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Abstract

Objective: Indices of body fat distribution are heritable, but few genetic signals have been 

reported from genome-wide association studies (GWAS) of computed tomography (CT) imaging 

measurements of body fat distribution. We aimed to identify genes associated with adiposity traits 

and the key drivers that are central to adipose regulatory networks.

Subjects: We analyzed gene transcript expression data in blood from participants in the 

Framingham Heart Study, a large community-based cohort (n up to 4,303), as well as implemented 

an integrative analysis of these data and existing biological information.

Results: Our association analyses identified unique and common gene expression signatures 

across several adiposity traits, including body mass index, waist-hip ratio, waist circumference, 

and CT-measured indices, including volume and quality of visceral and subcutaneous adipose 

tissues. We identified six enriched KEGG pathways and two co-expression modules for further 

exploration of adipose regulatory networks. The integrative analysis revealed four gene sets 

(Apoptosis, p53 signaling pathway, Proteasome, Ubiquitin mediated proteolysis) and two co-

expression modules with significant genetic variants and 94 key drivers/genes whose local 

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
#This author has moved to Merck & Co., Inc. *Author to whom all correspondence should be addressed. Dr. Ching-Ti Liu, 
ctliu@bu.edu; Postal address: Department of Biostatistics, School of Public Health, Boston University, 801 Massachusetts Ave CT3, 
Boston, MA 02118, USA. 

Conflict of Interest:
The authors declare no competing interests.

HHS Public Access
Author manuscript
Int J Obes (Lond). Author manuscript; available in PMC 2019 March 19.

Published in final edited form as:
Int J Obes (Lond). 2019 March ; 43(3): 457–467. doi:10.1038/s41366-018-0190-2.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



networks were enriched with adiposity-associated genes, suggesting that these enriched pathways 

or modules have genetic effects on adiposity. Most identified key driver genes are involved in 

essential biological processes such as controlling cell cycle, DNA repair and degradation of 

regulatory proteins and are cancer related.

Conclusion: Our integrative analysis of genetic, transcriptional and biological information 

provides a list of compelling candidates for further follow-up functional studies to uncover the 

biological mechanisms underlying obesity. These candidates highlight the value of examining CT-

derived and central adiposity traits.

Introduction

Studies have shown that obesity is associated with increased risk for a variety of 

cardiometabolic diseases and premature mortality1. The prevalence of obesity among adults 

worldwide has nearly doubled since 1980.2 The prevalence of obesity in the U.S. is 

estimated to be 36%, with 69% of U.S. adults being overweight or obese.3 The obesity 

epidemic in the U.S. and worldwide contributes to a major public health burden.4–10 Obesity 

is a heterogeneous condition with inter-individual variability in fat depots that confer 

differing metabolic risks11–13 . Most genetic research in obesity, however, has focused on 

generalized obesity, measured by body mass index (BMI), and abdominal obesity, measured 

by waist-hip ratio (WHR) or waist circumference (WC). It is becoming clear that standard 

metrics of adiposity used in the clinical setting do not adequately reflect pathologic visceral 

or subcutaneous fat and the corresponding risk of cardiometabolic disease.14 Subcutaneous 

adipose tissue (SAT) and visceral adipose tissue (VAT) are considered to be unique 

pathogenic fat depots that can be imaged using computed tomography (CT). VAT, in 

particular, has been reported to put individuals at greater risk of cardiometabolic disease 

than BMI.14 To date few studies have focused on volume of adipose tissue in individual 

depots. Furthermore, there are no large-scale genetic studies directly linking genetic variants 

to visceral and subcutaneous adipose tissue quality (density) measured in Hounsfield units 

(VATHU and SATHU), even though fat quality may provide insight into cardiometabolic 

risk independent of fat volume15 and fat density has been shown to be a unique marker of 

mortality risk unrelated to inflammation.16

Previous studies have shown that indices of body fat distribution are heritable11,17. For 

example, in one study, the heritability for SAT and VAT volumes were estimated to be 57% 

and 36%, respectively11,17. Few genetic signals have been reported from GWAS for directly 

measured SAT and VAT volume using CT imaging, due in part to the lack of CT imaging 

measurements in large enough groups of genotyped individuals18,19. We hypothesized that 

gene expression profiling would reveal transcriptomic signatures of the adiposity traits of 

interest, provide insights into the biology of adiposity, and highlight compelling targets for 

therapeutic intervention. However, prior transcriptomic studies of CT measured adiposity 

indices were limited to small groups of selected samples20,21, which may not be 

representative of non-morbid populations. Thus, there is a need for further examination in 

larger samples.
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We hypothesized that there is information of the underlying mechanisms of obesity beyond 

what is explained by BMI. We sought to investigate associations of adiposity traits, 

including centralized fat depots directly measured by CT-imaging, with gene expression in a 

large community-based cohort. Because genes in regulatory networks may affect adiposity 

by acting in concert, instead of acting individually, we also integrated genetic and 

transcriptomic data and used biological databases to identify pathways and genes that 

underlie key regulatory mechanisms for adiposity.

Materials and Methods

Study Samples

The Framingham Heart Study (FHS) began in 1948 through enrollment of the Original 

cohort, with the goal to evaluate the multi-factorial nature of risk factors for coronary heart 

disease.22 In 1971 the Offspring cohort (offspring of the Original cohort and the offsprings’ 

spouses) was recruited.23 In 2002, the Third Generation cohort (grandchildren of the 

Original cohort and children of the Offspring cohort) was recruited.24 Our study was limited 

to participants from the FHS Offspring cohort who attended their eighth examination cycle 

(Exam 8, 2005 – 2008) and participants from the FHS Third Generation cohort who attended 

their second examination cycle (Exam 2, 2008–2011) and had blood samples available for 

RNA collection and measurements for adiposity related traits including BMI, WHR, WC, 

and CT measures. In total 4,303 study participants were included. The sample characteristics 

are presented in Supplemental Table 1 (Table S1). All participants consented to participate 

in the study and the study was approved by the Institutional Review Board at Boston 

University Medical Center.

Adiposity Traits

We primarily focus on six CT-measured adiposity traits: volume of 1) subcutaneous adipose 

tissue (SAT) and 2) visceral adipose tissue (VAT) and 3) their ratio (VSRAT=VAT/SAT); and 

quality of 4) subcutaneous adipose tissue (SATHU) and 5) visceral adipose tissue (VATHU) 

measured in Hounsfield units and 6) their ratio (VSRATHU = VATHU/SATHU). We also 

report on BMI, WC and WHR measurements.

All CT-measurements of fat were collected with the Aquarius 3D Workstation software 

(TeraRecon Inc., San Mateo, CA, USA)25 between 2008 and 2011. Specifically, the 

participants underwent radiographic assessment with an 8-slice multidetector computed 

tomography (MDCT) scanning of the abdomen in the supine position25,26. Twenty-five 

contiguous 5-mm slices were obtained. Subcutaneous and visceral adipose tissue volumes 

were acquired by manually outlining the visceral and subcutaneous fat depots and fat was 

defined as the image display window of −195 to −45 HU. This method has >0.99 inter-

reader and intra-reader correlations for VAT and SAT25. More details can be found in Fox et 

al.11

Gene Expression Profiling

Fasting peripheral whole blood samples (2.5ml) were collected from FHS participants 

during the clinic examinations: Offspring eighth examination (2005–2008) and Third 
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generation second examination (2008–2011). In total, FHS has 5726 participants with 

available gene expression data. Total RNA was prepared from frozen PAXgene blood tubes 

(PreAnalytiX, Hombrechtikon, Switzerland) using the WT-Ovation Pico RNA Amplification 

System (NuGEN, San Carlos, CA). The obtained cDNA was hybridized to the Human Exon 

1.0 ST Array and exon-level intensity values were collected as CEL files using Affymetrix 

Expression Console Software (Affymetrix, Santa Clara, CA). Gene annotations were 

obtained from Affymetrix NetAffx Analysis Center (Release 31). We only used the most 

reliable probe sets derived from RefSeq and GenBank records, including 17,873 distinct 

transcripts. Exons with signals lower than the background and transcript clusters that were 

not mapped to RefSeq transcripts were excluded. The CEL file data were quantile-

normalized, log2 transformed, and summarized using Robust Multi-array Average27 from 

Affymetrix Power Tools version 1.12. Samples with low RNA quality number (<3.0) and 

principal component outliers were excluded. The resulting expression data were then further 

adjusted using linear mixed-effects models for technical covariates (first principal 

component of the expression data, batch effect, the all probe set-mean residuals) and 

complete blood count (i.e. white blood cells, red blood cells, lymphocytes, neutrophils, 

platelets, monocytes and eosinophils). Complete blood count was measured in 2,138 Third 

Generation FHS participants, but not for all samples used in this study. Therefore, blood cell 

counts of the Offspring cohort and the remaining Third Generation cohort were imputed 

using a partial least‐squares regression method28,29 based on the gene expression data. 

Details of technical covariate selection were previously described30. We used the adjusted 

expression data for further analyses detailed below. Details of the design, sampling, RNA 

isolation, and mRNA measurement were previously described30,31. The complete expression 

dataset is available through dbGaP accession number phs000363 (https://

www.ncbi.nlm.nih.gov/gap)

Analysis Strategy

We performed two sets of primary analyses (Figure 1). In the first set of analyses, we 

investigated the associations of adiposity related traits with gene expression (Part I). In the 

second set of analyses, we explored the underlying regulatory mechanisms of our findings 

obtained from Part I of the analysis (Part II). Below we provide a brief overview of the two 

sets of analyses. More details are provided in the Supplemental Text.

There are several studies that have identified significant genes related to BMI.32,33 In order 

to further elucidate the underlying mechanisms of obesity beyond what is explained by BMI 

and to provide novel insights on other adiposity pathways, our primary analyses are adjusted 

for BMI. As results from both BMI-adjusted and BMI-unadjusted analyses could be 

biologically relevant (the adjusted analysis may reflect BMI-independent signals and the 

unadjusted analysis may represent BMI-dependent signals), we also provide results of BMI-

unadjusted analyses in the supplemental materials, e.g. Supplemental Tables S2-S10, but 

focus our discussion on the BMI-adjusted analysis to simplify interpretation.

Our primary analyses focus on sex-combined analyses as a larger sample has greater power 

to detect important signals. We also provide sex-specific analyses in the Supplement as some 
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traits have been reported to have sexual dimorphism, but these analyses are exploratory. 

Hence, unless stated otherwise, all analyses are based on sex-combined data.

Part I of the Analysis: Investigate Association of Adiposity with Gene Expression

The first part of the analysis consisted of three steps (Figure 1, Analysis Flow Chart, I-A, I-

B, I-C). (I-A) First, we performed linear mixed effects regression to identify genes whose 

expression levels were associated with adiposity traits with gene expression levels as the 

dependent variable and an adiposity trait as the independent variable. We adjusted for age, 

sex, BMI, and cohort of recruitment as fixed effects and familial relationships as a random 

effect using a kinship coefficient matrix. Our primary analyses were based on the sex-

combined data. As an exploratory analysis, we also conducted these analyses with adiposity 

traits separately for men and women to explore whether there were sex-specific associations 

between gene expression and adiposity traits. Additionally, we performed a Wald Test to 

determine if there were sexual dimorphic effects, i.e. the effect of each adiposity trait on 

gene expression levels (measured by the regression coefficients from the linear mixed effects 

model) in men was significantly different from the effect in women. (I-B) Next, we 

performed gene set enrichment analyses (GSEA) using a bioinformatics web-based tool 

called WebGestalt34,35 to explore whether the gene expression signatures identified for each 

of the adiposity-related traits in Part I-A were enriched with KEGG (Kyoto Encyclopedia of 

Genes and Genomes)36 pathways. Hypergeometric tests were used to identify enriched 

KEGG pathways using a Benjamini-Hochberg FDR37 adjustment to correct for multiple 

testing. KEGG pathways having a hypergeometric FDR corrected p-value less than 0.05 

were considered to be significant gene set enriched pathways. (I-C) We also constructed a 

co-expression network from the gene expression data using weighted gene co-expression 

network analysis (WGCNA)38 in order to identify co-expression network modules (coEMs) 

consisting of highly correlated genes, i.e. genes that have similar expression. Modules are 

clustered genes and are assigned arbitrary labels represented by colors by WGCNA. The 

associations of coEMs to adiposity traits were evaluated by correlating the eigengene (the 

first principal component representing the expression patterns of all genes in a given 

module) of each coEM with each adiposity trait of interest via Pearson’s correlation; a p-

value < 0.05 was considered significant.

Part II of the Analysis: Explore Regulatory Network

In the second part of the analysis, we explored the underlying regulatory mechanisms by 

integrating multiple levels of data, including pathways and modules identified from Part I, 

previously published GWAS results and a protein interaction database. (II-D) For significant 

gene sets identified from part I, we tested for genetically driven associations with adiposity, 

using SNP set enrichment analysis (SSEA). We first identified cis SNPs (eSNPs) that are 

significantly associated with expression levels of genes in each gene set. Then we 

investigated the contributions of genetic variants in the gene sets to adiposity associations by 

testing whether the set of eSNPs was enriched with low GWAS p-values of corresponding 

adiposity traits. (II-E) Finally, we applied Key Driver (KD) analysis39,40 to the candidate 

genes pooled from gene sets identified from SSEA. The key regulatory gene was identified 

if its first three-degree neighbors of candidate genes in reference network were enriched. 

(Figure 1, Analysis Flow Chart, II-D, II-E)
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Results

Part I: Association of Adiposity Traits with Gene Expression

Study participant adiposity characteristics are presented in Supplemental Table 1 (Table S1). 

We analyzed associations between gene expression and adiposity traits, including SAT, 

SATHU, VAT, VATHU, VSRAT, VSRATHU, BMI, WC and WHR adjusting for age, sex, 

cohort, and family relatedness, and BMI (when appropriate). Traits adjusted for BMI have 

the added subscript ‘BMI’, such as SATBMI. The number of genes in each adiposity trait’s 

gene expression signature set (genes with FDR < 0.05) is displayed in Table 1 for both BMI 

adjusted and unadjusted analysis. The full lists of significant genes associated with each 

adiposity trait are in Tables S2-S15 (unadjusted for BMI Tables S2A-S10B, adjusted for 

BMI Tables S11A-S15B).

For all traits, the number of signature genes identified after adjusting for BMI was smaller 

compared with the number when not adjusting for BMI. After adjusting for BMI, no 

signature genes were identified for WCBMI, SATBMI and SATHUBMI. For those traits with 

signature genes, a larger number of signature genes were identified in the sex-combined 

sample than in the men-only and women-only samples, mainly due to the larger sample size 

in the sex-combined sample giving more statistical power to detect a significant association 

(Figure 2). However, for WHRBMI, VATBMI, VSRATBMI, there were some genes that were 

identified solely in the men-only sample or women-only sample data (Figure 2, a-e). When 

not adjusting for BMI, all traits had some signature genes identified solely in the men-only 

sample or women-only sample data (Figure S1, a-i).

We also compared gene expression signature sets of different adiposity measurements. Only 

a small number of signature genes for CT-measures (15% for VATBMI, 9% for VATHUBMI, 

13% for VSRATBMI and 30% for VSRATHUBMI) were also identified with WHRBMI 

(Figure 2, f-g). Among the CT-measures, VATBMI, VATHUBMI and VSRATBMI had unique 

signature genes identified. 55 (49%) of the 113 signature genes for VATBMI were not 

signature genes for VATHUBMI; 31 (35%) of the 89 signature genes for VATHUBMI were 

not signature genes for VATBMI; 98 (88%) of the 111 signature genes for VSRATBMI were 

not signature genes for VSRATHUBMI; and 7 (35%) of the 20 signature genes for 

VSRATHUBMI were not signature genes for VSRATBMI (Figure 2, h). Without adjusting 

for BMI, there were also unique signature genes for CT-measures that did not overlap with 

BMI (Figure S1, j-l).

The number of genes that passed the Bonferroni corrected p-value threshold for sex effect 

differences are also displayed in Table 1. The gene signature set for VSRATBMI had more 

than half of the genes with sexual dimorphic effect sizes (defined as significant differences 

in sex-specific regression coefficients). Full details on differences in effects by sex are 

provided in Tables S2B-S15B.

Gene set enrichment analysis (GSEA) using the Kyoto Encyclopedia of Genes and Genomes 

(KEGG)34–36 database was performed on five BMI-adjusted adiposity traits with gene 

signature sets identified in the sex-combined data: WHRBMI, VATBMI, VSRATBMI, 

VATHUBMI, and VSRATHUBMI (Table 2). BMI is included in this table for comparison. 
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The full list of pathways that were significant in at least one trait is displayed in Table S16. 

Six pathways including ABC transporters, Apoptosis, Jak-STAT signaling pathway, p53 

signaling pathway, Proteasome, and Ubiquitin mediated proteolysis pathways were 

identified for subsequent SNP set enrichment analysis (SSEA)30, 41 analysis due to their 

statistical significance and potential biological relevance based on the description of the 

pathway.

We identified adiposity-associated co-expression network modules (coEMs) using weighted 

gene co-expression network analysis (WGCNA)38. Network analysis was based on sex-

combined BMI-adjusted traits in order to simplify the interpretation of the results. Modules 

are denoted by arbitrary colors. We found 24 coEMs (23 coEMs and a grey module 

composed of all other genes) and investigated their associations with eight adiposity traits: 

WHRBMI, WCBMI, SATBMI, VATBMI, VSRATBMI, SATHUBMI, VATHUBMI and 

VSRATHUBMI (Figure 3). The black and royalblue modules correlated with the most traits 

at p<0.05. The black module consisted of 467 genes and was positively correlated with 

VATBMI, VSRATBMI, and VSRATHUBMI, and negatively correlated with VATHUBMI. The 

royalblue module consisted of 106 genes and was positively correlated with WHRBMI, 

VATBMI, VSRATBMI, and VSRATHUBMI, and negatively correlated with VATHUBMI and 

SATHUBMI. These two modules were also selected for SSEA. For comparison, we presented 

these coEMs’ associations with BMI in Figure 3.

Part II: Explore Regulatory Network

In Part I, we identified significant associations between gene sets (either enriched pathway–

trait pairs or significant coEM–trait pairs) and BMI-adjusted adiposity traits. With SSEA we 

assessed whether the associations were affected by cis genetic variants. Specifically, we 

performed SSEA on each gene set – adiposity trait pair that was identified as significant in 

Part I-B or I-C, using available GWAS results. In total, 20 pairs were retained for testing. We 

identified cis SNPs that are significantly associated with expression levels of genes in each 

gene set (eSNPs) for 974 genes in eight sets (Table S17). The eSNP sets corresponding to 

six subsets of genes (Apoptosis, p53 signaling pathway, Proteasome, Ubiquitin mediated 

proteolysis, black coEM and royalblue coEM) showed significantly lower GWAS p-values 

compared to GWAS p-values of all SNPs for at least one trait. The Bonferroni-corrected P 

threshold was 0.05/20=0.0025. (Table 3) For comparison we also performed SSEA on BMI 

with all eight gene sets. The results are displayed in Table 3. All the gene sets significantly 

enriched for BMI were also found to be significant in at least one other trait; however, two 

gene sets, the p53 signaling pathway and the royalblue module, were identified for one or 

more CT-measure but not for BMI.

We combined gene sets that were significant in SSEA into one single combined set for the 

identification of key drivers. In total, we had 912 unique genes considered to be potential 

regulatory gene candidates in the combined set. Using the local networks from Human 

Protein Reference Database (HPRD)42, we identified 94 genes whose local networks were 

significantly enriched with adiposity-associated regulatory gene candidates at Bonferroni-

corrected P threshold of 0.05/912 = 5.48E-5, and thus identified these 94 as key drivers 

(Table S18).
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Discussion

By integrating genetic, transcriptional, and biological information, we identified several 

significantly enriched pathways in the set of gene signatures and co-expression modules for 

a variety of adiposity traits. We further investigated six enriched KEGG pathways (ABC 

transporters, Apoptosis, Jak-STAT signaling pathway, p53 signaling pathway, Proteasome 

and Ubiquitin mediated proteolysis pathways) and two co-expression modules. Our results 

suggest that these enriched pathways or modules have genetic effects on adiposity. Genes in 

these sets may interact within a network and co-regulate adiposity.

The ABC transporters pathway contains genes that encode proteins from the superfamily of 

ATP-binding cassette (ABC) transporters, which couple ATP hydrolysis to active transport 

of a wide variety of substrates across cellular membranes. About half of the 48 human ABC 

transporters are thought to transport lipids or lipid-related compounds43. ABCA1 and 

ABCG1 are identified as signature genes for adiposity traits in our data. The protein encoded 

by ABCG1 may be involved in macrophage cholesterol and phospholipids transport and may 

regulate cellular lipid homeostasis43. The protein encoded by ABCA1 acts as a cholesterol 

efflux pump in the cellular lipid removal pathway44.

Apoptosis is a process of programmed cell death that is highly regulated. In adipose tissue, it 

was found that adipocyte apoptosis may be associated with metabolic disorders, including 

insulin resistance, hepatic steatosis, and obesity associated inflammation45.

The Janus kinase-signal transducer and activator of transcription pathway (JAK-STAT 

signaling pathway) was enriched only with the gene expression signature set for WHRBMI. 

This result suggests that additional adiposity measures beyond BMI are necessary in order to 

understand the physiological mechanisms underlying obesity. This pathway was found to be 

highly related to adipose tissue function and to regulate various functions (for example 

adipocyte development) by transmitting extracellular polypeptide signals (such as leptin in 

adipose tissue) directly to target gene promoters in the nucleus.46,47

The p53 signaling pathway, Proteasome and Ubiquitin mediated proteolysis pathways are 

essential pathways. The last two form a major pathway of selective protein degradation48. 

Usually short-lived proteins, many of which are regulatory proteins, are marked by multiple 

ubiquitins and then degraded by the proteasome. Tumor protein p53 that activates in 

response to multiple stressors binds DNA and activates expression of several genes and 

hundreds of other down-stream genes and is thus linked to other pathways, for example 

apoptosis.49 These pathways are well known to be related to cancer, and potentially to affect 

adiposity traits due to their universal functions.

By performing SSEA and KD tests on the signature gene sets and coEMs, we aimed to 

identify genes central to the regulatory networks related to adiposity traits. Most key driver 

genes that we identified involve essential biological processes such as controlling cell cycle, 

DNA repair and degradation of regulatory proteins. For example, the key driver CDC26 was 

found to stabilize a cell cycle regulator APC650. Another key driver DET1 was found to 

assemble a multi-subunit ubiquitin ligase to promote ubiquitination and degradation of 

transcription factor c-Jun.51 Among the 94 identified key drivers, 43 genes were included in 
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the black module or royalblue module with more than half involving cell cycle regulation or 

protein degradation. The remaining genes were from one of four pathways (Apoptosis, p53 

signaling pathway, Proteasome, Ubiquitin mediated proteolysis), which connect to a broad 

range of regulation effects. Interestingly, many key driver genes and biological processes are 

cancer related. For example one KD, CCNG2, which belongs to p53 signaling pathway, has 

been shown to contribute to signaling networks that limit breast cancer by restricting breast 

cancer cell proliferation52 and play important roles as a negative regulator to esophageal 

cancer cell.53 The protein levels of CCNG2 are inversely associated with glucose and insulin 

resistance in adipose tissue.54 Another KD, EMSY (C11orf30), which belongs to the 

royalblue module, has been shown to interact with BRCA255, a tumor suppressor gene. 

There is an abundance of evidence from observational studies suggesting that higher 

amounts of body fat are associated with increased risks of a number of cancers. For 

example, BMI is reported to be significantly associated with cancers of the colon, rectum, 

gastric cardia, liver, gallbladder, pancreas, and kidney.56 The results from our BMI-adjusted 

analyses indicate that the underlying mechanisms of adiposity and cancer may be closely 

linked even when controlling for BMI. Therefore, the underlying mechanisms of how 

adiposity increases the risk of cancer are still unclear; further research into key genes may 

provide insight.

It was interesting that two pathways that seem highly relevant to adiposity, ABC transporters 

and the JAK-STAT signaling pathway, did not pass the SSEA test, indicating that the 

associations between adiposity traits and expression of these genes may not be directly 

linked to genetic effects. Instead, the expression levels may be affected by environmental 

factors such as diet or smoking.

There are many strengths of this study. We have a large sample size with mRNA expression 

profiles and adiposity traits, including CT-measured indices and traditional biomarkers such 

as BMI. Nevertheless, there are several potential limitations. In particular, there may be 

concerns regarding tissue specificity due to the lack of expression data measured in adipose 

tissue. We acknowledge this limitation as blood is usually not considered to be a target organ 

for obesity although prior studies have reported > 50% sharing of cis-eQTLs in blood and 

adipose tissue57,58. In addition, expression data obtained from obesity relevant tissues with 

reasonable sample size are lacking and thus, an unbiased and comprehensive scan for gene 

discovery has not been possible to date. Blood is a sentinel tissue and a system integrator of 

tissue and organ-level perturbations; so all major metabolic perturbations may lead to 

adaptive responses in blood59. Therefore, utilization of accessible tissues is necessary to 

push forward the field. Additionally, each fat depot may have unique or common underlying 

biological mechanisms even though we have pooled different adiposity traits together to 

identify key driver genes. We have illustrated this by providing the numbers of signature 

genes in Figure 2 that are unique to an adiposity trait or overlap across adiposity traits. For 

instance, VATBMI, VSRATBMI, VATHUBMI, and VSRATHUBMI had 27, 32, 19, and 0 

unique signature genes, respectively.

With our large sample size, we integrated genomics data and adiposity traits in genome-wide 

analyses and provided further insight into the interplay among DNA variation, gene 

expression and adiposity traits. In summary, we have identified a few sets of genes 
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associated with adiposity related traits and also identified key drivers/genes that are 

potentially central to the regulatory networks related to adiposity. Some results observed for 

CT traits were not seen for BMI, such as the p53 signaling pathway. Thus, these findings 

provide a list of candidates for further follow-up in experiments to uncover the biological 

mechanisms underlying obesity beyond BMI.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Flow Chart of Analysis Process.
Part I-A. Identified gene signature for each adiposity trait. I-B. GSEA. Identified pathways 

that are enriched in gene signature sets. I-C.WGCNA. Identified co-expression modules and 

tested association with each adiposity trait. Part II-D. SSEA on each gene set-trait pair from 

I-B and I-C. We first identified eSNPs for each gene set and then compared the distribution 

of GWAS-derived p-values for eSNPs to the distribution of p values for all variants. II-E. 
Key driver analysis. We combined all gene sets that passed II-D into a candidate gene set. 

For each gene in this set, we compared percentage of candidate genes in their local networks 

to that in entire network.
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Figure 2. Venn diagram for number of signature genes.
The number of signature genes uniquely identified in men (blue), women (pink) and sex-

combined (green) analyses and the number of genes overlapped for each trait.
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Figure 3. Heat map of coEM module-trait relationships.
The heat map displays the strength and direction of the correlation (based on Pearson’s 

correlation coefficient) of each coEM (via the eigengene) with each adiposity trait of interest 

for all coEMs and traits with adjustments of age, sex, BMI, cohort, family relatedness, and 

technical covariates. The rows correspond to each coEM and the columns correspond to the 

adiposity traits. The larger the correlation, the darker the color, with red representing a 

positive correlation and blue representing a negative correlation. The colors labeling each 

coEM was assigned arbitrarily by the software running the WGCNA and have no specific 

meaning.
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Table 1.

Number
1
 of genes in gene signature for each trait.

 
Sex
Combined Women Men

BMI 3239/342 2099/191 1534/299

WHR 2060/211 911/90 890/210

WC 3320/272 2174/203 1312/211

SAT 1244/13 817/20 228/10

VAT 2130/549 1315/593 771/261

VSRAT 367/205 406/327 60/48

SATHU 531/1 268/13 53/0

VATHU 2080/85 1034/91 613/24

VSRATHU 1507/43 630/24 500/37

WHRBMI 73/4 1/0 3/3

WCBMI 0 0 0

SATBMI 0 0 0

VATBMI 113/2 4/2 0

VSRATBMI 111/24 37/32 0

SATHUBMI 0 0 0

VATHUBMI 89/0 4/0 2/0

VSRATHUBMI 20/0 0 1/0

1
The first number in each cell is the number of genes identified as significantly associated with traits based on FDR (criteria described in Methods 

Section). The second number in each cell is the number of genes with significant sexual dimorphisms using Bonferroni correction (e.g. for BMI in 
sex-combined sample, p-threshold = 0.05/3239).
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Table 2.

FDR p value for significantly enriched pathways in GSEA analysis
1
.

Pathway WHRBMI VATBMI VSRATBMI VATHUBMI BMI

ABC transporters 0.0428 0.0143 0.0389 0.0249

Apoptosis 0.0184 0.00005

Jak-STAT signaling pathway 0.0137  

p53 signaling pathway 0.0013 0.0242 0.0005

Proteasome 0.038 0.0389 0.0101

Ubiquitin mediated proteolysis  0.0242  0.0389 0.00005

1
Only significant signals (FDR p<0.05) are displayed. Note that there is no significant signal observed for WCBMI and VSRATHUBMI. These 

enriched pathways are then selected for subsequent SSEA analyses.
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Table 3.

Results (p-values) of SNP set enrichment analysis
1,2

.

Gene set WHRBMI VATBMI VSRATBMI VATHUBMI
3

SATHUBMI
3

BMI

ABC transporters 2.06E-02 6.58E-01 1.24E-01 2.95E-03

Apoptosis 8.94E-10 1.59E-47

Jak-STAT signaling pathway 3.00E-01 3.22E-01

p53 signaling pathway 1.57E-04 5.25E-09 9.53E-01

Proteasome 1.89E-06 1.31E-01 4.04E-12

Ubiquitin mediated proteolysis 9.54E-17 3.12E-01 1.00E-15

black module 2.59E-04 5.58E-04 2.50E-14 1.98E-05 3.44E-08

royalblue module 9.23E-01 1.65E-02 1.44E-01 1.34E-03 7.98E-01 9.18E-01

1
The p-values from the Kolmogorov–Smirnov test are shown for 20 gene set-trait pairs which were significant in GSEA and WGCNA.

2
Bolded p- values are statistically significant at p < 0.05/20 = 0.0025, the Bonferroni adjustment for the number of tests, excluding BMI results 

which are provided for comparison.

3
GWAS results of VATHU, SATHU were used for VATHUBMI, SATHUBMI respectively, since no GWAS results were available for VATHUBMI 

and SATHUBMI
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