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The aberrant expression of human endogenous retrovirus (HERV) elements of the

HERV-W family has been associated with different diseases, including multiple sclerosis

(MS). In particular, the expression of the envelope protein (Env) from the multiple

sclerosis-associated retrovirus (MSRV), a member of HERV-W family and known for its

potent proinflammatory activity, is repeatedly detected in the brain lesions and blood

of MS patients. Furthermore, human herpesvirus 6 (HHV-6) infection has long been

suspected to play a role in the pathogenesis of MS and neuroinflammation. We show here

that both HHV-6A and stimulation of its receptor, transmembrane glycoprotein CD46,

induce the expression of MSRV-Env. The engagement of extracellular domains SCR3

and SCR4 of CD46-Cyt1 isoform was required for MSRV-env transactivation, limiting

thus the MSRV-Env induction to the CD46 ligands binding these domains, including

C3b component of complement, specific monoclonal antibodies, and both infectious and

UV-inactivated HHV-6A, but neither HHV-6B nor measles virus vaccine strain. Induction

of MSRV-Env required CD46 Cyt-1 singling and was abolished by the inhibitors of

protein kinase C. Finally, both membrane-expressed and secreted MSRV-Env trigger

TLR4 signaling, displaying thus a proinflammatory potential, characteristic for this viral

protein. These data expand the specter of HHV-6A effects in the modulation of the

immune response and support the hypothesis that cross-talks between exogenous

and endogenous viruses may contribute to inflammatory diseases and participate in

neuroinflammation. Furthermore, they reveal a new function of CD46, known as an

inhibitor of complement activation and receptor for several pathogens, in transactivation

of HERV env genes, whichmay play an important role in the pathogenesis of inflammatory

diseases.
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INTRODUCTION

Human endogenous retrovirus (HERV) sequences are assumed
to be remnants of ancient retroviral infections of our ancestral
germ-line cells and constitute ∼8% of the human genome (1).
Although these viral sequences were generally silenced through
diverse evolutionary mechanisms, some HERV genes have been
shown to be expressed in controlled tissue-specific manner (2).
Interestingly, some HERV were suggested to be involved in the
pathogenesis of several autoimmune diseases, including multiple
sclerosis (MS) (3–5) and type 1 diabetes (6), neuropathological
syndromes like schizophrenia and bipolar disorder (3), as well
as degenerative diseases, including amyotrophic lateral sclerosis
(7, 8).

Two members of the HERV-W family have been particularly
studied with respect to MS: MS-associated retrovirus (MSRV),
and the HERV-W fixed copy on chromosome7q. Both are
known to possess complete envelope protein ORF, MSRV-env
and syncytin-1, respectively, sharing 93% of sequence identity.
Free MSRV virus-like particles were repeatedly isolated from
leptomeningeal cells, B-lymphocytes and monocytes from MS
patients (9–12). Moreover, MSRV was associated with MS by
numerous clinical studies (13, 14), the expression of HERV-
W env was increased in MS patients and correlated to poor
prognosis (15).

The mechanisms responsible for the activation of HERV
gene expression are poorly understood. Infections by some
herpesviruses were shown to have transactivating effects on
HERV genes. While HSV-1 infection could activate the
transcription of HERV gag, env, and LTR sequences in vitro
(16), EBV infection induces the expression of env genes from
different HERV, including HERV-W (17, 18). In addition, human
herpesvirus (HHV)-6A and HHV-6B were shown to activate
the transcription of the Env protein of HERV-K18 (19, 20).
Interestingly, both EBV and HHV-6 were also associated to MS
pathogenesis (21, 22). However, a more direct link demonstrating
the involvement of HHV-6 in MS pathogenesis is still missing.

HHV-6A uses CD46 as its entry receptor (23). CD46
is ubiquitously expressed type I transmembrane glycoprotein
described initially as a complement regulatory protein, binding
C3b and C4b and acting as a co-factor in their factor I-mediated
proteolytic cleavage, preventing thus complement deposition on
host tissue (24). Another physiological ligand of CD46, the Notch
family member Jagged-1, plays a role in Th1 cell responses
(25). Extracellular part of CD46 contains 4 short consensus
repeats (SCR) and one Ser-Thr-Pro-rich (STP) domain close
to the membrane and alternative splicing mechanisms lead to
the expression of different isoforms of the CD46 protein, which
can be placed into two groups according to their cytoplasmic
tail, CD46-Cyt1 or CD46-Cyt2. Human lymphocytes are known
as the main targets for HHV-6 infection, although several cell
types from central nervous system (CNS), including astrocytes
and oligodendrocytes, have been successfully infected by HHV-
6A and, with lower efficiency, by HHV-6B, (26). In addition,
several other human pathogens use CD46 as a receptor, including
measles virus vaccine strain, adenovirus B andD, Streptococci and
Neisseriae (27).

This study initially aimed to analyze the potential link between
HHV-6A infection and expression of HERV-W. We have
demonstrated that both HHV-6A and engagement of its receptor
CD46 with several ligands induce MSRV-Env expression. We
further identified the CD46-Cyt1 isoform to be responsible
for this effect. Finally, we demonstrated the proinflammatory
potential of HHV-6A through the induction of MSRV-Env which
in turn activates TLR4 receptor. These results provide important
information on the cross-talk between HHV-6A binding to
its CD46 receptor and the transactivation of HERV-env genes
leading to inflammation, which may play an important role in
the pathogenesis of inflammatory diseases.

MATERIALS AND METHODS

Cells
Astroglyoblastoma cell line U87-MG (U87) (ATCC R©HTB-
14TM) and neuroblastoma SH-SY5Y (ATCC R©CRL2266 TM) cells
were cultured in Dubelco’s Modified Eagles Medium (DMEM,
GibcoTM), complemented with 10% heat inactivated Fetal
Calf Serum (FCS), 1% glutamine, 1% penicillin/streptomycin.
T-cell line HSB-2 (ATCC R©CLL 120.1TM) was cultured in
RPMI-1640 (GibcoTM), 10% of FCS, 1% glutamine, and
1% penicillin/streptomycin. Peripheral blood mononuclear
cells (PBMC) from healthy donors were obtained from the
“Etablissement Français du Sang” of Lyon (France). PBMC were
isolated by Ficoll separation from blood samples and cultured in
RPMI-1640 medium completed with 10% of FCS, 1% glutamine,
and 1% penicillin/streptomycin. Healthy donors signed a written
Informed Consent Form, documented at the Centre for Blood
Transfusion of Geneva, allowing the commercial use of their
blood and blood components for medical research after definitive
anonymization. Cord blood mononuclear cells (CBMC) were
kindly provided by Dr M. Ducdodon after density gradient
centrifugation of human cord blood and CD34+ cells depletion
using immunomagnetic beads (CD34+ MicroBead Kit, Miltenyi
Biotec, Bergisch-Gladbach, Germany), as described previously
(28). Umbilical cord blood was obtained from healthy full-term
newborns with written parental informed consent according
to the guidelines of the medical and ethical committees of
Hospices Civils de Lyon and of Agence de Biomédecine, Paris,
France. Experiments using cord blood were approved by both
committees and were performed in full compliance with French
law.

Virus
HHV-6A (GS strain) and HHV-6B (HST), both kindly provided
by Dr L. Naesens (Belgium), were propagated respectively, in
the HSB-2 and MOLT-3 cell lines. For virus production, cells
were infected at a multiplicity of infection (MOI) of 0.05
for 1–2 h at 37◦C. At maximum cytopathic effect, cells were
centrifuged, resuspended in 10-fold lower volume of RPMI
supplemented with 20% of FCS, and frozen at −80◦C. After 3
thawing-freezing cycles, virus suspensions were then clarified by
a succession of centrifugation (10min, 1,500 rpm, 4◦C) and final
supernatant was loaded on a 20% sucrose layer. Viruses were
pelleted by ultracentrifugation (2 h, 28,500 rpm, SW32Ti rotor)

Frontiers in Immunology | www.frontiersin.org 2 December 2018 | Volume 9 | Article 2803

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Charvet et al. CD46-Induced Activation of MSRV-Env

and resuspended in cold RPMI. Non-infected cell suspensions
were processed in identical conditions and obtained product
was used for “mock” infections. Virus titers were determined
by immunofluorescence. HSB-2 cells were cultured in 96-well
plates and infected in quadruplicate with serial dilutions of
viral stock. After 5 days of culture, cells were harvested on 10-
well slides, fixed in formalin 2.5%, stained with mouse anti-p41
primary antibody (Santa Cruz Biotechnology) and Alexa Fluor
488- conjugated goat anti-mouse secondary antibody (Molecular
Probes). Titers were calculated in tissue culture infective dose
50 per ml (TCID50/ml) or in PFU/ml. Recombinant measles
virus (MV) IC323, expressing vaccine strain Edmonsoton H and
EGFP was kindly provided by T. Yanagi (Japan) (29, 30) and was
propagated on Vero fibroblasts and harvested from infected cells
when a strong cytopathic effect developed. All virus stocks were
free of mycoplasma, as tested byMycoAlert test (Lonza) and were
conserved at−80◦C.

Infections and Stimulations
Infection of HSB-2 cells, CBMC, PBMC, with HHV-6A was
performed in suspension in the small volume for 1 h 30 at 37◦C
with an indicatedMOI. Cells were then pelleted and resuspended
in fresh medium for further culture. U87 and SH-SY5Y cells
were seeded in 6-well plates, and infected with HHV-6A, HHV-
6B or MV with indicated MOI. In some experiments HHV-6A
was inactivated using ultraviolet light (254 nm), for 5min on
ice, placing the lamp 15 cm above the tube containing the virus.
The efficiency of viral inactivation was assessed by titration of
inactivated virus and was used if at least 98% of inactivation was
reached.

U-87 cells were stimulated with several anti-CD46 Abs
recognizing different CD46 SCR domains: anti-SCR1 Tra2.1
(31, 32), anti-SCR1 MC20.6 (33), anti-SCR3-4 GB24 (34), anti-
SCR4 MEM-258 (Biolegend) or rabbit polyclonal anti-CD46
antibody (35) in concentrations indicated in figure legends.
Stimulation with murine IgG1 immunoglobulin MOPC-21 (BD
Bioscience) was used as a control. C3b was obtained as described
previously (36, 37) and used as 50mM. Cells were cultured
on cover glass slides for 24h, culture media was removed and
replaced by treatment for 5h before PBS wash and fixation in
2.5% formalin during 10min at room temperature (RT) before
immunofluorescence staining or flow cytometry.

Flow Cytometry
Cells were stained for membrane expression of MSRV-Env
using murine IgG1 anti-MSRV-Env mAb GN_mAb_Env01 (38),
provided by GeNeuro. Initially, 5 × 105 to 106 cells/well were
plated in 96 well plates and centrifuged 3min, 1,500rpm, at
4◦C for all washings, using buffer containing 2.5% PBS, 0.02%
NaN3. Cells were than incubated 20min, 4◦C, with anti-MSRV-
Env (2 µg/106 cells), in wash buffer (in PBS with 1% BSA
for 30min). After subsequent 3 washes, cells were stained for
20min at 4◦C with secondary anti-mouse IgG F(ab’)2 fragment
(Alexa Fluor 647 conjugate) (Cell Signaling Technology). Cells
were subsequently washed and viable cells were acquired on
FACSCalibur 3C cytometer (BD Biosciences, Belgium) and FACS

analysis was performed using CellQuestPro (BD Biosciences)
followed by FlowJo (Tree Star Inc., USA) analysis.

Immunofluorescence Analysis
Cells were cultured on cover glass slides in 6 wells plates. After
fixation (formalin 2.5%, 5min at RT) cells were washed several
times in PBS, permeablized using triton X-100 0.5% for 10min.
Saturation was performed using PBS/4% horse serum (30min at
RT) before incubation with specific mouse anti-MSRV-Env IgG1
(GN_mAb_Env01, GeNeuro) (38), diluted to 2µg/ml, in PBS/4%
horse serum/0.5% Triton-X100, during 1 h at RT. In those
experiments where murine mAbs were used to stimulate CD46,
MSRV-Env was stained using GN_mAb_Env01 directly coupled
with Alexa 555 dye using ZenonTM Alexa fluorTM 555 mouse
IgG1 labeling kit (Molecular Probes). In some experiments, anti-
MSRV-gag mAb (GN_mAb_Gag06 GeNeuro) or isotype control
IgG1 were used in the same conditions. After multiple washes,
cells were incubated with the secondary donkey anti-mouse
antibody conjugated with Alexa 555 (Molecular Probes), diluted
to 1/750 in PBS/4% horse serum/0.5% Triton-X100 (1 h, RT).
HHV-6 staining was performed using biotinylated anti-HHV-6
p41 Ab (9A5D2, Santa Cruz) followed with streptavidin-Alexa
488 (ThermoFisher) staining. The nuclei were counterstained
with DAPI (Sigma). After multiple washes in PBS, mounting was
performed using Fluoroprep (BioMérieux). Cells were analyzed
using an Axioplan 200 imaging microscope (Zeiss).

Inhibition of CD46 Signaling Pathways
U87 cells were pretreated with small molecule inhibitors,
dissolved in DMSO for 45min, washed and then stimulated with
HHV-6A (MOI = 1) for 5 h. Following inhibitors were used:
5µMBisindolylmaleimide I (Protein Kinases C inhibitor, Sigma)
(39) or 5µM Src Inhibitor-1 (Src kinase inhibitor, Sigma) or
40µMApigenin (Casein Kinase 2 inhibitor, Sigma) (40).

Inhibition of CD46-Cyt1 Expression by
si-RNA
Control siRNA and CD46 Cyt1-specific siRNA (AUACCUAAC
UGAUGAGACCUU) were obtained from Dharmacon (Perbio,
France), and used as previously described (41). U87 cells (5 ×

104 cells) were cultured in 6-well plates for 1 day in OptiMEM
(Invitrogen), supplemented with 10% FCS before transfection
of 30 nM siRNA with Lipofectamine RNAiMAX (Invitrogen)
according to manufacturer’s instructions. mRNA expression level
was assessed by quantitative RT-PCR after 2 days, as described
below. Results are presented as means ± standard errors of the
means (SEM) (n= 3).

Quantitative RT-PCR
RNA was isolated from cells using a NucleoSpin RNA extraction
kit (Macherey-Nagel) following the manufacturer’s instructions.
Total RNA quantification and integrity was assessed using
Experion RNA StdSens analysis kit (Bio-Rad, CA). Next, cDNA
was generated from 1 µg of total RNA using iScript reverse
transcriptase (Bio-Rad). TaqMan probes and primers specific
for human MSRV env, decribed to distinguish it from HERV-
W7q env syn 1 (42) were used: MSRV env: F: CTT CCA
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GAA TTG AAG CTG TAA AGC, R: GGG TTG TGC AGT
TGA GAT TTC C, probe: FAM-5

′
-TTC TTC AAA TGG AGC

CCC AGA TGC AG-3
′
TAMRA In addition, the following

primers were used: GAPDH: F: AGC AAT GCC TCC TGC
ACC ACC AAC, R: CCG GAG GGG CCA TCC ACA GTC T,
tbp: F: GCG GTT TGC TGC GGT AAT CAT, R: GAC TGT
TCT TCA CTC TTG GCT CCT GT [as described: (20)], all
purchased from Eurogentec. Quantification of transcripts was
performed with the CFX96 Real-time PCR detection system (Bio-
Rad) and all reactions were done in 10 µl mixtures using iQ
SYBR Green Supermix or TaqMan iQ Supermix according to
the manufacturer’s instructions (Bio-Rad). Data were analyzed
with the Bio-Rad CFX Manager Software. The reactions were
optimized to reach an efficiency of 2 so that a relative 11Ct
quantification approach could be used (43). Each sample was
normalized to the endogenous control gene (GAPDH and tbp),
and the transcript which did not change significantly following
the infection in the given cell type was chosen for the final
quantification. All data are presented as the fold change relative
to the control.

To determine the expression of CD46 Cyt1 and Cyt2 isoforms,
reverse transcription was performed on 0.5 µg of total RNA
using oligo(dT) and random-hexamer oligonucleotide primers
(iScript cDNA synthesis kit; Bio-Rad), amplified on a Biometra
Tpersonal PCR device (Biometra), and cDNAs were diluted 1/10.
Quantitative PCR was performed using Cyt1 and Cyt2 primers
described in Astier et al. (44): Cyt1 forward: CTAACTGAT
GAGACCCACAGAGAAGT, reverse: TCAGCTCCACCATCT
GCTTTC, Cyt2 forward: GAAGAAAGGGAAAGCAGATGGT,
reverse: CCTCTCTGCTCTGCTGGAGTG. GAPDH was used as
housekeeping gene, amplified by primers as described above.
Results are means ± standard errors of the means (SEM) (n
= 3). Experiments were performed in order to validate the
interpretation of quantitative real-time PCR (RT-qPCR) data
following the MIQE guidelines (45).

TLR4 Signaling Assay
HEK-BlueTM-hTLR4 cells (Invivogen) were used to study the
stimulation of human TLR4 by monitoring the activation of
NF-kB, as described by supplier’s instructions. Cell line was
obtained by co-transfection of the human or murine TLR4,
MD-2, and CD14 co-receptor genes, and an inducible SEAP
(secreted embryonic alkaline phosphatase) reporter gene into
HEK293 cells. The SEAP reporter gene is placed under the
control of an Il-12 p40 minimal promoter fused to five NF-
κB and AP-1 binding sites. Stimulation with a TLR4 agonist
activates NF-κB and AP-1, which induce the production of
SEAP, assessed by a colorimetric assay. HEK-BlueTM-hTLR4
culture was performed according to supplier’s recommendations.
In initial experiments, stimulation by LPS (LPS-EK ultrapure,
Invivogen) was performed to test the system efficiency. HEK-
BlueTM-hTLR4 cells were cultured in presence of HHV-6A,
supernatant of uninfected or HHV-6A infected U87 cells (MOI:
0.1; 24 h post infection). In addition, the co-culture of HEK-
BlueTM-hTLR4 and uninfected or HHV-6A infected U87 cells
(MOI: 0.1; 24 hpi) were performed to promote cell-cell contacts.
All stimulations were performed during 16 h and TLR4 activation

was revealed colorimetrically with QUANTI-BlueTM detection
assay (Invivogen). Optical densities were measured with a
TECAN infinite-200 plate reader (TECAN) at 620 nm. Results
were expressed in corrected DO (DO of untreated condition
were subtracted from all other conditions) and obtained from 3
independent experiments.

Statistical Analysis
Student’s t-test was used to compare each group to the control
group when data passed the normality test, otherwise Mann–
Whitney rank sum test was used to compare non-normal data.
P-values < 0.05 were considered significant. Statistical analyses
were performed with Prism 5.04 (GraphPad Software) and used
to plot the data and for calculations.

RESULTS

HHV-6A Infection Induces the Expression
of MSRV-env
To analyze the capacity of HHV-6A infection to transactivate
MSRV-env gene, we examined initially the level of mRNA
expression of MSRV-env in few cell types susceptible to HHV-
6A infection: T-cell line HSB-2, cord blood mononuclear
cells (expected to be naive for HHV-6A infection) and
astroglyoblastoma cell line U87-MG (U87). We observed the
induction of MSRV-env transcription in both primary cells
and cell lines (Figure 1A), suggesting that either HHV-6A
infection or contact with the viral particles may awake MSRV-
env transcription. Then, we analyzed the induction of MSRV-
Env at the protein level, following HHV-6A infection, using
MSRV-Env-specific mAb GN_mAb_Env01 (38) (Figure S1).
Cytofluorometric analysis revealed the strong surface expression
of MSRV-Env in infected HSB-2 and U87 cells (Figure 1B).
Further immunofluorescence analysis confirmed the expression
of MSRV-env at the protein level in infected peripheral blood
mononuclear cells (PBMC), as well as HSB-2 and neuroglial
cell lines U87 and SH-SY5Y (Figures 1C–F). In the absence
of any stimulation MSRV-Env expression was not detected in
any of the tested cell types (Figure S2), confirming further the
specificity of utilized mAb. HHV-6A infection of analyzed cell
types was further confirmed by staining with anti-HHV-6A p41
Ab (Figures 2A,B and data not shown)

In addition to MSRV-Env transactivation, HHV-6A infection
induced also MSRV-gag expression (Figures 2C,D), suggesting
its potential for the production of the complete MSRV particles.
The kinetics of expression was further analyzed in U87 cells
(Figure 3). The induction of MSRV-Env was observed rapidly,
starting already 1 h after contact with the virus, suggesting that
viral replication was not necessarily required.

Engagement of CD46 Domains SCR3 and
SCR4 Induces Expression of MSRV-Env
We further analyzed whether the stimulation of HHV-6A
receptor CD46, by different ligands, could induce the MSRV-
Env expression in U87 cells (Figure 4). While UV-inactivated
HHV-6A induced MSRV-Env similarly to the infectious HHV-
6A (Figures 4A,B), neither HHV-6B nor measles virus presented
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FIGURE 1 | HHV-6A infection induces expression of MSRV-Env in different cell types. (A) HSB2 cells, cord blood mononuclear cells (CBMC) and U87 cells were

infected with HHV-6A at MOI 1 or incubated with the mock control for 24 h and MSRV env expression was analyzed by RT-qPCR. The values are expressed relatively

to those in mock-infected cells and error bars represent SEM of 3 independent experiments. (B) Cytofluorometric analysis of U87 and HSB-2 cells infected or not with

HHV-6A for 24 h at MOI 0.1 and stained by anti-MSRV-Env mAb, followed by anti-mouse Ig-Alexa 647 (green: non-infected cells + secondary Ab staining; orange:

non-infected cells + complete staining; blue: infected cells + secondary Ab staining, pink: infected cells + complete staining). (C,C’) U87, (D,D’) SH-SY5Y, (E,E’)

HSB-2, and (F,F’) peripheral blood mononuclear cells (PBMC) were either incubated with mock preparation (C–F) or infected at MOI 0.1 (C’–F’) and analyzed 24 h

later by immunofluorescence using anti-MSRV-Env mAb, followed by anti-mouse Ig-Alexa 555 (red staining). HHV-6A induced syncytia formation of adherent infected

cells (C’,D’, *). DAPI (blue staining) was used to visualize cell nuclei (Bar = 50µm). Data are representative of at least three independent experiments.

any detectable effect (Figures 4C,D). In contrast to HHV-6A,
closely related HHV-6B is known to use CD134 as an entry
receptor (46), which may prevent the induction of MSRV-Env
via engagement of the viral receptor. Nevertheless, measles virus

vaccine strain uses CD46, more particularly its domains SCR1
and 2 (32), but did not have any effect of MSRV-Env induction
either (Figure 4D). As HHV-6A is known to bind distinct CD46
domains frommeasles virus, notably SCR 2 and 3 (47), we further
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FIGURE 2 | MSRV-ENV and MSRV-GAG were expressed in HHV-6A infected cells. (A,C) U87 and (B,D) HSB-2 cells were infected with HHV-6A during 24 h. Cells

were fixed and stained for MSRV-ENV (GN_mAb_Env01) (A,B) or MSRV-GAG (GN_mAb_Gag06) (C,D) followed by anti-mouse-Alexa 555 (red staining). HHV-6

staining was revealed using biotinylated anti-HHV-6-p41 mAb, followed by streptavidin-FITC (green staining). HHV-6A infected cells expressing either MSRV-ENV or

MSRV-GAG were pointed by arrowhead. DAPI (blue staining) was used to visualize cell nuclei. Bar = 50µm. Bottom left frames (B,D): higher magnification of cell

pointed by arrowhead.

FIGURE 3 | Kinetics of HHV-6A-induced MSRV-Env production in U87 cells. U87 cells were infected with HHV-6A (MOI 1) and analyzed at indicated time points after

infection by immunofluorescence using anti-MSRV-Env mAb, followed by anti-mouse-Alexa 555 (red staining, arrowhead). HHV-6A induced syncytia formation

observed at 3 h p.i. (*). DAPI (blue staining) was used to visualize cell nuclei. Bar = 50µm.
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FIGURE 4 | Both infectious and UV-inactivated HHV-6A, but neither HHV-6B nor Measles virus, could induce MSRV-Env expression. U87 cells were either infected or

put in contact with UV-inactivated virus and observed 24 h later for the expression of MSRV-Env. Following viruses at MOI 1 were used: (A,C) HHV-6A, (B)

UV-inactivated HHV-6A, (D) mock-infected control, (E) HHV-6B, and (F) recombinant measles virus (MeV) vaccine strain expressing EGFP (green staining, *syncytia

formation). The expression of MSRV-Env was detected using anti-MSRV-Env mAb immunofluorescence analysis, followed by anti-mouse-Alexa 555 (red staining),

including DAPI (blue staining) to visualize cell nuclei (bar = 50µm). Alternatively, primary mAb was replaced with the isotype control (C).

analyzed the potential effect of the other CD46 ligands, binding
different CD46 SCRs.

Interestingly, C3b component of complement, known to
bind to CD46 SCR domains 2-4 (48, 49) induced MSRV-Env
expression (Figure 5B), confirming the viral infection is not
mandatory and suggesting the necessity for the engagement
of particular domains of CD46 for the Env induction. To
further analyze which domain has critical importance in the
transactivation, we used a panel of anti-CD46 Abs, recognizing
different regions of the extracellular CD46 (Figure 5). While
polyclonal anti-CD46 Ab induced the expression of both

intracellular and membrane MSRV-Env (Figures 5A,G), only
mAbs GB24 and MEM258, recognizing either both SCR3
and 4 or only SCR4 respectively, were capable of triggering
MSRV transactivation (Figures 5E,F). In contrast, mAbsMC20.6
and Tra2.1, recognizing SCR1, and used in the concentration
known to block measles virus infection in our previous
experiments (data not shown). did not affect MSRV-Env
expression (Figures 5C,D). Altogether, these results strongly
support the conclusion that the engagement of CD46 SCR3
and 4 is required for the induction of MSRV-Env expression
(Figure 5H).
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FIGURE 5 | Engagement of CD46-SCR3 and/or CD46-SCR4 trigers intracellular and cell surface MSRV-Env expression. Several CD46 ligands known to bind different

CD46 SCR domains were used to stimulate U87 cells: (A,G) anti-CD46 rabbit polyclonal antibody, (B) C3b component of complement (50mM), (C) Anti-SCR1 Tra2.1

(75µg/ml), (D) anti-SCR1 MC20.6 (75µg/ml), (E) anti-SCR3-4 GB24 (75µg/ml), (F) anti-SCR4 MEM-258 (50µg/ml). The expression of MSRV-Env was detected

using anti-MSRV-Env mAb-coupled to Alexa 555 by immunofluorescence analysis (red staining, arrowhead), including DAPI (blue staining) to visualize cell nuclei (bar

= 50µm) (A–F), or by cytofluorometry (G), using anti-MSRV-Env mAb followed with anti-mouse-Alexa 647 (blue: cells stimulated with anti-CD46 + secondary Ab

staining, pink: cells stimulated with anti-CD46 followed by complete anti-MSRV-Env staining, green: cells stimulated with isotype control mAb + staining with

secondary Ab; orange: cells stimulated with isotype control mAb followed by complete anti-MSRV-Env staining). Good cell viability was observed in all stimulation

conditions. (H) Schematic representation of CD46 SCR domains recognized with utilized CD46 ligands, having a different effect on the induction of MSRV-Env.

CD46-Cyt1 Isoform Engagement Requires
Protein Kinase C to Induce MSRV-Env
Expression
Due to the alternative splicing the CD46 protein could have
two cytoplasmic tails, CD46-Cyt1 and 2, known to engage
different signaling pathways (50). We thus analyzed which
CD46 cytoplasmic isoform is involved in the induction of
MSRV-Env expression (Figure 6). Inhibition of CD46-Cyt1
expression by si-RNA in U87 cells (Figure 6A) led to the
loss of HHV-6A-induced MSRV-Env expression (Figures 6B–E),

suggesting the critical role of this cytoplasmic domain in the
transactivation pathway.

CD46 is known to induce different intra-cellular signals,
which can lead to diverse changes in cellular activities
(51, 52). CD46-Cyt1 possess the putative signal for tyrosine
phosphorylation by protein kinase C (PKC) and casein
kinase 2 (CK-2), while CD46-Cyt2 has the presumed
signal for tyrosine phosphorylation by src kinases and CK-
2 (53, 54) (Figure 7A). We used specific inhibitors for
each of these kinases and analyzed whether subsequent
HHV-6A infection could still trigger MSRV-Env expression
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FIGURE 6 | Induction of MSRV-Env expression is dependent of CD46-Cyt1 isoforme. (A) CD46-Cyt1 and CD46-Cyt2 mRNA expression levels in

si-CD46-Cyt1-treated U87 cells normalized to si-control treated cells, analyzed by RT-qPCR (relative expression). Error bars, mean ± SD of three experiments,

statistical test used: nonparametric KS test (n.s. P > 0.1, ****P < 0.0001, vs. untreated condition) (B–E) MSRV-Env expression in U87 cells, treated with either si-RNA

control (B,D) or and si-Cyt1 (C,E), and either left non-infected (B,C) or infected with HHV-6A (MOI 0.1) for 24 h (D,E). MSRV-Env expression was determined using

anti-MSRV-Env mAb, followed by anti-mouse-Alexa 555 (red staining) cellular nuclei were visualized using DAPI (blue staining), bar = 50µm.

Figures 7B-J). Strikingly, highly selective, cell-permeable PKC
inhibitor bisindolylmaleimide (BIM) completely abrogated
MSRV-Env induction (Figure 7D), while the CK-2 inhibitor
Apigenin and Src kinase inhibitor-1 did not exhibit any
effect (Figures 7G,J). In agreement with the implication
of CD46-Cyt1 in MSRV-Env induction seen in Figure 6,
these results suggest the necessity of CD46-Cyt1 tyrosine

phosphorylation and PKC function in the triggering MSRV-Env
expression.

Activation of the Human TLR4 by
HHV-6A-Induced MSRV-Env
Recombinant MSRV-Env was shown to act via TLR4 to induce
the inflammatory response in endothelial cells (55) and to
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FIGURE 7 | Activation of MSRV-Env expression requires protein kinase C activity. (A) Schematic representation of putative phosphorylation sites within CD46-Cyt1

and Cyt2 and candidate kinases and their inhibitors (PKC: Protein Kinases C; CK-2: Casein Kinase 2). (B,E,H) Transactivation controls. (C,D) Effect of

bisindolylmaleimide 5µM (BIM) on HHV-6A-induced MSRV-Env expression; (F,G,I,J) absence of the effect of, Apigenin 40µM and Scr-inhibitor 5µM on MSRV-Env

expression. The expression of MSRV-Env was analyzed by immuofluorescence, using anti-MSRV Env mAb, followed by anti-mouse-Alexa 555 (red staining,

arrowhead) and representative images from 3 independent experiments were presented. DAPI (blue staining) was used to visualize cell nuclei, bar = 50µm.
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inhibit oligodendroglial precursor cell differentiation (56). The
extracellular part of MSRV-Env, but not the closely related
HERV-W-Env syncytin-1, can trigger TLR4 signaling in primary
humanmonocytes and dendritic cells (57). To determine whether
HHV-6A-induced MSRV-Env may have a similar functional
effect, we analyzed its capacity to stimulate human TLR4 receptor
using as a functional assay HEK-Blue hTLR4 cells, where
activation of TLR4 can be monitored through a SEAP reporter
gene (58) (Figure 8A). Several experimental conditions were
used, allowing to test the effect of MSRV-Env either expressed
on the surface of HHV-6A-infected U87 cells or liberated in the
supernatant. Indeed, HHV-6A infection of U87 cells strongly
activated TLR4 receptor signaling, following either direct contact
with HEK-Blue-hTLR4 indicator cells or after the exposure to
the culture supernatant from infected U87 cells (Figure 8B).
These results thus demonstrate that HHV-6A-induced both cell
membrane-expressed and secreted MSRV-Env is functional and
could exhibit a proinflammatory action via TLR4.

DISCUSSION

The regulation of the expression of HERV genes and their
potential link to different diseases is just starting to be understood
(16). Our study identifies CD46 as a critical factor in HHV-
6A-mediated MSRV induction. Similarly, EBV was shown to
transactivate HERV-K18 before the transcription of viral genes,
by docking to the human complement receptor CD21 (59).
Furthermore, HHV-6B strain PL, shown to require CD46-
Cyt1 for infection (60), induced the expression of HERV-K18
mRNA in PBMCs without requirement for viral transcription
and replication (20). Understanding the regulation of HERV-Env
expression requires the differentiation whether a given factor is a
cause or a result of particular disease or physiological condition.
In that context, CD46 represents a connection between different
host and environmental factors with the intracellular machinery
as: (A) it binds C3b and C4b component of the complement
and regulates their cleavage; (B) it also binds six different
human pathogens [reviewed in Cattaneo (27)]; (C) it facilitates
endosomal TLR9 triggering by DNA adenoviruses (61); (D) it
promotes measles virus-derived peptide presentation by MHC-II
molecules (62, 63); and (E) it was described to be an important
link between innate and adaptive immunity (36). Therefore,
CD46 presents remarkable cell membrane candidate which may
allow the extracellular signals to “wake up” certain HERV genes
and may thus answer to some of the key questions in the
regulation of HERV-Env expression.

Although CD46 signaling pathways have been thoroughly
studied in lymphocytes (50), they are largely unknown in
neuroglial cells. CD46-Cyt2 tyrosine phosphorylation by src
kinase Lck was previously observed in Jurkat T cell line
(53). In addition, the infection of human epithelial cells by
Neisseria, using CD46 SCR3 and STP domain as a receptor,
leads to the Cyt2 tyrosine phosphorylation (64). Although
CD46-Cyt1 is involved in intracellular signaling and interacts
with several intracellular proteins, including scaffold proteins
DLG (65) and GOPC (41) and serine-threonine kinase SPAK

FIGURE 8 | HHV-6A-induced MSRV-Env triggers human TLR4. (A) Schematic

presentation of experimental conditions. HEK cells co-expressing human TLR4

(hTLR4) and TLR4 activation reporter gene (SEAP), were stimulated with either

HHV-6A, supernatants from HHV-6A infected or non-infected U87 cells or

co-cultured in presence of U87 cells previously infected with HHV-6A or not.

hTLR4 activation was monitored colorimetrically using a SEAP reporter gene

placed under the control of an NF-κB inducible promoter. (B) Data are

expressed as corrected absorbance at 620 nm (absorbance obtained for

HEK-blue + HHV-6A, mean: 0.27 ± 0.3, was subtracted from the absorbance

obtained for other experimental conditions). Statistical analysis was performed

using t-test on means ± SEM from three independent experiments (***P <

0.001, ****P < 0.0001, vs. uninfected conditions).

(66), this is the first demonstration of the potential role of
Cyt1 phosphorylation by PKC-dependent pathway for signaling
through CD46. Interestingly, the transactivation of HERV-K18
by EBV through its interaction with EBV cellular receptor CD21,
known as complement receptor 2, was shown to be dependent
on PKC activation as well (59), suggesting a common signaling
pathway in the transactivation of HERV genes.

As MSRV-Env has a powerful immunopathogenic potential
to activate an inflammatory cascade through interaction with
TLR4 and has been closely associated to the pathogenesis of
MS, our findings further underline the link between MS and
different environmental factors including viral infection, such
as HHV-6A. Indeed, many clinical studies have shown that
HHV-6 DNA presence is detected more frequently in the blood
of MS patients than in healthy donors (67–70), suggesting
a putative association between HHV-6 infection and MS
pathogenesis. Furthermore, MSRV transcripts and antigens have
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also been detected more frequently and in higher levels in the
blood of MS patients (13, 14). HHV-6A-induced increase in
MSRV-Env expression in human glial cell lines demonstrated
here, supports the hypothesis that HHV-6 infection in MS
patients could increase the expression of MSRV genes, which
may in turn participate in the establishment of inflammation,
via TLR4 stimulation, therefore promoting the immune
disorder.

Our study demonstrated that stimulation with several CD46
ligands, including inactivated HHV-6A, C3b component of the
complement and anti-CD46 antibodies, up-regulates the MSRV-
Env expression. This strongly suggests that env transactivation
could be triggered through a direct interaction between CD46
and its ligands, such as bacteria’s using CD46 SCR3 and 4 as
a receptor, in addition to HHV-6A, revealing new outcome of
CD46 stimulation. It may thus contribute to a feedback-loop
maintaining a stimulation, after the initial pathogen-induced
activation. Indeed, CD46 is known to trigger different intra-
cellular signals which can lead to diverse changes in cellular
activities (50). CD46-induced MSRV-env production may be
involved in the generation of the inflammatory process by
pathogens using CD46 as a receptor, but also in other conditions
where production of C3b component of the complement is
induced. This would contribute to the multifactorial etiology
of different human diseases, including MS. Strikingly, the
alterations of CD46 regulatory functions in T-lymphocytes as
well as in dendritic cells have been observed in patients with MS
[reviewed in Astier (71)]. In this context, we could hypothesize
that CD46 pathway could be dysfunctional in certain patients, as
it has be shown in some chronic inflammatory diseases (50, 72),
and if such alterations occur in glial cells, they could facilitate
MSRV transactivation in the CNS. Further understanding the
role of CD46 in the induction of HERV-Env should provide an

important insight in the field and help identifying novel targets
for preventive and therapeutic interventions.
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