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Graphene-like nanoribbons periodically embedded
with four- and eight-membered rings
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Embedding non-hexagonal rings into sp2-hybridized carbon networks is considered a

promising strategy to enrich the family of low-dimensional graphenic structures. However,

non-hexagonal rings are energetically unstable compared to the hexagonal counterparts,

making it challenging to embed non-hexagonal rings into carbon-based nanostructures in a

controllable manner. Here, we report an on-surface synthesis of graphene-like nanoribbons

with periodically embedded four- and eight-membered rings. The scanning tunnelling

microscopy and atomic force microscopy study revealed that four- and eight-membered rings

are formed between adjacent perylene backbones with a planar configuration. The non-

hexagonal rings as a topological modification markedly change the electronic properties of

the nanoribbons. The highest occupied and lowest unoccupied ribbon states are mainly

distributed around the eight- and four-membered rings, respectively. The realization of

graphene-like nanoribbons comprising non-hexagonal rings demonstrates a controllable route

to fabricate non-hexagonal rings in nanoribbons and makes it possible to unveil their unique

properties induced by non-hexagonal rings.
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G
raphene nanoribbons (GNRs) have attracted extensive
attention as promising building blocks for nanoelectronics
and spintronics1–3. To date, a number of strategies have

been developed for the preparation of GNRs. Among them, the
‘bottom-up’ approach based on the on-surface synthesis from
predefined precursor molecules has the advantage to precisely
control the edge structure and width4–7. In this way, the
electronic and magnetic properties, such as band gap and spin-
polarized edge states, can be readily tuned8–10. The electronic
properties of GNRs can also be modulated at nanoscale by
chemical doping11–14 and formation of heterojunctions15,16.
At the same time, decorating non-hexagonal rings into the
honeycomb lattice, which is an effective way to tailor the
electronic structures and magnetic properties of such low-
dimensional carbon-based structures17–19, has been intensively
studied. Line defects composed of octagons and pentagons in
graphene can give rise to the localized electronic states that
contribute to the metallic character20. The Stone–Wales defect,
another typical non-hexagonal structure containing two
pentagons and two heptagons, can locally change the density of
p-electrons and increase the local reactivity, making it possible to
attach metal atoms to further modify the electronic structure21.

Non-hexagonal rings can be spontaneously formed during
graphene preparation20,22. For example, in chemical vapour
deposition prepared graphene, the grain coalescence results in the
formation of linear defects containing pentagons, heptagons and
octagons along the boundaries. As for the on-surface synthesized
GNRs, penta- and heptagon-rings originating from the
interribbon cross-dehydrogenative coupling between the zigzag
terminal and the armchair edge of GNRs have been observed23.
Non-hexagonal rings can also be artificially created by electron
irradiation24, which provides the activation energy higher than
the threshold to drive the carbon atom ejection and bond
rotation, resulting in randomly arranged polygons. However, it is
challenging to periodically embed non-hexagonal rings into
carbon-based nanostructures in a controllable manner, limiting
the study on how non-hexagonal rings affect their properties.

Here, we report the on-surface synthesis and electronic proper-
ties of graphene-like nanoribbons with periodically embedded
four- and eight-membered rings. The atomic structure and
electronic properties have been investigated by non-contact atomic
force microscopy (nc-AFM), scanning tunnelling microscopy

(STM) and spectroscopy (STS) combined with density functional
theory (DFT) calculations.

Results
Synthetic strategy for graphene-like nanoribbons. Graphene-
like nanoribbons comprising four- and eight- membered rings
were fabricated by surface-assisted dehalogenation and cyclode-
hydrogenation of 1,6,7,12-tetrabromo-3,4,9,10-perylene-tetra-
carboxylic-dianhydride (Br4-PTCDA) on Au(111) surfaces, as
sketched in Fig. 1. Br4-PTCDA molecules were sublimed onto the
Au(111) surface at room temperature under ultrahigh-vacuum
(UHV) conditions. Most deposited molecules were intact with the
twisted structure owing to the repulsion of bromine substituents
(Supplementary Fig. 1; Supplementary Note 1). The C–Br bond
cleavage took place at a relatively low temperature of 100 �C due
to the steric repulsion between the bromine substituents, yielding
the flat PTCDA-Au2-Br4 hybrids (Supplementary Figs 2a,b
and 3). Linear gold–organic hybrid polymers were obtained
after the cleavage of Au–Br bonds at 220 �C (ref. 25)
(Supplementary Fig. 2c). By further heating to 360 �C, Au–C
bonds were cleaved and gold atoms were released from the
PTCDA-Au polymers (Supplementary Fig. 2d; Supplementary
Note 2). Such a temperature is high enough to drive the sym-
metric cyclodehydrogenation, resulting in the formation of four-
and eight-membered rings between adjacent perylene backbones.

Synthesis and characterization of graphene-like nanoribbons.
Owing to the instability of anhydride groups at high tempera-
tures, side reactions such as ring opening26 and decarbonylation
reaction27 of anhydrides may take place between the precursors,
leading to disordered structures (Supplementary Fig. 2d). To
avoid these side reactions, we have developed a templated on-
surface synthesis of two types of one-dimensional (1D) covalently
bonded structures from different precursor molecules coexisting
on the surface. The non-covalent interactions between linear
polymers are capable of improving the reaction selectivity as well
as the orientation orderliness. In particular, 4, 400-dibromo-p-
terphenyl (DBTP) molecules were codeposited with Br4-PTCDA
molecules onto Au(111) surface. At room temperature, owing to
the repulsion of bromine substituents, each single Br4-PTCDA
molecule has a twisted structure. For most Br4-PTCDA
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Figure 1 | Synthetic strategy for graphene-like nanoribbons. Br4-PTCDA is used as the precursor molecule. At 100 �C, thermal activation induces the

C–Br bond cleavage and the formation of PTCDA-Au2-Br4 hybrids on Au(111). At 220 �C, Br atoms are dissociated and linear PTCDA-Au polymers are

formed. By further heating to 360 �C, the Au–C bond cleavage and cyclodehydrogenation take place with the formation of graphene-like nanoribbons.
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molecules, two bright spots can be clearly observed in Fig. 2a,
which correspond to the position of bromine atoms. A well-
ordered self-assembled superstructure was formed at 100 �C by
the halogen and hydrogen-bond interactions between DBTP
molecules and PTCDA-Au2-Br4 hybrids at a ratio of 1:1 (Fig. 2c).
The self-assembled bicomponent superstructures were regulated
by different growth ratios of the two adsorbed molecules
(Supplementary Fig. 4; Supplementary Note 3). By annealing
Au(111) surface at 160 �C, the DBTP molecules were linearly
polymerized to be poly(para-phenylene) (PPP) polymers after
dehalogenation. At the same time, some PTCDA-Au2-Br4 hybrids
lost bromines and connected with each other, resulting in
PTCDA-Au oligomers coexisting in line with the remaining
PTCDA-Au2-Br4 hybrids (Supplementary Fig. 5a). The linear
PPP polymers served as the molecular grooves that performed
1D constraint on the PTCDA intermediates. As the substrate
temperature was elevated to 220 �C, more Au–Br bonds were
cleaved and the PTCDA intermediates diffused unidirectionally
along the molecular grooves to form linear PTCDA-Au
polymeric chains. The two types of polymers were arranged
alternately because of the hydrogen-bond interaction between
the phenylene hydrogen and the anhydride oxygen atoms
(Fig. 2e).

Further annealing to 360 �C results in nanoribbons showing
uniform STM contrasts (Fig. 2g,h), while the protrusions
corresponding to Au adatoms in PTCDA-Au polymeric chains
are disappeared. The 1D constraint from the PPP polymeric
chains in the experiment effectively hampered the interaction of
anhydride groups and enabled the formation of flat ribbons
stitched together by four- and eight-membered rings. On the
other hand, the hydrogen-bond interaction between the gra-
phene-like nanoribbons and PPP polymers hindered the diffusion
of nanoribbons to get longer length. The ribbons with 8–12

PTCDA monomers were typically observed in our experiment
(inset of Fig. 2g), although the longest ribbons with 30 monomers
could be obtained. In the high-resolution STM image (Fig. 2h),
the periodic contrast variation along the central axis of graphene-
like nanoribbons was observed, with dark spots located at the
centre of the eight-membered rings. The measured periodic
distance between the neighbouring dark spots is 6.3±0.1 Å,
agreeing well with the distance (6.26 Å) obtained from the
optimized structure of graphene-like nanoribbons by DFT
calculations. In addition, dislocated cyclodehydrogenation between
the PTCDA intermediates resulting in the formation of two fused
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Figure 2 | Synthesis and characterization of graphene-like nanoribbons. (a) STM image of DBTP and Br4-PTCDA molecules codeposited on Au(111) at RT

(V¼ � 2 V, I¼ 2.2 nA). (b) STM image with overlaid molecular structures. (c) STM image of the self-assembled structures of PTCDA-Au2-Br4 hybrids and

DBTP molecules on Au (111) prepared at 100 �C (V¼ �0.1 V, I¼ 2 nA). (d) High-resolution STM image with partially overlaid molecular model

(V¼ �0.03 V, I¼ 2.2 nA). (e) PTCDA intermediates colligated with gold atoms into linear polymers between PPP polymers at 220 �C (V¼ � 2 V,

I¼0.05 nA). (f) High-resolution STM image with partially overlaid model of the polymer (V¼ �0.1 V, I¼ 1.8 nA). (g) STM image of graphene-like

nanoribbons comprising four- and eight-membered rings formed after C–Au bond cleavage and cyclodehydrogenation at 360 �C (V¼ � 1.8 V, I¼0.6 nA).

Inset: The ribbon length distribution based on the analysis of a total of 135 ribbons. (h) High-resolution STM image with partly overlaid molecular model of

the graphene-like nanoribbon (V¼ � 1.6 V, I¼0.3 nA).
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Figure 3 | Experimental and simulated AFM images of graphene-like

nanoribbons. (a) Constant-height nc-AFM frequency shift image of

graphene-like nanoribbon resolving four- and eight-membered rings taken

with a CO-functionalized tip (oscillation amplitude AOSC¼ 1 Å, V¼0 V,

z offset � 2 Å below STM setpoint: �0.6 V, 20 pA). (b) Constant-height

nc-AFM image with partly overlaid ribbon structure. (c) Simulated

constant-height AFM images. A flexible CO tip (AOSC¼ 1 Å;

ktip¼0.5 Nm� 1) at the heights of 810 pm is used in the simulation. The

online modelling software is provided by Hapala et al.31
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six-membered rings (arrowed in Fig. 2h) was occasionally
observed, similar to a liquid phase reaction reported elsewhere28.
Compared with the on-surface synthesis without the assistance of
linear polymers, the graphene-like nanoribbons obtained by
templated on-surface synthesis exhibited a better structural
quality (Supplementary Fig. 2d). Besides the PPP polymers,
armchair graphene nanoribbons (7-aGNRs)4 have been used as
the molecular templates in our experiment, showing similar
constraint effect (Supplementary Fig. 7; Supplementary Note 4).

We performed nc-AFM characterization with a CO-functio-
nalized tip29,30 to verify the bonding configurations in the
nanoribbons. Four- and eight-membered rings formed between
adjacent perylene molecules were clearly resolved, as shown in
Fig. 3a. The simulated nc-AFM images agree well with the
proposed four- and eight-member junction (Fig. 3c)31,32,
confirming that the PTCDA molecules interconnected into
ribbon structures with a planar configuration. The observation
also indicates that the linear PTCDA-Au polymeric chains
underwent demetalation and cyclodehydrogenation at this
annealing temperature, which is lower than that of hexagonal
carbon rings4.

Electronic properties of graphene-like nanoribbons. PTCDA
molecules adsorbed on metal surfaces have been intensively stu-
died and it has been confirmed that PTCDA molecules exhibit
rather weak interactions with the Au(111) surfaces33. In our
experiment, the distribution of highest occupied (HO) and lowest
unoccupied (LU) ribbon states are distinguished clearly in the

high-resolution STM images (Fig. 4a,c). To detect the HO and LU
states, the bias voltages were set at � 0.8 and 0.8 V, slightly below
the valence band maximum and above the conduction band
minimum, respectively. The STM image acquired at � 0.8 V
shows bright feature around the ribbon central axis, with four
protrusions located symmetrically at four opposite edges of
the eight-membered ring (circled in Fig. 4a). The distribution of
HO states is consistent with the characteristic of the calculated
result (Fig. 4b). When the bias voltage was set at 0.8 V, different
pattern was obtained with broader distribution than the occupied
states, as shown in Fig. 4c. There are two bright protrusions
symmetrically located around the region of four-membered rings,
consistent with the feature of the calculated LU ribbon states
(Fig. 4d). In contrast, the parts connected by Au–C bond
(arrowed in Fig. 4a,c) in the graphene-like nanoribbons are
featureless regardless of positive or negative bias voltage. Our
result indicates that the newly formed non-hexagonal carbon
rings make a predominant contribution to the frontier electronic
states of the ribbons. The coincidence between the high-
resolution STM images and the calculated HO and LU states of
isolated ribbons implies a rather weak interaction between the
graphene-like nanoribbons and the Au(111) surface. In addition,
the nanoribbons can be moved on the Au(111) surface by STM
manipulation (Supplementary Fig. 6), indicating that there is no
strong chemical bonding between the side anhydride groups and
the surface.

We have further carried out STS measurements to reveal the
energy-dependent local density of states of the graphene-like
nanoribbons. Figure 4e shows the differential conductance
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Figure 4 | HO and LU ribbon states of graphene-like nanoribbons. (a,c) High-resolution STM images of graphene-like nanoribbons with PPP polymers on

Au(111) obtained at V¼ �0.8 V (HO ribbon state) and V¼0.8 V (LU ribbon state) respectively (I¼0.6 nA). (b,d) The charge density of the valence band

(b) and conduction band (d) of graphene-like nanoribbons. The contrast in STM images at negative and positive bias voltages well resemble the calculated

density distribution. (e) Differential conductance (dI/dV) spectra (purple) taken at different points along a line perpendicular to a graphene-like

nanoribbon. The spectra from clean Au(111) (yellow) and PPP polymer (black) are shown as well (V¼ � 2 V, I¼0.6 nA; modulation voltage

Vr.m.s.¼ 30 mV).
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spectra (dI/dV) acquired at different positions along a line
perpendicular to a graphene-like nanoribbon (inset of Fig. 4e).
The characteristic Shockley-type surface state of Au(111) with an
onset at � 0.5 V was obtained on the clean Au(111) surface
(yellow curve in Fig. 4e), which contributes to the interface states
in the following dI/dV spectra with a broad bump roughly
between � 0.5 and 0.1 V (Supplementary Fig. 8)33,34. The STS
curve from a PPP polymer exhibits a prominent peak at 2.2 V
corresponding to the lowest unoccupied states (black curve in
Fig. 4e)35. On the graphene-like nanoribbon, a clear peak appears
at � 0.68 V, which corresponds to the HO states. The intensity of
the peak grows as the tip moves from the edge to the ribbon
centre, confirming the predominant distribution of the HO states
around the central axis (Fig. 4b). On the positive bias side, a peak
at 0.70 V was observed, which is assigned to the LU states of the
ribbon. No obvious intensity variation of the LU peak was found,
showing a broader distribution of LU states on the ribbon. From
our STS result, an electronic band gap of D¼ 1.38 eV is derived
for the graphene-like nanoribbon with four- and eight-membered
carbon rings.

DFT calculations. As theoretically predicted, the non-hexagonal
carbon rings change not only the density of p-electron locally,
but also the electronic structures and magnetic properties of
GNRs36–38. To investigate the influence of four- and eight-
membered carbon rings, we have carried out DFT calculations to
achieve further insight into the effect of four- and eight-membered

rings on the geometric structures and electronic properties of
graphene-like nanoribbons. The planar configuration determined
by the merged four- and eight-membered rings enables the
optimized geometric structure, which led to a delocalized
electronic state in our nanoribbons (Fig. 5a). The C–C bonds at
the non-hexagonal rings are shortened or lengthened in a range
from 1.38 to 1.49 Å and the C–C–C angles are changed in a range
from 90� to 146�, because of the missing of hexagonal
symmetry39. The geometric reconfiguration will alter the local
overlap of Pz-orbitals in the vicinity of the non-hexagonal rings
and accordingly affect the delocalized electronic properties
significantly. As shown in Fig. 5b, the calculated band structure
of the graphene-like nanoribbon has a direct gap of 0.6 eV,
which is underestimated in comparison to our experimental
result (1.38 eV). It has been reported that the Heyd–Scuseria–
Ernzerhof (HSE06) functional neglects the enhancement of
the self-interaction energy at the surface, resulting in the
underestimation of the band gap40,41. Nevertheless, the essential
features of the band structure can be captured by the DFT
calculation. Considering a similar GNR with zigzag shaped edges
(Fig. 5c), the spin orientation between the two zigzag edges is
antiparallel and the antiferromagnetic coupling between the two
edges opens a band gap with D0

z ¼ 1.72 eV and D1
z ¼ 2.15 eV.

However, the spin-polarized edge states are quenched when four-
and eight-membered rings are embedded (Fig. 5d). We believe
that the spin quenching results from the local rehybridization
of s and p-orbitals. In addition, embedding four- and eight-
membered rings in the zigzag GNRs turns the direct energy
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Figure 5 | Geometric structures and calculated band structures. (a) The optimized geometry of four- and eight-membered carbon rings in graphene-like

nanoribbon. The bond lengths shown in a are in angstroms. (b–d) Optimized atomic structures and calculated band structures of the graphene-like

nanoribbon, zigzag GNR and graphene-like nanoribbon without anhydride side groups, respectively.
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gap into indirect and narrower gap (Fig. 5d). According to
our calculation, similar band gap narrowing takes place in
armchair GNRs by embedding four- and eight-membered rings
(Supplementary Fig. 9; Supplementary Note 5).

Discussion
We successfully fabricated a new type of graphene-like nanor-
ibbons comprising non-hexagonal rings on Au(111) surfaces
through a step-like reaction using two precursor molecules
coadsorbed on the surfaces. The templated on-surface synthesis is
assisted by linear molecular polymers, which were employed to
achieve 1D orientation constraint to direct the formation of
nanoribbons. Periodically embedded four- and eight-membered
rings were identified by nc-AFM characterization. The high-
resolution STM images and DFT calculations revealed the
predominant distribution of HO and LU states around the eight-
and four-membered rings, respectively. The introduction of four-
and eight-membered carbon rings different from those with
hexagonal geometry characteristic of graphitic structures allows
the fine tuning of the band gaps of the ribbons and quench the
spin-polarized edge states existing in zigzag GNRs. Undoubtedly,
introducing non-hexagonal carbon rings can be an effective
engineering approach to modulate the electronic properties of
carbon-based nanostructures for achieving desired functionalities.

Methods
Experimental measurement. Single crystalline Au (111) surfaces were cleaned by
cycles of Arþ sputtering and annealing under ultrahigh vacuum (base vacuum
1� 10� 10 mbar). Br4-PTCDA molecules were synthesized following a reported
method42. DBTP and Br4-PTCDA molecules were sublimed from a quartz crucible
at sublimation temperatures of 423 and 528 K, respectively, onto the substrate held
at room temperature. Samples can be heated by a direct current tungsten filament
located on the back side of the sample holder. The sample temperature was
measured with a thermocouple. After a succession of stepwise heating processes,
the sample was finally heated to 360 �C for 10 min, resulting in the formation of
graphene-like nanoribbons comprising four- and eight-membered rings. STM
measurements were performed on an Omicron low-temperature STM operated at
78 K. An electrochemically etched tungsten tip was used for topographic and
spectroscopic measurements. The STM images were taken in the constant-current
mode and the voltages refer to the bias on samples with respect to the tip. The
dI/dV spectra were acquired by a lock-in amplifier while the sample bias was
modulated by a 553 Hz, 30 mV (r.m.s.) sinusoidal signal under open-feedback
conditions. The tip state was checked via the appearance of the characteristic
Shockley-type surface state on clean Au(111) surfaces. The nc-AFM measurement
was carried out at LHe temperature in constant-height frequency modulation mode
with a CO-functionalized tip (resonance frequency f0E40.7 kHz, oscillation
amplitude AE100 pm, quanlity factor QE5.6� 104).

Theoretical calculation. Spin-polarized DFT calculations were performed using
the periodic plane-wave basis Vienna ab-initio Simulation Package code43,44.
For geometry optimizations and electronic structure calculations, the Perdew–
Burke–Ernzerhof functional and the Heyd–Scuseria–Ernzerhof (HSE06) hybrid
functional45 were applied. The valence–core interactions are described using the
projector augmented wave method46. The plane-wave energy cutoff used for all
calculations is 400 eV. The convergence criterion for the forces of structure
relaxations is 0.01 eV Å� 1. A supercell arrangement was used with a 15 Å vacuum
layer to avoid spurious interactions between the nanoribbons and periodic images.
The electronic structure calculations were performed using a k-point grid of
5� 1� 1, including the G-point.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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