences in study design and methodological approaches that may influence the observed outcomes. These results emphasize the potential role of the Mediterranean diet in breast cancer prevention, particularly among postmenopausal women, though further research is needed to explore underlying mechanisms and regional variations.

MD is characterized by a high intake of vegetables, fruits, nuts, monounsaturated fatty acids, legumes, and cereals, limited intake of red meat and saturated fat, and moderate consumption of red wine [20], rich in polyphenolic compounds such as carotenoids and flavonoids, along with unsaturated fatty acids, and numerous bioactive agents that function as antioxidant, anti-inflammatory, antiproliferative, apoptotic, and anti-angiogenic agents, all of which contribute to its potential anticancer properties [21-23]. Furthermore, phytoestrogen in plant-based components may reduce breast cancer risk by modulating estrogen activity and decreasing the harmful effects of excess estrogen in developing breast cancer [24]. MD has been reported to play a role in various cancer prevention as well [23, 25]. Moazzen et al. [26], in 2020, reported a notable 28% reduction in upper gastrointestinal cancer risk [26]. Furthermore, significant inverse correlations between MD and lung cancer were observed in several studies [27-29]. Protection was also observed in bladder and colorectal cancer [25, 30, 31], though no prevention was noted in the case of prostate and ovary cancers [29, 32].

Study Design and Study	Year	Country	Hazard ratio (95% CI)	9 Weigh
Cohort				
ung et al.	2006	USA	0.98 (0.88, 1.10)	6.2
Cottet et al.	2009	France	0.85 (0.76, 0.96)	5.9
richopoulou et al.	2010	Greece	0.78 (0.62, 0.98)	2.8
Cade et al.	2011	UK	1.30 (0.83, 2.04)	0.9
Vu et al.	2011	-	0.90 (0.82, 0.99)	7.0
Buckland et al.	2013	European	0.93 (0.84, 1.03)	6.4
Couto et al.(a)	2013	Sweden	0.63 (0.29, 1.37)	0.3
Couto et al.(b)	2013	Sweden	0.59 (0.27, 1.28)	0.3
/an den Brandt et al.(a)	2017	Netherlands	0.88 (0.73, 1.06)	3.7
/an den Brandt et al.(b)	2017	Netherlands	0.87 (0.72, 1.06)	3.5
Haridass et al.(a)	2018	USA	0.93 (0.83, 1.04)	6.4
Haridass et al.(b)	2018	USA	0.95 (0.85, 1.06)	6.3
Gardeazabal et al.	2020	Spain	0.86 (0.21, 3.50)	0.
Männistö et al.	2021	Finland	0.88 (0.59, 1.31)	1.
/an den Brandt et al.	2023	Netherlands	0.88 (0.72, 1.07)	3.
/iannakou et al.	2023	USA	0.99 (0.55, 1.78)	0.
Castelló et al.	2024	Spain	1.03 (0.75, 1.41)	1.
Quartiroli et al.(Italian)	2024	Italy	0.64 (0.42, 0.98)	1.0
Quartiroli et al.(Greek)	2024	Italy	0.78 (0.52, 1.16)	1.
Subgroup, DL ($I^2 = 0.0\%$, p =		italy	0.91 (0.88, 0.95)	59.2
Jubgroup, DE (1 = 0.0 %, p =	0.031)		0.51 (0.55, 0.55)	03.
Case-Control			1	
Demetriou et al.(a)	2012	Cyprus	0.99 (0.70, 1.40)	1.4
Demetriou et al.(b)	2012	Cyprus	0.63 (0.45, 0.89)	1.4
Mourouti et al.	2013	-	0.91 (0.85, 0.98)	8.2
Castelló et al.(a)	2014	Spain	0.91 (0.85, 0.98)	8.2
Castelló et al.(b)	2014	Spain	0.69 (0.38, 1.26)	0.5
Mourouti et al.	2014	Greece	0.92 (0.87, 0.98)	8.6
ot et al. (a)	2014	UK	1.10 (0.80, 1.51)	1.6
Pot et al.(b)	2014	UK	1.14 (0.76, 1.71)	1.
Castelló et al.	2017	Spain	0.72 (0.53, 0.98)	1.7
Turati et al.	2018	Italy	0.87 (0.72, 1.05)	3.
Cao et al.	2021	China	0.54 (0.38, 0.77)	1.3
Cao et al.	2022	China	0.57 (0.41, 0.80)	1.5
lafari et al.	2023	Iran —	0.18 (0.04, 0.79)	0.
Sadeghi et al.	2023	Iran	0.37 (0.23, 0.60)	0.8
Subgroup, DL (I ² = 70.1%, p			0.82 (0.75, 0.90)	40.
Heterogeneity between grou	ns: n = 0 049	1	1	
Overall, DL ($I^2 = 45.2\%$, p = $I^2 = 45.2\%$		•	0.88 (0.84, 0.92)	100.

FIGURE 4 | Forrest plot demonstrating the hazard ratio (HR) and 95% confidence interval (95% CI) for the overall association between adherence to the Mediterranean diet (MD) and risk of breast cancer in postmenopausal women.

Our subgroup analysis based on menopause status revealed a considerable association between MD and breast cancer risk in postmenopausal women, whereas no significant association was observed in premenopausal breast cancer risk. In line with our findings, a meta-analysis by Li et al. [33] on 18 cohorts and casecontrol studies revealed that MD has a direct association with a risk reduction of breast cancer in overall and postmenopausal women but not in the premenopausal population. In a study by Dianatinasab et al. [34], a notable inverse association between adherence to MD and reduced invasive ductal carcinoma and invasive lobular carcinoma was found in case-control studies. However, no such association was found in cohorts. Besides, these subtypes were significantly associated with consumption of the Western diet, characterized by higher intakes of red meat, dairy products, and saturated fat [22]. In combined data from five Finnish cohorts evaluated the protective role of the MD on postmenopausal breast cancer risk, no association was obtained [35]. Similarly, Brandt et al. [36] found no association between MD and breast cancer risk in postmenopausal women, but a significant inverse association was observed in hormone receptor subgroup analyses, particularly for estrogen receptornegative and estrogen/progesterone receptor-negative breast cancers.

The observed inconsistencies may be attributed to the possibility of a heterogenous association between the MD and various histologic subtypes, hormone-receptor status, and menopause status subgroups of breast cancer. This hypothesis aligns with our findings, demonstrating different associations between MD and menopause status. The stronger inverse association between MD and breast cancer in postmenopausal women was also documented in prior studies as well [33, 37]. This divergence may be explained by several underlying mechanisms. After menopause, estrogen production shifts from ovaries to adipose tissue [38]. MD is proven to play a favorable role in weight management and improving

insulin sensitivity, particularly by reducing visceral fat accumulation, which can lead to decreased estrogen levels post-menopause and lower the risk of breast cancer [39]. Considering that the mechanisms of developing breast cancer before menopause are more complex and rely on several factors, including family history, genetic mutations, lifestyle, reproductive and hormonal factors [40], The current state of

knowledge did not come to a conclusion regarding the association between dietary patterns and breast cancer risk in perimenopause age.

The role of alcohol within the MD, particularly red wine, remains a subject of debate. Daily and moderate red wine consumption is noted to exhibit antioxidant effects due to its

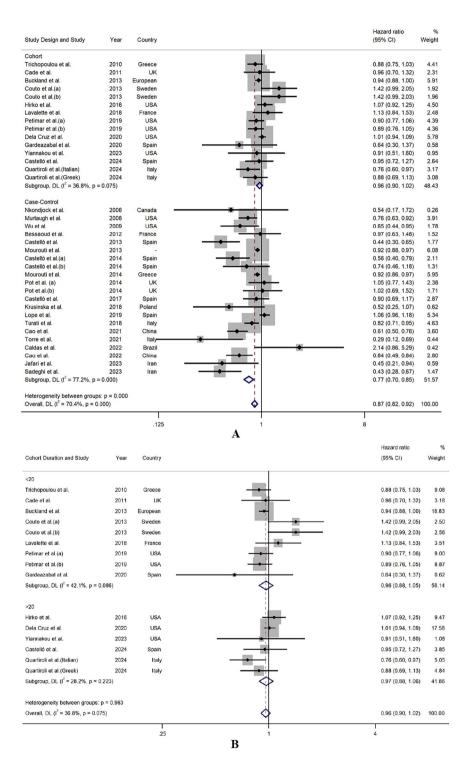


FIGURE 5 | Forrest plot demonstrating the hazard ratio (HR) and 95% confidence interval (95% CI) for the overall association between adherence to the Mediterranean diet (MD) and risk of breast cancer in women, based on the subgroup analysis based on thr study design (A), follow-up duration of cohort studies (B), geographical population (region) (C), and alcohol adjustment (D).

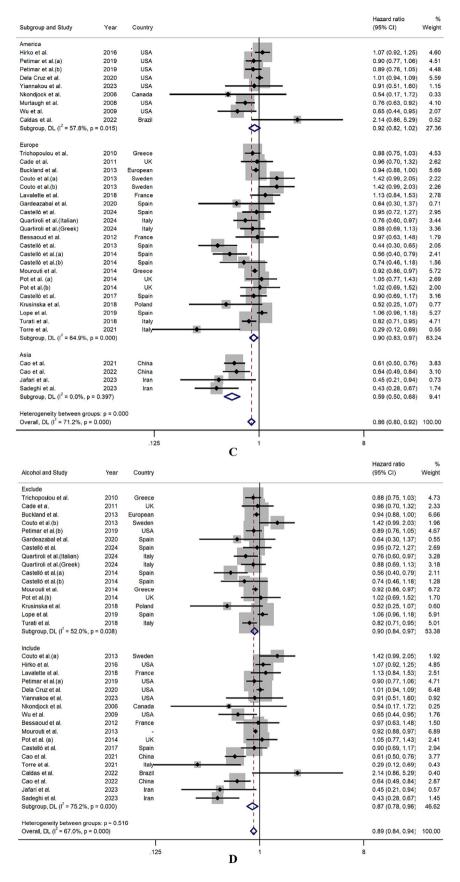


FIGURE 5 | (Continued)

TABLE 4 | Meta-analysis findings of the association between the Mediterranean diet and the risk of breast cancer.

Overall	No. of effect sizes 36	Hazard ratio (HR) (95% CI) 0.87 (0.82, 0.92)	I ² (%) 70.4%	<i>p</i> -Heterogeneity < 0.001
Study design				
Cohort	15	0.96 (0.90, 1.02)	36.8%	0.075
Case-control	21	0.77 (0.70, 0.85)	77.2%	< 0.001
Study location				
Asia	4	0.59 (0.50, 0.68)	0.0%	0.397
Europe	22	0.90 (0.83, 0.97)	64.9%	< 0.001
America	9	0.92 (0.82, 1.02)	57.8%	0.015
Cohort duration				
> 20 years	6	0.97 (0.88, 1.06)	28.2%	0.223
< 20 years	9	0.96 (0.88, 1.05)	42.1%	0.086
Alcohol adjustment				
Include	18	0.87 (0.78, 0.96)	75.2%	< 0.001
Exclude	16	0.90 (0.84, 0.97)	52.0%	0.008
Premenopausal	21	0.98 (0.90, 1.06)	61.5%	< 0.001
Study design				
Cohort	11	1.05 (0.88, 1.24)	72.3%	< 0.001
Case-control	10	0.92 (0.89, 0.96)	0.0%	0.499
Study location				
Asia	4	0.88 (0.63, 1.21)	0.0%	0.583
Europe	14	0.98 (0.88, 1.10)	70.4%	< 0.001
America	2	1.09 (0.95, 1.24)	0.0%	0.489
Alcohol adjustment				
Include	8	1.12 (0.90, 1.40)	70.7%	< 0.001
Exclude	13	0.94 (0.86, 1.03)	56.4%	0.007
Postmenopausal	33	0.88 (0.84, 0.92)	45.2%	0.003
Study design				
Cohort	19	0.91 (0.88, 0.95)	0.0%	0.697
Case-control	14	0.82 (0.75, 0.90)	70.1%	< 0.001
Study location				
Asia	4	0.49 (0.37, 0.64)	27.1%	0.249
Europe	23	0.90 (0.87, 0.93)	0.0%	0.461
America	4	0.95 (0.89, 1.02)	0.0%	0.928
Alcohol adjustment				
Include	15	0.81 (0.74, 0.90)	68.8%	< 0.001
Exclude	17	0.91 (0.88, 0.94)	0.0%	0.704

polyphenolic compounds [41]. Resveratrol can reduce estrogen production and decrease aromatase levels in Breast cancerous cells. However, the potential advantages should not obscure the harmful effects of ethanol in ROS production and the generation of DNA-damaging acetaldehyde in cancer development [29]. Additionally, alcohol inhibits the activity of 2-hydroxylase and sulfotransferase enzymes, which are involved in estrogen metabolism and can lead to higher estrogen levels [42]. The

inclusion of alcohol in our study resulted in no significant risk reduction in premenopausal women but rather a greater reduction in breast cancer risk in the postmenopausal subgroup. Although evidence regarding alcohol's role in cancer prevention is currently inconclusive, future research should focus on determining whether alcohol consumption within MD offers protective effects and, if so, how much daily intake is effective in cancer prevention.

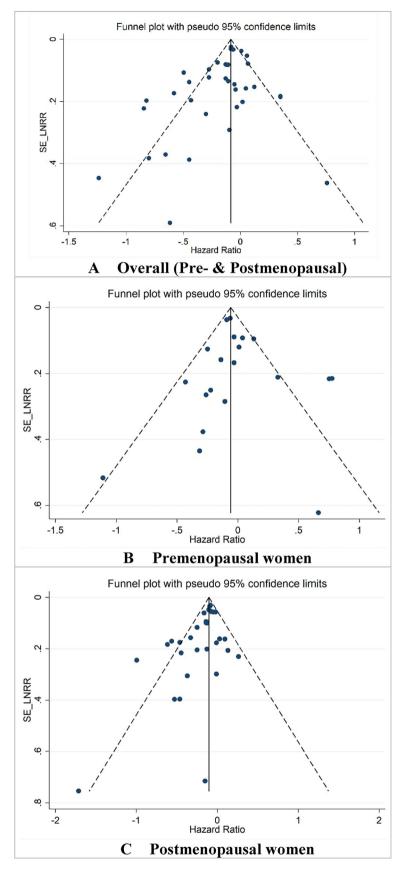


FIGURE 6 | Funnel plot for assessing publication bias in (A) Overall women (pre- and postmenopausal), (B) premenopausal, and (C) postmenopausal.

4.1 | Strength and Limitations

A particular strength of our study is the inclusion of a large number of observational and experimental studies, enabling us to perform subgroup analyses of some important risk factors. Furthermore, no publication bias was detected, as confirmed by the funnel plot and Begg's and Egger's tests. Nevertheless, some limitations should be acknowledged. In the subgroup analysis of study design, cohort studies indicated a non-significant association between MD and breast cancer risk, whereas casecontrol studies demonstrated a significant association but with higher heterogenicity. Since observational studies often indicate stronger evidence, this inconsistency can be explained through the possibility of recall bias and challenges in maintaining participant compliance in case-control studies. The Contradictory results in regional subgroup analysis could be attributed to variations in study designs and differences in MD content, which are mainly a cultural matter and need to be standardized in different regions. Future well-designed studies should consider breast cancer risk factors and subgroup analyses based on genetic predispositions, hormone receptor status, histological subtypes, and lifestyle to draw more definite conclusions regarding whether the MD can reduce the risk of various types of breast cancer in women.

5 | Conclusion

This meta-analysis highlights a significant association between adherence to the MD and a 13% reduction in breast cancer risk. The protective effect was particularly evident in postmenopausal women, whereas no significant impact was observed in premenopausal women, suggesting potential differences in the diet's influence based on hormonal and life-stage factors. Geographically, the strongest protective association was found in Asia, with moderate effects in Europe and America. Subgroup analysis indicated a more pronounced association in case-control studies, while cohort studies did not show significant effects, emphasizing the potential influence of study design on detecting the MD's benefits. These findings suggest that the MD may serve as a promising dietary strategy for breast cancer prevention, particularly for postmenopausal women. However, further research is necessary to explore its impact across diverse populations, different study designs, and various geographical regions.

Author Contributions

Mehdi Karimi: conceptualization, investigation, funding acquisition, writing – original draft, methodology, validation, visualization, writing – review and editing, formal analysis, software, project administration, data curation, supervision, resources. Omid Asbaghi: investigation, writing – review and editing, visualization, supervision, software, formal analysis. Farnaz Hooshmand: conceptualization, writing – original draft, writing – review and editing, investigation, funding acquisition, resources. Amir Hossein Aghayan: software, formal analysis, data curation, validation, methodology, writing – original draft, investigation. Amir Ahmad Shariati: data curation, software, resources, writing – original draft, funding acquisition, investigation. Kimia Kazemi: resources, writing – original draft, validation, visualization, investigation. Mahdi Amirpour: investigation, visualization, software, resources. Sayed Hosein Davoodi: supervision, investigation,

methodology, validation, project administration. **Bagher Larijani:** visualization, project administration, supervision, investigation.

Acknowledgments

The authors have nothing to report.

Ethics Statement

The authors have nothing to report.

Consent

The authors have nothing to report.

Conflicts of Interest

The authors declare no conflicts of interest.

Data Availability Statement

The data used in this meta-analysis were extracted from publicly available published studies. All relevant data supporting the findings of this study are included within the article and its supporting materials. For any further inquiries, please contact the corresponding author.

Transparency Statement

The lead author Mehdi Karimi, Sayed Hosein Davoodi, Bagher Larijani affirms that this manuscript is an honest, accurate, and transparent account of the study being reported; that no important aspects of the study have been omitted; and that any discrepancies from the study as planned (and, if relevant, registered) have been explained.

References

- 1. Y. Xu, M. Gong, Y. Wang, Y. Yang, S. Liu, and Q. Zeng, "Global Trends and Forecasts of Breast Cancer Incidence and Deaths," *Scientific Data* 10, no. 1 (2023): 334.
- 2. K. L. Britt, J. Cuzick, and K. A. Phillips, "Key Steps for Effective Breast Cancer Prevention," *Nature Reviews Cancer* 20, no. 8 (2020): 417-436
- 3. G. Grosso, F. Bella, J. Godos, et al., "Possible Role of Diet In Cancer: Systematic Review and Multiple Meta-Analyses of Dietary Patterns, Lifestyle Factors, and Cancer Risk," *Nutrition Reviews* 75, no. 6 (2017): 405–419.
- 4. P. L. Temporelli, "Cardiovascular Prevention: Mediterranean or Low-Fat Diet?," *European Heart Journal Supplements* 25, no. Suppl B (2023): B166–B170.
- 5. T. M. Barber, S. Kabisch, A. F. H. Pfeiffer, and M. O. Weickert, "The Effects of the Mediterranean Diet on Health and Gut Microbiota," *Nutrients* 15, no. 9 (2023): 2150.
- 6. C. Reytor-González, A. K. Zambrano, M. Montalvan, E. Frias-Toral, A. Simancas-Racines, and D. Simancas-Racines, "Adherence to the Mediterranean Diet and Its Association with Gastric Cancer: Health Benefits from a Planeterranean Perspective," *Journal of Translational Medicine* 22, no. 1 (2024): 483.
- 7. A. M. Minihane and K. J. Murphy, "The Health Benefits and Practical Considerations for the Adoption of a Mediterranean-Style Dietary Pattern," *British Journal of Nutrition* 128, no. 7 (2022): 1201–1205.
- 8. M. Tolomeo, L. De Carli, S. Guidi, et al., "The Mediterranean Diet: From the Pyramid to the Circular Model," *Mediterranean Journal of Nutrition and Metabolism* 16, no. Preprint (2023): 257–270.
- 9. R. Divella, A. Daniele, E. Savino, and A. Paradiso, "Anticancer Effects of Nutraceuticals in the Mediterranean Diet: An Epigenetic Diet Model," *Cancer Genomics Proteomics* 17, no. 4 (2020): 335–350.

- 10. A. Da Porto, G. Brosolo, V. Casarsa, et al., "The Pivotal Role of Oleuropein in the Anti-Diabetic Action of the Mediterranean Diet: A Concise Review," *Pharmaceutics* 14, no. 1 (2021): 40.
- 11. A. Castelló, M. Pollán, B. Buijsse, et al., "Spanish Mediterranean Diet and Other Dietary Patterns and Breast Cancer Risk: Case-Control Epigeicam Study," *British Journal of Cancer* 111, no. 7 (2014): 1454–1462.
- 12. F. Turati, G. Carioli, F. Bravi, et al., "Mediterranean Diet and Breast Cancer Risk," *Nutrients* 10, no. 3 (2018): 326.
- 13. E. Toledo, J. Salas-Salvadó, C. Donat-Vargas, et al., "Mediterranean Diet and Invasive Breast Cancer Risk Among Women at High Cardio-vascular Risk in the PREDIMED Trial: A Randomized Clinical Trial," *JAMA Internal Medicine* 175, no. 11 (2015): 1752–1760.
- 14. F. Berrino, "Mediterranean Diet and Its Association With Reduced Invasive Breast Cancer Risk," *JAMA Oncology* 2, no. 4 (2016): 535–536.
- 15. J. P. Higgins, D. G. Altman, P. C. Gøtzsche, et al., "The Cochrane Collaboration's Tool for Assessing Risk of Bias in Randomised Trials," *BMJ* 343 (2011): d5928.
- 16. M. J. Page, J. E. McKenzie, P. M. Bossuyt, et al., "The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews," *BMJ* 372 (2021): n71.
- 17. G. A. Wells, B. Shea, D. O'Connell, et al. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. 2000.
- 18. R. DerSimonian and N. Laird, "Meta-Analysis in Clinical Trials," Controlled Clinical Trials 7, no. 3 (1986): 177–188.
- 19. J. P. T. Higgins and S. G. Thompson, "Quantifying Heterogeneity in a Meta-Analysis," *Statistics in Medicine* 21, no. 11 (2002): 1539–1558.
- 20. G. Chen, S. Leary, J. Niu, R. Perry, and A. Papadaki, "The Role of the Mediterranean Diet in Breast Cancer Survivorship: A Systematic Review and Meta-Analysis of Observational Studies and Randomised Controlled Trials," *Nutrients* 15, no. 9 (2023): 2099.
- 21. G. Porciello, C. Montagnese, A. Crispo, et al., "Mediterranean Diet and Quality of Life in Women Treated for Breast Cancer: A Baseline Analysis of DEDiCa Multicentre Trial," *PLoS One* 15, no. 10 (2020): e0239803.
- 22. H.-H. Tsai, J.-C. Yu, H.-M. Hsu, et al., "The Risk of Breast Cancer Between Western and Mediterranean Dietary Patterns," *Nutrients* 15, no. 9 (2023): 2057.
- 23. S. Virani, S. Afreen, A. Perthiani, et al., "The Impact of Dietary Unsaturated Fat or the Mediterranean Diet on Women Diagnosed With Breast Cancer: A Systematic Review," *Cureus* 16, no. 7 (2024): e65362.
- 24. I. Bilal, A. Chowdhury, J. Davidson, and S. Whitehead, "Phytoestrogens and Prevention of Breast Cancer: The Contentious Debate," *World Journal of Clinical Oncology* 5, no. 4 (2014): 705.
- 25. A. Monllor-Tormos, A. García-Vigara, O. Morgan, et al., "Mediterranean Diet for Cancer Prevention and Survivorship," *Maturitas* 178 (2023): 107841.
- 26. S. Moazzen, K. W. J. van der Sloot, R. J. Vonk, G. H. de Bock, and B. Z. Alizadeh, "Diet Quality and Upper Gastrointestinal Cancers Risk: A Meta-Analysis and Critical Assessment of Evidence Quality," *Nutrients* 12, no. 6 (2020): 1863.
- 27. A. Bahrami, S. Khalesi, E. Makiabadi, S. Alibeyk, M. Hajigholam-Saryazdi, and E. Hejazi, "Adherence to the Mediterranean Diet and the Risk of Lung Cancer: A Systematic Review and Dose-Response Meta-Analysis of Observational Studies," *Nutrition Reviews* 80, no. 5 (2022): 1118–1128.
- 28. H. Du, T. Cao, X. Lu, T. Zhang, B. Luo, and Z. Li, "Mediterranean Diet Patterns in Relation to Lung Cancer Risk: A Meta-Analysis," *Frontiers in Nutrition* 9 (2022): 844382.
- 29. J. Morze, A. Danielewicz, K. Przybyłowicz, H. Zeng, G. Hoffmann, and L. Schwingshackl, "An Updated Systematic Review and Meta-

- Analysis on Adherence to Mediterranean Diet and Risk of Cancer," European Journal of Nutrition 60 (2021): 1561–1586.
- 30. W. J. A. Witlox, F. H. M. van Osch, M. Brinkman, et al., "An Inverse Association Between the Mediterranean Diet and Bladder Cancer Risk: A Pooled Analysis of 13 Cohort Studies," *European Journal of Nutrition* 59 (2020): 287–296.
- 31. Y. Zhong, Y. Zhu, Q. Li, et al., "Association Between Mediterranean Diet Adherence and Colorectal Cancer: A Dose-Response Meta-Analysis," *American Journal of Clinical Nutrition* 111, no. 6 (2020): 1214–1225.
- 32. J. Xie, E. M. Poole, K. L. Terry, et al., "A Prospective Cohort Study of Dietary Indices and Incidence of Epithelial Ovarian Cancer," *Journal of Ovarian Research* 7 (2014): 112.
- 33. Y. Li, B.-Q. Hu, X.-J. Wu, et al., "Adherence to Mediterranean Diet and the Risk of Breast Cancer: A Meta-Analysis. Translational," *Cancer Research* 7, no. 5 (2018), https://tcr.amegroups.org/article/view/24830/html.
- 34. M. Dianatinasab, M. Rezaian, E. HaghighatNezad, et al., "Dietary Patterns and Risk of Invasive Ductal and Lobular Breast Carcinomas: A Systematic Review and Meta-Analysis," *Clinical Breast Cancer* 20, no. 4 (2020): e516–e528.
- 35. S. Männistö, K. Harald, T. Härkänen, et al., "Association Between Overall Diet Quality and Postmenopausal Breast Cancer Risk in Five Finnish Cohort Studies," *Scientific Reports* 11, no. 1 (2021): 16718.
- 36. P. A. van den Brandt and M. Schulpen, "Mediterranean Diet Adherence and Risk of Postmenopausal Breast Cancer: Results of a Cohort Study and Meta-Analysis," *International Journal of Cancer* 140, no. 10 (2017): 2220–2231.
- 37. M. Farsinejad-Marj, S. Talebi, R. Ghiyasvand, and M. Miraghajani, "Adherence to Mediterranean Diet and Risk of Breast Cancer in Premenopausal and Postmenopausal Women," *Archives of Iranian Medicine (AIM)* 18, no. 11 (2015): 786–792, https://pubmed.ncbi.nlm.nih.gov/26497377/.
- 38. K. Al-Shami, S. Awadi, A. Khamees, et al., "Estrogens and the Risk of Breast Cancer: A Narrative Review of Literature," *Heliyon* 9, no. 9 (2023): e20224.
- 39. L. Barrea, G. Pugliese, D. Laudisio, A. Colao, S. Savastano, and G. Muscogiuri, "Mediterranean Diet as Medical Prescription in Menopausal Women With Obesity: A Practical Guide for Nutritionists," *Critical Reviews in Food Science and Nutrition* 61, no. 7 (2021): 1201–1211.
- 40. D. Laudisio, L. Barrea, G. Muscogiuri, G. Annunziata, A. Colao, and S. Savastano, "Breast Cancer Prevention in Premenopausal Women: Role of the Mediterranean Diet and Its Components," *Nutrition Research Reviews* 33, no. 1 (2020): 19–32.
- 41. R. Gutiérrez-Escobar, M. J. Aliaño-González, and E. Cantos-Villar, "Wine Polyphenol Content and Its Influence on Wine Quality and Properties: A Review," *Molecules* 26, no. 3 (2021): 718.
- 42. H. K. Seitz, C. Pelucchi, V. Bagnardi, and C. L. Vecchia, "Epidemiology and Pathophysiology of Alcohol and Breast Cancer: Update 2012," *Alcohol and Alcoholism* 47, no. 3 (2012): 204–212.

Supporting Information

Additional supporting information can be found online in the Supporting Information section.