
sensors

Article

Proactive Congestion Avoidance for Distributed Deep Learning

Minkoo Kang , Gyeongsik Yang * , Yeonho Yoo and Chuck Yoo *

����������
�������

Citation: Kang, M.; Yang, G.; Yoo, Y.;

Yoo, C. Proactive Congestion

Avoidance for Distributed Deep

Learning. Sensors 2021, 21, 174.

https://doi.org/10.3390/s21010174

Received: 9 November 2020

Accepted: 24 December 2020

Published: 29 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Science and Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841,
Korea; mkkang@os.korea.ac.kr (M.K.); yhyoo@os.korea.ac.kr (Y.Y.)
* Correspondence: ksyang@os.korea.ac.kr (G.Y.); chuckyoo@os.korea.ac.kr (C.Y.)

Abstract: This paper presents “Proactive Congestion Notification” (PCN), a congestion-avoidance
technique for distributed deep learning (DDL). DDL is widely used to scale out and accelerate deep
neural network training. In DDL, each worker trains a copy of the deep learning model with different
training inputs and synchronizes the model gradients at the end of each iteration. However, it is well
known that the network communication for synchronizing model parameters is the main bottleneck
in DDL. Our key observation is that the DDL architecture makes each worker generate burst traffic
every iteration, which causes network congestion and in turn degrades the throughput of DDL traffic.
Based on this observation, the key idea behind PCN is to prevent potential congestion by proactively
regulating the switch queue length before DDL burst traffic arrives at the switch, which prepares the
switches for handling incoming DDL bursts. In our evaluation, PCN improves the throughput of
DDL traffic by 72% on average.

Keywords: distributed deep learning; P4; congestion avoidance; deep learning; network congestion;
proactive congestion notification

1. Introduction

Distributed deep learning (DDL), which trains deep learning models using multiple
workers, is gaining attention because it reduces the total training time of deep learning
and is easy to scale. Due to these advantages, DDL is widely used by popular deep
learning frameworks, including TensorFlow [1], MXNet [2], and PyTorch [3]. Although
DDL implementations are different in each framework, the fundamental structure is as
follows. Each worker trains a copy (replica) of a deep learning model using local training
data and synchronizes the model parameters at the end of each training iteration. For
synchronization, there are two common methods: (1) using a parameter server (PS) to
collect and distribute parameters (PS architecture [4]) and (2) using all-to-all communication
among workers (all-reduce architecture [5]). In both cases, workers send gradients and
gather the updated model parameters.

Ideally, DDL should achieve a near-linear performance gain in proportion to the
number of workers. However, because all workers have to synchronize their trained
parameters at the end of each iteration, communications for parameter synchronization
result in severe bottlenecks in DDL training, called “communication overhead” [6]. Thus,
enhancing DDL communication is essential to accelerating the entire DDL training process
because this communication time can occupy up to 92.8% of the total training time [7,8].
Therefore, finding solutions to communication overhead is an important research topic.

In an effort to overcome the communication overhead, we first analyze how each
DDL worker generates traffic for synchronizations (DDL traffic) and measure the traf-
fic characteristics using image classification models (e.g., ResNet [9], AlexNet [10], and
VGG16 [11]) with TensorFlow. In PS architecture, the communication between the workers
and the PS occurs right after the backpropagation of each worker is finished. Specifically,
the worker sends the gradients as its training results to the PS, and the PS sends the
updated model parameters to the workers. This characteristic of PS architecture makes

Sensors 2021, 21, 174. https://doi.org/10.3390/s21010174 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8451-9189
https://orcid.org/0000-0003-4560-2972
https://orcid.org/0000-0002-2636-633X
https://orcid.org/0000-0002-1115-1862
https://doi.org/10.3390/s21010174
https://doi.org/10.3390/s21010174
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21010174
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/1/174?type=check_update&version=3

Sensors 2021, 21, 174 2 of 18

network communication be concentrated in a short period. This communication can im-
pact the performance on two sides in PS architecture: (1) memory input/output (IO)—for
data communication between GPU memory and main memory (including PCIe bottle-
necks); and (2) network—between worker nodes and a PS node. In terms of memory IO,
GPU-vendor-driven solutions, such as hardware-based improvements, are being delivered
(e.g., NVIDIA GPUDirect [12] and NCCL [13]). This paper focuses on network bottlenecks,
which include the performance impact between the workers’ NIC and PS’s NIC, including
the network switches between them.

To observe the network traffic characteristics, we conduct several measurements and
observe that DDL traffic is periodically generated in bursts (Section 2.1). Specifically, the
DDL system in our evaluation generates a large number of packets within very short
intervals (e.g., milliseconds). This type of traffic burstiness is known to be the main cause
of network congestion [14,15]. In other words, DDL burst traffic periodically makes the
network congested, causing throughput degradation, high delay, and packet loss; thereby,
the total training time increases. Because the DDL burst traffic results from the fundamental
nature of the DDL itself, the DDL traffic inevitably causes network congestion. Recently,
efforts [6–8,16–18] have been made to reduce the network communication bottleneck of
DDL by changing the transmission order of deep neural network (DNN) layers to overlap
and hide the communication overhead (Section 2.2). However, to the best of our knowledge,
these efforts have not addressed the network congestion problems caused by the burstiness
of DDL traffic.

In addition, existing congestion control schemes are not enough to address this prob-
lem. In conventional congestion control, the transport protocol (e.g., TCP) detects conges-
tion after the packet is lost at the end host, so it takes longer to react to congestion. To
reduce the reaction time to congestions, explicit congestion notification (ECN) is used to
explicitly notify hosts of congestion based on the switch queue status without a packet
drop [19]. Specifically, when the switch queue length is higher than a certain threshold,
packets are marked with a congestion encountered (CE) bit in the TCP header fields (con-
gestion marking). The host can slow down as soon as a congestion marked packet arrives
at the host. This threshold is initially set by the network operators and usually has a range
of up to 80, depending on the switch specification (Section 3.3). The end host receiving the
congestion-marked packets reduces the TCP congestion window and decreases the sending
rate so that the congestion can be cleared [20]. However, the ECN approach handles net-
work congestion after burst traffic is generated; therefore, the existing congestion control
approaches are inefficient for DDL communication because the congestion is identified
after DDL generates burst traffic. This means that the ECN approach does not help reduce
the congestion caused by the burstiness of DDL traffic.

As a solution, we propose proactive congestion notification (PCN), a novel congestion-
avoidance technique. The key idea behind PCN is based on the following insight: the
bustiness of DDL traffic can be known in advance. This is due to the fact that DDL
consists of iterations for training and the time when DDL traffic is generated is known in
each iteration. With the anticipation of DDL traffic, PCN attempts to regulate the traffic
stacked on a switch in advance, so that network switches do not become congested when
DDL traffic arrives. The PCN mechanism is to modify the congestion marking threshold,
considering that burst traffic occurs periodically (details in Section 3.2).

To realize PCN, we use P4 [21] and programmable switches (Section 2.3) because
traditional switches do not support the operations for PCN. For instance, PCN requires
a way to pass the new threshold (PCN threshold) to the switches. Furthermore, a switch
should be able to change its original threshold (initial threshold) to the new PCN threshold.
However, traditional switches can only parse predefined types of network packets, and
they cannot change the initial threshold. In contrast, using P4, a new type of packet header
can be defined, and the desired bit of the header can be parsed and used in a programmable
switch. Furthermore, new switch operations, such as match-action, can be implemented as
needed for PCN (see details in Section 2.3). Recently, several studies tried to enhance DDL

Sensors 2021, 21, 174 3 of 18

traffic by using an in-network switch for aggregating parameters or flow scheduling [22,23].
However, to the best of our knowledge, this is the first study that proactively handles the
burstiness of DDL traffic via P4. We implement PCN functionalities in P4 and a traffic
generator that simulates the common DDL traffic pattern observed with VGG16, AlexNet,
and ResNet (Section 2.1). Then, we run and evaluate PCN on BMv2 [24], a P4 software
switch. The evaluation results show an average 72% improvement in throughput (Section 4).

The remainder of this paper is organized as follows. Section 2 explains the background,
related work, and motivation. Section 3 details the PCN design, and Section 4 presents
the evaluation results. Section 5 discusses the limitations and future work of PCN. Finally,
Section 6 concludes the paper.

2. Background and Motivation
2.1. Distributed Deep Learning Traffic

In DDL, network communication for parameter synchronization is known to be a
major bottleneck [6–8]. Figure 1 depicts the training steps of the PS architecture, where
the training operations (forward propagation and backpropagation) wait for communi-
cation operation (push and pull), and communication operation generates bursty DDL
traffic. To verify the degree of DDL traffic burstiness, we measure the traffic generated
by workers. We set our DDL environment with PS architecture because it is a popu-
lar approach for parameter synchronization. We use TensorFlow v1.6 without applying
additional DDL optimizations (Section 2.2). The reason is that the optimizations deal
with host-side communication that schedules the tensor transmission. Our paper focuses
on the in-network congestion that is caused by the burst pattern of DL models. Note
that the evaluation results shown here are similar to those of such studies, detailed in
Section 2.2.1. We configure two workers and a single PS that communicate with each other
using gRPC [25] over TCP. We train ResNet [9], AlexNet [10], and VGG16 [11] models
using the ImageNet dataset [26] as the input, with a mini-batch size of 128 for all models.
Stochastic gradient descent is used as an optimizer, and the framework configurations,
i.e., mixed precision, use_fp16, are disabled by default. We use a server with two NVIDIA
V100 GPUs that consist of 640 cores and supports 130 teraflops [27], a single V100 GPU
is pinned to each worker, and NCCL [13] is not supported. We containerize the PS and
workers using Docker [28], which makes experiments easily reproducible.

Training data

Parameter

Server 1

2. 𝑏𝑎𝑐𝑘 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛

5. 𝑃𝑢𝑙𝑙: 𝑊𝑛𝑒𝑤

3. 𝑃𝑢𝑠ℎ: ∆𝑊

1. 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛

Parameter

Server n
…

Worker 1 Worker 2

…
Worker k

4. 𝑈𝑝𝑑𝑎𝑡𝑒: 𝑊𝑛𝑒𝑤 = 𝑊 − 𝛾∆𝑊

Figure 1. Parameter server architecture.

Figure 2 shows the experiment results for communication patterns; the y-axis shows
the network throughput of the traffic generated by one worker over time (we only exhibit

Sensors 2021, 21, 174 4 of 18

the throughput of a single worker because two workers in experiments show almost
identical traffic patterns.). To measure the throughput, we use tcpdump [29] on the virtual
interfaces of containers running workers and collect only DDL traffic from packet traces.
These results (Figure 2a–c) of the three models demonstrate burst-idle traffic patterns in
which a DDL worker stays idle in communication during training and then generates burst
traffic to synchronize model parameters. We denote rapidly-generated packets for model
synchronization as “burst packets,” the time taken to communicate all the burst packets in
a single direction (e.g., push and pull) as the “burst interval,” and the time taken from the
end of pull to the beginning of the next push as the “network-idle period.” Similarly, the
period when GPUs do not train a model is called the "GPU-idle period." Although the size
of the burst packet and the length of the network-idle period differ in the deep learning
models (i.e., ResNet in Figure 2a, AlexNet in Figure 2b, and VGG16 in Figure 2c), the traffic
of all three models shows a similar burst-idle traffic pattern. Also, the results show that the
patterns are repeated until the end of the training.

0 1 2 3 4 5
0

200

400

600

800

1000

Time (s)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

(a) ResNet.

0 1 2 3 4 5
0

500

1000

1500

Time (s)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

(b) AlexNet.

0 1 2 3 4 5
0

500

1000

1500

Time (s)

T
h

ro
u

g
h

p
u

t
(M

B
/s

)

(c) VGG16.

Figure 2. Communication patterns of deep learning models.

Sensors 2021, 21, 174 5 of 18

Prior studies [14,15] (not in DDL) have shown that this kind of bursty traffic rapidly
fills up switch queues and causes network congestion. Because DDL traffic is bursty, it is
also expected to suffer from similar congestion issues, which would result in prolonged
training time.

DDL traffic becomes even more bursty due to the following factors: First, the parame-
ters to be synchronized at each iteration are packaged into packets. Most NICs support
offloading that transmits packets much faster than the original packet generation rate with
the CPU in packet processing. Therefore, from the perspective of network switches, the
burstiness becomes severe due to an accelerated NIC offloading [30]. Second, when multi-
ple workers synchronize parameter in PS architecture, the PS becomes an incast point where
network traffic is concentrated. This traffic concentration worsens network congestion.

2.2. Related Work

In this Section, we review the related work to this study in four categories: (1) host-
side scheduling on DDL traffic (Section 2.2.1), (2) reducing the amount of DDL traffic
(Section 2.2.2), (3) improvement using an in-network switch (Section 2.2.3), and (4) ECN-
based approach (Section 2.2.4). The first three categories are for improving DDL com-
munication while the last, the ECN approach, is for improving network congestion in
datacenters, not for DDL traffic.

2.2.1. Host-Side Scheduling on DDL Traffic

DDL usually does not achieve a linear speed-up relative to the number of workers
due to the communication overhead [6–8]. Specifically, in traditional DDL, each worker
performs forward propagation (fp), backpropagation (bp), and push and pull operations
sequentially (Figure 3a). These communication operations occupy a large portion of the
total training time (communication overhead). Many studies [6–8,16–18] have attempted
to reduce the communication overhead of DDL. Most approaches are based on wait-free
backpropagation (WFBP) [8,18] that pipelines the communication and computation of
DDL workloads (Figure 3b). Rather than waiting for the end of each training iteration,
the communication operation (push and pull) of the i-th layer is executed at the end of
the backpropagation of the i-th layer (bpi). So, communication and computation can be
performed concurrently. In terms of burstiness, this method reduces the network-idle
period (Figure 3b) more than the general PS architecture (Figure 3a), but still, the time
required for fp and the first bp (bp2 in Figure 3b) becomes the network-idle period. Also,
the number of the burst packets is similar because these methods only divide them when
the packets are pushed or pulled by layer. So, the burst characteristic remains.

The communication scheduling approach [6,16,17] further optimizes the WFBP algo-
rithm by scheduling the sending order of each layer in a deep learning model
(Figure 3c). WFBP algorithms synchronize parameters from the n-th to the 0-th layer
because backpropagation calculates layers in reverse order. Therefore, the next iteration
waits until the end of the last push and pull operation because the next iteration starts
from the 0-th layer. The communication scheduling approach is to schedule the synchro-
nization order according to the operation dependency so that layers to be used sooner are
sent earlier. In Figure 3c, we can see that the communication scheduling does not reduce
the number of burst packets because it only changes the order of packets, which implies
that in host NIC’s or network switches, which are the focus of this paper, the burstiness
characteristics remain.

Moreover, although the host-side scheduling approaches divide the burst packets per
layer, the divided layer-wise packets are transmitted between the PS and workers in the
batched manner to reduce the networking overheads of the divided packets. For example,
Tensor Fusion in Horovod [31] sets 64 MB as its default for batching, and ByteScheduler [6]
performs run-time batch-size tuning. This packet batching means that at least 64 MB of
packets are sent at once, which is sufficient for the PCN to perceive them as burst packets.
Furthermore, suppose GPU computation is faster than communication. In that case, the

Sensors 2021, 21, 174 6 of 18

packets will be sent consecutively (e.g., 128 MB and 256 MB), which may cause in-network
congestion. The host-side scheduling has nothing to do with it.

fp0 fp1 fp2

push

pull

GPU bp2 bp1 bp0
Network

bp2 bp1 bp0

push
Burst interval (push)

Network-idle period

GPU-idle period

Burst interval (pull)

(a) General PS architecture.

fp0 fp1 fp2GPU bp2 bp1 bp0

Network

bp2 bp1 bp0

push2 push1 push0

pull2 pull1 pull0

push2 push1 push0

pull2 pull1 pull0

fp0 fp1 fp2 …GPU-idle period

Burst interval (push)

Burst interval (pull) Network-idle period

bp2

(b) Host-side Scheduling on DDL traffic, wait-free backpropagation (WFBP).

GPU bp2 bp1 bp0

Network

GPU-idle
period

Burst interval (push)

Burst interval (pull)

Network-idle
period

fp0 fp1 fp2 bp2 bp1 bp0 fp0 fp1 fp2 bp2 bp1 bp0

2 1 1 0 0 1 2 2 1 1 0 0 1 2 2 1 1 0 …

2 1 1 0 0 1 2 2 1 1 0 0 1 2 2 1 1

0 1 2

0 0 1 2

(c) Host-side Scheduling on DDL traffic, communication scheduling.

fp0 fp1 fp2
push

pull

GPU bp2 bp1 bp0
Network

bp2 bp1 bp0

Burst interval (push)

Network-idle period

GPU-idle period

Burst interval (pull)

push …

(d) Reducing the amount of DDL Traffic, quantization.

Figure 3. Comparison of communication method of a worker in related work.

2.2.2. Reducing the Amount of DDL Traffic

Another approach that previous studies have taken is reducing the amount of DDL
traffic, and the representative methods are quantization [32–34] and selective synchro-
nization [35]. First, quantization is a technique to lower the memory usage of model
parameters by reducing the precision of the floating-point representation of parameters
(e.g., 32 bit to 8 bit) (Figure 3d). They reduce the amount of gradients to be communicated
between workers and PS, thereby reducing communication costs. Model quantization
is a popular approach for artificial intelligence in mobile and Internet-of-things devices
(e.g., TensorFlow Lite [36]).

In addition, Gaia [35] proposed the selective synchronization of gradients, which
omits the push and pull operations of the gradients with trivial values that do not change
or improve the model by much. These two methods successfully decrease the amount
of DDL traffic, but the reduced amount of communication inevitably sacrifices model
accuracy and convergence time. In terms of DDL burst traffic (Figure 3d), the number of
burst packets could be reduced through quantization or selective synchronization, but they
cannot be totally removed. Also, the network-idle period remains similar to the general PS
architecture in Figure 3a.

Sensors 2021, 21, 174 7 of 18

2.2.3. Improvement Using an In-Network Switch

Several studies tried to improve DDL training using in-network switches. First,
Geryon [22] proposed network-level flow scheduling for DDL. Host-side scheduling ap-
proach (Section 2.2.1) has a limitation that its scheduling scope is on each worker; however,
many workers are competing in the network. For example, when packets from other
workers contend the bandwidth resource, host-side scheduling has nothing to do. To
overcome such limitations, Geryon designs in-network flow scheduling, which makes the
parameter of each layer to be synchronized by different flows and gives a two-level priority
(i.e., urgent and not urgent) to each flow. Then, the in-network switch processes the packets
that belong to each flow according to the given priority so that synchronization of more
urgent layers can be done earlier. Geryon can work with host-side scheduling, such as
WFBP, but two-level priorities may not be enough because the number of model layers
increases rapidly, from tens (e.g., VGG16) to hundreds (e.g., ResNet) and more. Also, the
fairness issue always comes with priority.

Another recent study, SwitchML [23], used a programmable switch to aggregate the
gradients from multiple servers. Compared with the general PS architecture
(Figure 4a), SwitchML (Figure 4c) makes the programmable switch perform the role of the
PS. Specifically, when each worker sends its gradients, the switch updates its memory slot
with the gradients (1© in Figure 4c). The switch counts the number of gradients collected
(2©) to check that the gradients from all workers have been received. Then, the updated
model parameters are distributed to all workers by broadcast (3©). This process is similar
to the pull operation of the general PS architecture. Because the switch takes the role of PS,
a packet for push is dropped after the update (4©). In this way, DDL traffic for the push
and pull operations of each worker goes through fewer network hops than the general PS
architecture (e.g., switch to the PS in Figure 4a). Although its limitation is the memory
capacity of the current programmable switch, which is of tens of megabytes, much smaller
than DDL parameters, it is a promising study that uses a programmable switch for DDL
training improvement.

(a) General PS architecture.

(c) SwitchML architecture.

Worker
1

Worker
2

… Worker
n

Parameter server

1. Push

2. Pull

1) Update memory slot
W =W+∆W

2) Counter++
3) Broadcast if ready
4) Drop packet
otherwise

Worker
1

Worker
2

… Worker
n

Programmable switch

1. Push

2. Pull

(b) Network communication of Worker 1 with PS architecture.

(d) Network communication of Worker 1 with SwitchML architecture.

fp0 fp1 fp2GPU bp2 bp1 bp0
Network

bp2 bp1 bp0

Burst interval Network-idle period

push
pull

push

fp0 fp1 fp2bp2 bp1 bp0
Network

bp2 bp1 bp0
push

pull
push

Burst interval Network-idle period

GPU

Figure 4. Comparison between PS and SwitchML architectures.

In terms of the DDL traffic pattern (Figure 4b,d), the SwitchML architecture still
shows burstiness. SwitchML improves the time to finish push and pull operations using
an in-network switch for parameter aggregations. However, the amount of gradients

Sensors 2021, 21, 174 8 of 18

to synchronize does not change. Therefore, the network switch still suffers a packet-
burst problem.

One thing to note is that SwitchML mechanism could worsen the DDL traffic bursti-
ness. A SwitchML should parse the packet to extract gradients to be aggregated from
each push packet, but today’s programmable switches parse only up to a certain number
of bytes in each packet (e.g., 128 MB). Considering an Ethernet frame whose maximum
transmission unit (MTU) is 1518 bytes, including headers and each gradient element (the
model gradient is expressed in a matrix form and each number that constitutes the matrix is
a gradient element.), are 32-bit floating point value, the MTU-size packet can include up to
366 elements as discussed in SwitchML paper [23]; however, packets in SwitchML contain
only 32 elements per packet. This means that to transmit the same number of gradients,
SwitchML requires a number of packets 11.4 times higher than the general PS architecture,
thus causing the switch’s queue to be filled quickly and worsening the burstiness. As the
authors of the SwitchML pointed out, the packet loss handling and congestion control for
DDL traffic should be solved. We believe PCN could potentially relieve packet losses and
network congestion using a programmable switch.

2.2.4. ECN-Based Approach

Apart from studies to improve DDL communication, existing studies handle burst
traffic for datacenters [14,15]. They mostly use explicit congestion notification (ECN). When
the switch detects that its queue is nearly full, burst traffic is dropped or suffers a large
delay. The detection of such congestion is done by a fixed threshold value of the switch
queue. If the enqueued packets exceed the threshold, the switch sets a congestion bit
(congestion mark) in the IP header. The receiver of the ECN marked packet acknowledges
the sender by marking an ECN-echo flag in the TCP header so that the sender takes note of
the existence of congestion and reduces its sending rate.

Datacenter TCP (DCTCP) [14] is an improved transport layer protocol that notifies the
extent of congestion using ECN. DCTCP senders maintain estimates of the packets marked
and adjust their congestion windows accordingly. While ECN marks congestion based on
queue length at packet enqueue, ECN* [15] improves burst tolerance without modifying
the TCP congestion control by simply marking congestion using queue length at packet
dequeue. Because congestion changes while packets are buffered in a queue, congestion
marking at dequeue can deliver a more accurate congestion state. These two approaches
improve latency and throughput.

While ECN-based approaches for datacenters can effectively mitigate congestion and
reduce latency, DDL workloads and their burstiness are not within its scope. Because
the general traffic in datacenters is unpredictable in its burstiness, these approaches work
reactively. This means that handling the congestion is done after the congestion takes
place, so the network is not ready for the burst traffic. In contrast, since DDL traffic shows
periodical burstiness, we propose PCN that prepares for burst traffic proactively.

2.2.5. Novelty of PCN

The novelties of PCN with regard to existing studies are as follows. Host-side schedul-
ing approach reduces the communication overhead of DDL traffic, but congestion issues
remain. Reducing the amount of DDL traffic improves congestion and burstiness issues
in some degrees because the total amount of generated traffic is reduced but sacrificing
model accuracy may not be acceptable to many researchers. For in-network flow schedul-
ing, Geryon has only two priority levels, so fine-grained scheduling is not possible yet.
SwitchML achieves in-network aggregation, yet it recognizes that lack of in-network con-
gestion control can slow down overall performance. Thus, PCN, which attempts to prevent
congestion in-network, can help the congestion in existing studies. To the best of our
knowledge, PCN is the first work that proactively solves network congestion problems
caused by the burstiness of DDL traffic.

Sensors 2021, 21, 174 9 of 18

2.3. P4 and Switch Programmability

P4 [21] is a high-level language designed to program packet processors, especially
for programmable switches. Figure 5 shows protocol independent switch architecture
(PISA) [37] and its programmable parts. First, a switch parses the packet header (e.g., TCP,
IP, and Ethernet) when a new packet is received (Packet In). After using the parsed header
fields and match-action tables, the switch determines the action to apply to the packet
(e.g., set an outgoing port). Buffers exist for each outgoing port (multiple buffers may
exist on each port for priority queueing), and packets are queued in a buffer based on an
outgoing port determined by an ingress pipeline. Then, packets are processed in an egress
pipeline, concatenated with parsed headers to the packet at the deparser and, finally, sent
out to an outgoing port. A key aspect of P4 is that it enables network operators to change
how a switch processes packets (“programmable” in Figure 5).

BufferParser Deparser

Match-Action
Tables

Match-Action
Tables

Packet
In

Packet
Out

Programmable Programmable

Figure 5. P4 architecture.

The goal of PCN is to regulate the switch’s queue length to handle the burst packets.
To do that, PCN requires switches to parse a new type of packet header, update their
thresholds according to the new packet header fields and apply thresholds to queues that
share the same outgoing port with burst packets. This is not possible with traditional
switches, including SDN switches [21], because they only support a fixed set of functions
that cannot be modified. Hence, we use P4 to implement custom packet processing logics
on programmable switches. When using P4, we define the PCN-START packet that delivers
the PCN threshold in header fields and implement a switch operation that changes the
initial threshold to the PCN threshold when the switch receives the PCN-START packet.

3. Design

PCN is a congestion avoidance technique that utilizes P4 programmable switches.
PCN lowers queue length within a switch before burst traffic arrives (details in Section 3.2).
To make a switch prepare for the burst packets, PCN notifies the network switches that the
burst packets will be generated. We explain PCN operations as follows. First, the commu-
nication sequence for PCN is explained (Section 3.1). Then, the detailed operations of the
network switch are described (Section 3.2). In addition, the policy for deciding the PCN
threshold is explained (Section 3.3).

3.1. Communication Sequence between Worker and PS

In PS architecture, each worker performs backpropagation (a© in Figure 6) on the given
mini-batch inputs. At the end of each backpropagation, the worker sends and receives
burst traffic with PS (b©). In PCN, the workers send the PCN-START packet to the PS
before sending burst traffic (1© in Figure 6). The PCN-START packet is sent to PS, not to a
specific switch, because multiple switches may exist in the path between the worker and
PS. By sending one PCN-START packet to PS, the PCN switches between the worker and
PS apply the PCN threshold; hence, we can avoid sending multiple PCN-START packets
individually to each PCN switch. In addition, workers do not know the network addresses
of PCN switches directly, so it is efficient to make the workers send PCN-START to PS
rather than to PCN switches.

Sensors 2021, 21, 174 10 of 18

Then, the PCN-START packet traverses all the network switches between the worker
and the PS, so the switches are notified of the upcoming burst traffic. The PCN-START
packet contains a PCN threshold, a new queue threshold of a switch for the burst traffic.
The PCN threshold is explicitly determined by the DDL operator (executor of workers and
PS) so the PCN thresholds sent by the workers are identical. We explain how to decide the
threshold value in Section 3.3.

Burst tolerant

ⓐ Backpropagation

ⓑ Synchronization

ⓒ Forward propagation

① Send PCN-START

③ Receive ACK

④ Push operations

⑦ Pull operations

② Send ACK

Gather parameters

Update parameters

Gather parameters

⑤ Wait for other workers

⑥ Send new parameters

Worker Parameter server

PCN-ACK

PCN-START

Burst traffic

Burst traffic

PCN switch prepared

DDL training operations PCN operations Burst traffic operations Network traffic

PCN switch

R
epeat the iterations

Figure 6. Communication between worker and PS.

When receiving the PCN-START, the PS sends ACK for the PCN-START packet (2©) so
that the worker starts to generate the burst packets containing model gradients of the deep
learning models (4©). PCN switches have a time window of one round-trip-time (RTT) for
the PCN-START packet and its ACK packet to get prepared for the burst traffic. When
gradients from every worker are received (5©), the PS updates the model parameters and
broadcasts the updated values to all workers (6©, 7©).

We design the PCN-START packet to use Type-of-Service (TOS) fields in the IPv4
header to carry information needed for PCN (Figure 7). TOS field consists of 6 bits of DSCP
fields and 2 bits of ECN fields. We use the first 2 bits of DSCP field as the PCN-START flag
(1 bit) and ACK flag (1 bit), and the other 4 bits for expressing the PCN threshold. Since
most switches’ thresholds are usually multiple of 5 and lower than 80 [14,15], we enter
a PCN threshold divided by five into the remaining four bits. If DSCP is used by other
protocols, we can use IP options fields instead.

IP
version

IP Header
Length

TOS …
Source

Address
Destination

Address

IPv4 header

PCN-
START flag

ACK flag
PCN

threshold
ECN

1 bit 4 bit1 bit 2 bit

Figure 7. PCN-START packet header.

Sensors 2021, 21, 174 11 of 18

3.2. Switch Operation for PCN

In this section, we explain the switch operations for PCN (Figure 8) in three steps:
(1) applying the PCN threshold, (2) queue reservation, and (3) threshold recovery. We also
discuss how the switch queue state changes in each step.

• Applying the PCN threshold: When a worker sends the PCN-START packet (T0 in
Figure 8), the switch parses the PCN-START header and obtains the PCN threshold.
Then, the switch saves the PCN threshold in the switch register and applies the PCN
threshold for its queue (T1), instead of the current queue threshold (initial threshold).
The PCN threshold should be smaller than the initial threshold in order to prepare for
the burst DDL traffic (details in Section 3.3). In case when multiple workers send the
PCN-START packets at the same time, the switch manages the counter, increases the
counter every time the PCN-START packet arrives, and decreases the counter every
time the burst DDL traffic arrives. The PCN threshold is applied when the counter is
non-zero.

• Queue reservation: Queue length tends to fluctuate around the threshold value.
For example, if the initial threshold is 40, the queue length usually fluctuates from 25
to 50 in our environment, showing a saw-tooth pattern because of host-side congestion
control. In this situation, when the PCN threshold is applied (for example, 10),
packets enqueued at the switch (from 10th to the last packets) are considered as the
ones that cause network congestion. So, since the initial threshold is larger than
the PCN threshold, a number of packets (higher than PCN threshold) occupy the
switch’s queue when the PCN threshold is applied. Incoming packets are then marked
as congested, and the packets’ senders get notified of congestion. So, the senders
slow down their packet sending rates according to the TCP/IP protocol (T2). Thus,
the switch’s queue length becomes lower than the PCN threshold (T3), which makes
the switch more burst tolerable.

• Threshold recovery: The time between T0 and T3 takes about one RTT because the
queue length gets changed to the PCN threshold when senders change their sending
rates. So, in T4, workers need to start the burst DDL traffic after one RTT from sending
the PCN-START packet so that the switch is ready for the burstiness. This scheme
is achieved by workers that generate DDL traffic after receiving an ACK packet for
the PCN-START packet from the PS. Then, the DDL traffic is processed in the switch.
Once the DDL traffic arrives at the switch, in T5, PCN restores the threshold back
to the initial threshold in order to recover the sending rates. While DDL traffic is
being processed, the background traffic also recovers its sending rate. This may cause
another congestion to the DDL traffic. However, because the DDL traffic is already
being queued earlier than the background traffic, and the background traffic senders
increase sending rates slowly (according to TCP additive increase), the chance for this
congestion is low. If it happens, the switch can use the ECN approach to slow down
the sender of background traffic. The rationale of T5 is to minimize the throughput
reduction, and the throughput reduction will be measured in Section 4.4.

3.3. PCN Threshold Policy

A high threshold leads to high throughput for long flow, whereas a lower threshold
leads to low latency and high burst tolerance for DDL traffic. PCN temporarily reduces the
threshold to achieve burst tolerance and immediately recovers the threshold after burst
traffic arrival to achieve high throughput. However, setting the threshold too low can lead
to poor network throughput. A prior study [4] formulated the lower bound of the ECN
threshold without throughput degradation, as defined in Equation (1). It is widely known
that N (the number of concurrent long flows) in Equation (1) is challenging to determine
exactly. Thus, prior studies [14,15] instead use an average number (which is approximately
three) of long TCP connections on each bottleneck link from datacenter packet traces. Thus,
we also set N to three when setting the ECN threshold. Also, using metrics, such as RTT,
MTU, and link capacity (C), measured in an evaluation environment (Section 4), we find

Sensors 2021, 21, 174 12 of 18

RTT×C√
N×MTU

= 37. Therefore, we set our initial threshold (hinitial) as 40 (ECN threshold is
usually a multiple of 5).

hinitial >
RTT × C√
N ×MTU

, (1)

Following this, we set the PCN threshold (hPCN) using hinitial and the appropriate
ratio (k), as in Equation (2). This ratio determines the amount of switch queue reservation.
For example, if we set k as 1/2 given RTT×C√

N×MTU
= 37, we obtain hPCN of 20, and the switch

queue length reduces until it reaches 20. If k is set to 1, then applying PCN will not change
anything, as hinitial = hPCN . When the value of k decreases, more space in the queue is
reserved for the burst DDL packets; in short, the smaller ratio leads to a smaller PCN
threshold and high burst tolerance. We empirically choose 1/4 for k in the evaluation,
considering the degree of burst tolerance needed; thus, hPCN is set to 10, and the reserved
switch queue size becomes (queue capacity − 10).

hPCN =
RTT × C√
N ×MTU

× k, (2)

T2: Other traffic senders notice congestion

and reduce sending rate

T0: Worker sends PCN-START

T1: Switch modifies initial threshold to PCN threshold

T5: Switch recovers initial threshold

T3: Queue length becomes lower than PCN threshold

T4: Worker generates DDL traffic

…

…

Mark congestion PCN-START DDL TrafficThreshold

40

10

10

10

40

10
Queue reservation

Applying PCN threshold

Threshold recovery

Figure 8. Switch operation for PCN.

4. Evaluation

In this section, we show the evaluation results of our proof-of-concept implementation.
The PCN mechanism is implemented in two parts: (1) DDL traffic generator that sends
PCN-START and simulates DDL traffic, and (2) P4 switch that implements PCN.

We implement PCN in P4 and evaluate using BMv2 [24], a P4 software switch. We set
a tree network topology of a single root and two leaf switches, a frequently used topology.
As discussed in Section 2.1 and Figure 2, DDL traffic differs in its amount and interval for
each model, but the burst-idle traffic pattern is common among all the models. Therefore,
instead of using individual models, we implement a DDL traffic generator called DDLgen
that simulates this burst-idle traffic pattern generated by a worker, based on tcpreplay [38]
and iperf3 [39]. As a baseline, DDLgen generates burst traffic using iperf3 burst mode
and stays idle for the given network-idle period. DDLgen repeats this pattern similar
to the burst-interval traffic pattern observed (Section 2.1). To evaluate the DDL traffic
performance with PCN design, we add PCN operations to DDLgen, which means that

Sensors 2021, 21, 174 13 of 18

DDLgen first sends the PCN-START packet, waits for the ACK packet, and repeats the
burst-interval pattern as explained in Figure 6.

We run DDLgen with and without PCN, measure performance improvement, and
monitor the switch queue status. For each leaf switch, three hosts generate background
traffic (in datacenters, the number of concurrent long TCP connections to a server is
generally two to three [3].) for 100 s using iperf3. We run DDLgen to generate DDL traffic
after 20 s of background traffic in order to make the background traffic stable (because of
TCP’s congestion control (e.g., slow start, congestion window), TCP throughput fluctuates
at the beginning and becomes stable later. The background traffic becomes stabilized after
20 s in our environment). DDLgen simulates six iterations of burst-idle traffic patterns with
a 7 s network-idle period. We use initial and PCN thresholds of 40 and 10, respectively,
following the policy stated in Section 3.3. Our switch in evaluations has a queue with a
length of 60, so the queue length ranges from 0 to 59.

PCN is the first approach to improve the network IO bottleneck by using programmable
switches. Whereas existing studies (Section 2.2) deal with optimizations on hosts (i.e., work-
ers and PS), PCN is implemented in network switches; thus, the techniques are comple-
mentary to each other. In other words, it is difficult to compare the existing studies with
PCN (for queueing latency or queue length metrics). Thus, we evaluate PCN when it is
turned on or off.

4.1. Evaluation Metrics

We conduct evaluations on the three key categories: (1) queue length change (Section 4.2),
(2) performance improvement (Section 4.3), and (3) overheads (Section 4.4). The detailed
measurement of the three categories are as follows:

• Queue length change: We measure the queue length of a switch as the preparedness
for the burst packets of PCN. Two measurements, start queue length and maximum
queue length, are measured. Start queue length represents the queue length occupied
by the background packets before the DDL packets arrive at the switch, which shows
the switch queue status right before the burst packets of the iteration arrive. The max-
imum queue length is the highest switch queue length during each burst interval.

• Performance improvement: To evaluate the performance improvement by PCN,
we use three metrics–average throughput, burst completion time, and queueing
latency. The average throughput is the amount of transmitted network traffic, and the
burst completion time refers to the time taken for network communication of burst
packets to be completed. Also, queueing latency is per-packet latency in a network
switch caused by the existing packets in the switch queue. These three metrics are
measured and compared with and without running PCN. To measure the queueing
latency, we implement in-band telemetry [40] that makes the packets contain custom
network statistics, such as queueing latency per switch.

• Overheads: PCN makes the switch available for burst packets by reducing its queue
threshold. Although this scheme is effective on DDL packets, it could reduce the
throughput of other background traffic. So, we measure the decreased throughput of
background traffic as an overhead of PCN.

4.2. Queue Length Change

To see the improved burst tolerance with PCN, we evaluate the queue length change by
measuring (1) start queue length and (2) maximum queue length. We repeat the experiment
more than 20 times to gain reliable and reasonable results. Figure 9a shows the distribution
of the queue lengths as box plots which present the median values at their middle and
the minimum and maximum values using the bars. Also, Figure 9b and c each show the
specific pattern of start queue length and maximum queue length, respectively, during six
burst iterations generated by DDLgen.

First, without PCN, the start queue length when the first packet of a burst is enqueued
ranges from 26 to 48. On the other hand, PCN ranges from 1 to 8. On average, the start

Sensors 2021, 21, 174 14 of 18

queue length is 35 without PCN and 5 with PCN. With a queue capacity of 60, a switch
queue without PCN has space for 25 incoming packets, while a switch queue with PCN
has space for 55 incoming packets. Therefore, PCN enables the switch to handle twice as
many burst packets.

In terms of the maximum queue length, the queue lengths without PCN range from
52 to 59, while the ones with PCN range from 42 to 47. On average, without PCN case
shows 54.8 of queue length, and frequently reaches up to 59, which means that the switch
queue becomes full of packets. This indicates that incoming burst packets will be dropped
without PCN. With PCN, the maximum queue length is 44.1 on average, and queue length
does not go over 50, indicating that it neither causes packet loss nor congestion.

Start
queue
length

Maximum
queue
length

0

20

40

60

Q
ue

ue
le

ng
th

ra
ng

e

Without PCN With PCN

(a) Queue length analysis.

1 2 3 4 5 6 7
0

20

40

60

Burst iteration

S
ta

rt
qu

eu
e

le
ng

th

Without PCN With PCN

(b) Start queue length pattern.

1 2 3 4 5 6 7
0

10

20

30

40

50

60

Burst iteration
M

ax
im

um
qu

eu
e

le
ng

th

Without PCN With PCN

(c) Maximum queue length pattern.

Figure 9. Burst tolerance.

4.3. Performance Improvement

Firstly, Figure 10a,b show the average burst completion time and the throughput
of DDL traffic, respectively, when the PCN is on or off. The results indicate that PCN
reduces the burst completion time by 39% (Figure 10a) and improves throughput by 72%
(Figure 10b). Such improvements result from PCN that reserves a portion of a packet
queue for burst packets of DDL workload in advance; so with PCN, DDL traffic’s sending
rate increases properly with a spacious switch queue. On the contrary, without PCN,
DDL traffic suffers network congestion due to the deficient queue space. In addition, we
measure the per-packet queueing latency within a switch (Figure 10c). With PCN, the
average queueing latency of packets processed during burst intervals is reduced by 13%.
These improvements show that PCN appropriately mitigates the congestion caused by
DDL traffic.

4.4. Overheads

Here, we investigate the overhead of the PCN design. We see the throughput of
the background traffic because PCN reduces all traffic sending rates before the DDL
burst impacts the background traffic throughput. In our results, the background traffic
throughput decreases by approximately 5.7%. PCN does not preempt the background
traffic but reduces the sending rate of the switch while the PCN threshold is applied. Note
that this overhead is transient and disappears by the PCN threshold recovery. As the
overhead of PCN, PCN-START is added in ordinary PS architecture for delivering the PCN
threshold to the switches. The amount of traffic increased by PCN-START is a single packet
without any payload (approximately 64 bytes), which means the overhead is negligible. In
addition, to identify the PCN-START packet and deliver the PCN threshold, 6 bits of DSCP
fields in the IP header are used.

Sensors 2021, 21, 174 15 of 18

Without
PCN

With
PCN

0

1

2

3

4

B
u

rs
t

co
m

p
le

tio
n

tim
e

(s
)

(a) Burst completion time.

Without
PCN

With
PCN

0

1

2

3

4

5

A
ve

ra
ge

th
ro

ug
hp

ut
(M

bp
s)

(b) Average throughput.

Without
PCN

With
PCN

0

1

2

3

Q
ue

ue
in

g
de

la
y

(m
s)

(c) Queueing latency.

Figure 10. Performance improvement.

5. Discussion
5.1. Estimation of the Total DDL Training Time

In this paper, we show that PCN improves throughput, queueing latency, and queue
length changes in DDL traffic. Now the following question remains: how the improvement
helps the total DDL training time. Here we estimate the total training time of the DDL
workload under the general PS architecture. Because network communication is only a
part of DDL training, we estimate by factoring the degree of improvement by PCN in the
total DDL training time. We formulate our estimation with the ratio of throughput without
PCN (tw/oPCN) to throughput with PCN (twPCN), as expressed by Equation (3) where ρ is
the portion of communication time.

ρ× (1− tw/oPCN
twPCN

), (3)

According to prior studies [7], ResNet32, AlexNet, VGG16, and Inception-v3 have ρ
of 47.8%, 85.2%, 92.8%, and 64.5%, respectively. Applying these values to Equation (3), the
estimated improvements in the total DDL training time of ResNet32, AlexNet, VGG16, and
Inception-v3 are 20%, 35.6%, 38.8%, and 27.0%, respectively.

5.2. The Impact of Environment Changes on PCN

In this paper, we evaluate (Section 4) and estimate (Section 5.1) the performance of
PCN under the value ρ from another paper [7]. One may wonder whether the results
depend on the computing environment, such as mini-batch size, GPU version, network
bandwidth, and network topology. Although most of the evaluation setting factors could
change indicators like ρ, we believe that the effectiveness of PCN can still stand due
to the following reasons. First, in terms of the mini-batch size, the large mini-batch
size prolongs the computing time (network-idle period). However, the total number of
parameters to synchronize does not change. Thus, the burst characteristics of the traffic
remain. Second, similar to the mini-batch, the GPU version affects the training time, not
the traffic characteristics.

Third, network bandwidth determines network congestion. Suppose that the network
links between the workers and PS support up to 100 Gbps, which is common in datacenters
nowadays. Considering that the worker consumes 10 Gbps of network traffic for DDL
communications (shown in the evaluation of Figure 6), and up to 256 workers (with 2048
GPUs in total) can operate in a large-scale DDL environment [41], the switches between
the workers and PS suffer from network congestion. Thus, PCN’s approach, which avoids
congestion caused by DDL burst traffic, is still practical when the network bandwidth

Sensors 2021, 21, 174 16 of 18

becomes higher than the one used in our evaluations. In addition, PCN works regardless
of the type of network topology because PCN solves the congestion caused in a specific
port within a switch. In other words, irrespective of the topology, PCN is valid in switch
queues with congestion caused by traffic burstiness.

5.3. Multi-Tenancy

When multi-tenants exist, where many users run their own DDL workloads on a
shared infrastructure (e.g., cloud computing [42–45]), an issue that PCN has to solve is how
to handle the multiple PCN thresholds of different tenants because a switch port’s queue
can operate only under a single threshold [19]. This issue can be categorized into two
scenarios: (1) the PCN switch’s port is not shared (Figure 11a), and (2) the PCN switch’s
port is shared (Figure 11b). For the not-shared scenario, each switch port is associated
with one tenant, so the switch port is applied by a PCN threshold. So, this scenario is not
an issue for PCN. On the other hand, if tenants share a port at the same time (Port 2 in
Figure 11b), PCN needs another mechanism because a port can only work with a single
PCN threshold. We leave this as future research.

Port 1 Port 2

Port 3Port 4

Port 1 Port 2

Port 3Port 4

Tenant A
Tenant B

(b) Tenants sharing port.(a) Tenants not sharing port.

Figure 11. Multi-tenant scenarios.

6. Conclusions

This paper presents a new technique called PCN that prevents network congestion
caused by DDL burst traffic. PCN proactively makes room in the switch queue so that
the network can handle the burst DDL traffic. In our evaluation, PCN improves the
burst throughput by 72%, and the switch can handle two times more DDL packets on
average without causing network congestion. As the future directions, we believe that
the integration with other DDL optimizations (e.g., Horovod and ByteScheduler) would
be essential. Second, considerations about multi-tenancy, which has been explained in
Section 5.3, should be addressed. Third, wide-scale evaluations on DDL infrastructures
(e.g., GPU cluster) would be helpful for the validation.

Author Contributions: Conceptualization, M.K. and G.Y.; methodology, M.K. and Y.Y.; software,
M.K.; investigation, M.K., Y.Y. and G.Y.; writing—original draft, M.K. and G.Y.; writing—review &
editing, M.K., G.Y., Y.Y. and C.Y.; funding acquisition, C.Y.; supervision, C.Y. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was partly supported by Institute of Information & Communications Technology
Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2015-0-00280, (SW
Starlab) Next generation cloud infra-software toward the guarantee of performance and security
SLA). This research was also supported by Next Generation Engineering Researcher Program of
National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT (No. NRF-
2019H1D8A2105513).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: We appreciate the anonymous reviewers.

Conflicts of Interest: The authors declare no conflict of interest.

Sensors 2021, 21, 174 17 of 18

References
1. Abadi, M.; Barham, P.; Chen, J.; Chen, Z.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.; Irving, G.; Isard, M.; et al. TensorFlow: A

System for Large-Scale Machine Learning. In Proceedings of the 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), Savannah, GA, USA, 2–4 November 2016; pp. 265–283.

2. Chen, T.; Li, M.; Li, Y.; Lin, M.; Wang, N.; Wang, M.; Xiao, T.; Xu, B.; Zhang, C.; Zhang, Z. MXNet: A Flexible and Efficient
Machine Learning Library for Heterogeneous Distributed Systems. arXiv 2015, arXiv:1512.01274.

3. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.; et al. Pytorch:
An imperative style, high-performance deep learning library. In Proceedings of the Neural Information Processing Systems,
Vancouver, BC, Canada, 8–14 December 2019; pp. 8026–8037.

4. Li, M.; Andersen, D.G.; Park, J.W.; Smola, A.J.; Ahmed, A.; Josifovski, V.; Long, J.; Shekita, E.J.; Su, B.Y. Scaling distributed
machine learning with the parameter server. In Proceedings of the 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14), Broomfield, CO, USA, 6–8 October 2014; pp. 583–598.

5. Bao, Y.; Peng, Y.; Chen, Y.; Wu, C. Preemptive all-reduce scheduling for expediting distributed dnn training. In Proceedings of
the IEEE INFOCOM 2020-IEEE Conference on Computer Communications, Toronto, ON, Canada, 6–9 July 2020; pp. 626–635.

6. Peng, Y.; Zhu, Y.; Chen, Y.; Bao, Y.; Yi, B.; Lan, C.; Wu, C.; Guo, C. A generic communication scheduler for distributed dnn
training acceleration. In Proceedings of the 27th ACM Symposium on Operating Systems Principles, Huntsville, ON, Canada,
27–30 October 2019; pp. 16–29.

7. Chen, C.; Wang, W.; Li, B. Round-robin synchronization: Mitigating communication bottlenecks in parameter servers. In
Proceedings of the IEEE INFOCOM 2019-IEEE Conference on Computer Communications, Paris, France, 29 April–2 May 2019;
pp. 532–540.

8. Zhang, H.; Zheng, Z.; Xu, S.; Dai, W.; Ho, Q.; Liang, X.; Hu, Z.; Wei, J.; Xie, P.; Xing, E.P. Poseidon: An efficient communication
architecture for distributed deep learning on GPU clusters. In Proceedings of the 2017 USENIX Annual Technical Conference
(USENIX ATC 17), Santa Clara, CA, USA, 12–14 July 2017; pp. 181–193.

9. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

10. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,
60, 84–90. [CrossRef]

11. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
12. Rossetti, D.; Team, S. GPUDIRECT: Integrating the GPU with a Network Interface. In Proceedings of the GPU Technology

Conference, San Jose, CA, USA, 17–20 March 2015.
13. NVIDIA Collective Communication Library (NCCL) Documentation. Available online: https://docs.nvidia.com/deeplearning/

sdk/nccl-developer-guide/docs/index.html (accessed on 28 October 2020).
14. Alizadeh, M.; Greenberg, A.; Maltz, D.A.; Padhye, J.; Patel, P.; Prabhakar, B.; Sengupta, S.; Sridharan, M. Data center tcp (dctcp).

In Proceedings of the ACM SIGCOMM 2010 Conference, New Delhi, India, 30 August–3 September 2010; pp. 63–74.
15. Wu, H.; Ju, J.; Lu, G.; Guo, C.; Xiong, Y.; Zhang, Y. Tuning ECN for data center networks. In Proceedings of the 8th International

Conference on Emerging Networking Experiments and Technologies, Nice, France, 10–13 December 2012; pp. 25–36.
16. Hashemi, S.H.; Abdu Jyothi, S.; Campbell, R. Tictac: Accelerating distributed deep learning with communication scheduling.

Proc. Mach. Learn. Syst. 2019, 1, 418–430.
17. Jayarajan, A.; Wei, J.; Gibson, G.; Fedorova, A.; Pekhimenko, G. Priority-based parameter propagation for distributed DNN

training. arXiv 2019, arXiv:1905.03960.
18. Awan, A.A.; Hamidouche, K.; Hashmi, J.M.; Panda, D.K. S-caffe: Co-designing mpi runtimes and caffe for scalable deep

learning on modern gpu clusters. In Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, Austin, TX, USA, 4–8 February 2017; pp. 193–205.

19. Floyd, S.; Ramakrishnan, D.K.K.; Black, D.L. The Addition of Explicit Congestion Notification (ECN) to IP. RFC 3168. 2001.
Available online: https://tools.ietf.org/html/rfc3168 (accessed on 20 December 2020).

20. Paxson, D.V.; Allman, M.; Stevens, W.R. RFC 2581–TCP Congestion Control. Available online: https://tools.ietf.org/html/rfc2581
(accessed on 20 December 2020).

21. Bosshart, P.; Daly, D.; Gibb, G.; Izzard, M.; McKeown, N.; Rexford, J.; Schlesinger, C.; Talayco, D.; Vahdat, A.; Varghese, G.; et al.
P4: Programming protocol-independent packet processors. ACM SIGCOMM Comput. Commun. Rev. 2014, 44, 87–95. [CrossRef]

22. Wang, S.; Li, D.; Geng, J. Geryon: Accelerating distributed cnn training by network-level flow scheduling. In Proceedings of the
IEEE INFOCOM 2020-IEEE Conference on Computer Communications, Toronto, ON, Canada, 6–9 July 2020; pp. 1678–1687.

23. Sapio, A.; Canini, M.; Ho, C.Y.; Nelson, J.; Kalnis, P.; Kim, C.; Krishnamurthy, A.; Moshref, M.; Ports, D.R.; Richtárik, P. Scaling
distributed machine learning with in-network aggregation. arXiv 2019, arXiv:1903.06701.

24. Consortium, P.L. Behavioral Model (bmv2). Available online: https://github.com/p4lang/behavioral-model (accessed on
28 October 2020).

25. gRPC, A High Performance, Open-Source Universal RPC Framework. Available online: https://grpc.io/ (accessed on
2 November 2020).

26. Jia, D.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Li, F.-F. Imagenet: A large-scale hierarchical image database. In Proceedings of the
2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255.

http://dx.doi.org/10.1145/3065386
https://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/docs/index.html
https://docs.nvidia.com/deeplearning/sdk/nccl-developer-guide/docs/index.html
https://tools.ietf.org/html/rfc3168
https://tools.ietf.org/html/rfc2581
http://dx.doi.org/10.1145/2656877.2656890
https://github. com/p4lang/behavioral-model
https://grpc.io/

Sensors 2021, 21, 174 18 of 18

27. NVIDIA V100. Available online: https://www.nvidia.com/en-us/data-center/v100/ (accessed on 9 September March 2020).
28. Boettiger, C. An introduction to Docker for reproducible research. ACM SIGOPS Oper. Syst. Rev. 2015, 49, 71–79. [CrossRef]
29. Jacobson, V.; Leres, C.; McCanne, S. The Tcpdump Manual Page; Lawrence Berkeley Laboratory: Berkeley, CA, USA, 1989; Volume

143, p. 117.
30. Kapoor, R.; Snoeren, A.C.; Voelker, G.M.; Porter, G. Bullet trains: A study of NIC burst behavior at microsecond timescales. In

Proceedings of the Ninth ACM Conference on Emerging Networking Experiments and Technologies, Santa Barbara, CA, USA,
9–12 December 2013; pp. 133–138.

31. Sergeev, A.; Del Balso, M. Horovod: Fast and easy distributed deep learning in TensorFlow. arXiv 2018, arXiv:1802.05799.
32. Seide, F.; Fu, H.; Droppo, J.; Li, G.; Yu, D. 1-bit stochastic gradient descent and its application to data-parallel distributed training

of speech dnns. In Proceedings of the Fifteenth Annual Conference of the International Speech Communication Association,
Singapore, 14–18 September 2014.

33. Zhou, S.; Wu, Y.; Ni, Z.; Zhou, X.; Wen, H.; Zou, Y. Dorefa-net: Training low bitwidth convolutional neural networks with low
bitwidth gradients. arXiv 2016, arXiv:1606.06160.

34. Alistarh, D.; Grubic, D.; Li, J.; Tomioka, R.; Vojnovic, M. QSGD: Communication-efficient SGD via gradient quantization and
encoding. Adv. Neural Inf. Process. Syst. 2017, 30, 1709–1720.

35. Hsieh, K.; Harlap, A.; Vijaykumar, N.; Konomis, D.; Ganger, G.R.; Gibbons, P.B.; Mutlu, O. Gaia: Geo-distributed machine learning
approaching LAN speeds. In Proceedings of the 14th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17), Boston, MA, USA, 27–29 March 2017; pp. 629–647.

36. TensorFlow Lite: ML for Mobile and Edge Devices. Available online: https://www.tensorflow.org/lite (accessed on
28 October 2020).

37. Bosshart, P.; Gibb, G.; Kim, H.S.; Varghese, G.; McKeown, N.; Izzard, M.; Mujica, F.; Horowitz, M. Forwarding metamorphosis:
Fast programmable match-action processing in hardware for SDN. ACM SIGCOMM Comput. Commun. Rev. 2013, 43, 99–110.
[CrossRef]

38. Turner, A.; Bing, M. Tcpreplay Tool. Available online: http://tcpreplay.sourceforge.net (accessed on 20 December 2020).
39. GUEANT, V. iperf3. Available online: https://iperf.fr/ (accessed on 28 October 2020).
40. Kim, C.; Sivaraman, A.; Katta, N.; Bas, A.; Dixit, A.; Wobker, L.J. In-band network telemetry via programmable dataplanes. In

Proceedings of the ACM SIGCOMM, London, UK, 17–21 August 2015.
41. Thangakrishnan, I.; Cavdar, D.; Karakus, C.; Ghai, P.; Selivonchyk, Y.; Pruce, C. Herring: rethinking the parameter server at

scale for the cloud. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and
Analysis, Atlanta, GA, USA, 15 November 2020; pp. 1–13.

42. Yang, G.; Yu, B.y.; Jin, H.; Yoo, C. Libera for Programmable Network Virtualization. IEEE Commun. Mag. 2020, 58, 38–44.
[CrossRef]

43. Yoo, Y.; Yang, G.; Kang, M.; Yoo, C. Adaptive Control Channel Traffic Shaping for Virtualized SDN in Clouds. In Proceedings of
the 2020 IEEE 13th International Conference on Cloud Computing (CLOUD), Beijing, China, 19–23 October 2020; pp. 22–24.

44. Kang, M.; Yang, G.; Yoo, Y.; Yoo, C. TensorExpress: In-Network Communication Scheduling for Distributed Deep Learning. In
Proceedings of the 2020 IEEE 13th International Conference on Cloud Computing (CLOUD), Beijing, China, 19–23 October 2020;
pp. 25–27.

45. Yang, G.; Jin, H.; Kang, M.; Moon, G.J.; Yoo, C. Network Monitoring for SDN Virtual Networks. In Proceedings of the IEEE
INFOCOM 2020—IEEE Conference on Computer Communications, Toronto, ON, Canada, 6–9 July 2020; pp. 1261–1270.

https://www.nvidia.com/en-us/data-center/v100/
http://dx.doi.org/10.1145/2723872.2723882
https://www.tensorflow.org/lite
http://dx.doi.org/10.1145/2534169.2486011
http://tcpreplay.sourceforge.net
https://iperf.fr/
http://dx.doi.org/10.1109/MCOM.001.1900290

	Introduction
	Background and Motivation
	Distributed Deep Learning Traffic
	Related Work
	Host-Side Scheduling on DDL Traffic
	Reducing the Amount of DDL Traffic
	Improvement Using an In-Network Switch
	ECN-Based Approach
	Novelty of PCN

	P4 and Switch Programmability

	Design
	Communication Sequence between Worker and PS
	Switch Operation for PCN
	PCN Threshold Policy

	Evaluation
	Evaluation Metrics
	Queue Length Change
	Performance Improvement
	Overheads

	Discussion
	Estimation of the Total DDL Training Time
	The Impact of Environment Changes on PCN
	Multi-Tenancy

	Conclusions
	References

