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Muscle Specific Kinase myasthenia gravis (MuSK-MG) is an autoimmune disease
that impairs neuromuscular transmission leading to generalized muscle weakness.
Compared to the more common myasthenia gravis with antibodies against the
acetylcholine receptor (AChR), MuSK-MG affects mainly the bulbar and respiratory
muscles, with more frequent and severe myasthenic crises. Treatments are usually
less effective with the need for prolonged, high doses of steroids and other
immunosuppressants to control symptoms. Under physiological condition, MuSK
regulates a phosphorylation cascade which is fundamental for the development and
maintenance of postsynaptic AChR clusters at the neuromuscular junction (NMJ). Agrin,
secreted by the motor nerve terminal into the synaptic cleft, binds to low density
lipoprotein receptor-related protein 4 (LRP4) which activates MuSK. In MuSK-MG,
monovalent MuSK-IgG4 autoantibodies block MuSK-LRP4 interaction preventing MuSK
activation and leading to the dispersal of AChR clusters. Lower levels of divalent
MuSK IgG1, 2, and 3 antibody subclasses are also present but their contribution to
the pathogenesis of the disease remains controversial. This review aims to provide a
detailed update on the epidemiological and clinical features of MuSK-MG, focusing on
the pathophysiological mechanisms and the latest indications regarding the efficacy and
safety of different treatment options.
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OVERVIEW

Myasthenia gravis with antibodies against Muscle Specific Kinase myasthenia gravis
(MuSK-MG) is an autoimmune disease that impairs transmission at the neuromuscular
junction (NMJ), leading to generalized weakness and fatigability of skeletal muscles.
MuSK-MG represents an important subgroup of autoimmune myasthenia affecting
5–70% of patients (depending on geographical location) who are negative for the more
common antibodies against the acetylcholine receptor (AChR; Hoch et al., 2001; Vincent
and Leite, 2005). Compared to the form with AChR antibodies, MuSK-MG differs
in terms of epidemiology, clinical features, pathogenic mechanisms, and response to
treatment. Autoantibodies, which are mainly of the monovalent IgG4 subclass, target and
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block the function of MuSK, a tyrosine kinase located on
the muscle post-synaptic membrane, disrupting a finely tuned
pathway that regulates the development and maintenance of
high-density clusters of AChRs at the NMJ. IgG1, 2 and 3 MuSK
antibodies are also shown in vitro to be potentially pathogenic
but their mechanisms in vivo have not been identified.

The following review will describe the clinical and
pathophysiological features of MuSK-MG, focusing on the
effect of the autoantibodies on the AChR clustering pathway,
and the main principles of diagnosis and treatment.

EPIDEMIOLOGY

Several epidemiological studies have been carried out since
MuSK antibodies were discovered in 2001 (Hoch et al., 2001)
and the incidence of MuSK-MG appears to vary widely
across countries (Vincent et al., 2008). Therefore, the general
prevalence of the disease is difficult to estimate due to this
variability. Mediterranean countries, especially Italy, Turkey,
and Greece, present the highest frequency of MuSK-MG (Evoli
et al., 2003; Tsiamalos et al., 2009). On the other hand,
prevalence appears to be lower among those populations that
live at northern latitudes (Niks et al., 2007; Vincent et al.,
2008) and higher in people of Afro-American origin (Oh
et al., 2009). Considering this particular ethnic-geographical
distribution, together with the association with HLA class
II DR14 DQ5 (Niks et al., 2006; Bartoccioni et al., 2009;
Alahgholi-Hajibehzad et al., 2013), genetic background is likely
to play a significant role in the etiology of MuSK-MG although
other—and still undetermined—environmental factors are likely
to be involved.

Association with thymus pathology (either thymic
hyperplasia or thymoma) has only rarely been reported and
this has a direct implication on therapeutic management of
patients as thymectomy is not indicated in the current clinical
practice (Marx et al., 2013; Clifford et al., 2019).

MuSK-MG affects predominantly women (up to
9:1 female:male ratio), especially young females in their third
decade (Evoli et al., 2003; Guptill et al., 2011) and it is reported
rarely in elders and children (Pasnoor et al., 2010; Skjei et al.,
2013). This is in contrast with the distribution of AChR-MG in
which an increase of incidence in older males has been observed
over the last few decades (Carr et al., 2010).

CLINICAL FEATURES

Like other diseases that affect neuromuscular transmission, the
main clinical characteristic of MuSK-MG is the fluctuating
weakness and fatigability of the skeletal muscles, which improve
with rest and worsen after exercise. However, a diagnosis
of MuSK-MG can be challenging as clinical signs of the
disease, and pattern of muscle involvement can differ in
several ways from other forms of myasthenia. In particular,
symptom fluctuation may be subtle and, therefore, go unnoticed.
Moreover, proximal limb involvement can be mild or even
absent while respiratory distress and other bulbar symptoms,
such as difficulties in swallowing, chewing, and speaking, can

be severe and rapidly progressive. The misinterpretation of
these symptoms, which could support a diagnosis of a primary
myopathy or motor neuron disorder (Huijbers et al., 2016),
may contribute to a delay in the recognition and treatment of
MuSK-MG patients.

Ocular manifestations, usually consistent with mild and
symmetrical ophthalmoparesis and ptosis (drooping and
weakness of the eyelid), were initially thought to be less
prominent in MuSK-MG as they were reported to be the only
symptom at onset in 36% of MuSK-MG cases compared to
60% of AChR-MG (Guptill et al., 2011). However, a recent
retrospective analysis of Italian patients showed that the
involvement of extra-ocular muscles was present in more than
96% of the population studied, with a frequency comparable to
AChR-MG, and represents the first manifestation of the disease
in almost 60% of cases (Evoli et al., 2017). On the other hand, the
purely ocular disease is considered to be particularly rare—or at
least underdiagnosed—as all the patients in both those studies
evolved into generalized MG over time.

A highly specific clinical feature of MuSK-MG is the
involvement of bulbar and respiratory muscles, which affects
most of the patients and can be particularly severe. Patients
usually experience variable degrees of dysarthria (often with nasal
voice), dysphagia (mainly for fluids and associated sometimes
with weight loss), dysphonia, and dyspnoea (Evoli, 2006;
Ohta et al., 2007; Pasnoor et al., 2010; Guptill et al., 2011).
Respiratory crises are particularly frequent (up to 35% of cases)
representing a serious life-threatening event and are described
more commonly compared to AChR-MG (Vincent et al., 2003;
Deymeer et al., 2007). The weakness of neck and axial muscles
is usually associated with bulbar symptoms and, in patients
with a long history of severe disease, facial and tongue atrophy
represents a common finding (Evoli et al., 2003; Farrugia
et al., 2006b). When muscle atrophy occurs, it is clinically
associated with non-fluctuating weakness, myopathic changes in
the electrophysiology recordings, and fatty tissue infiltration at
the muscle MRI scans.

PATHOPHYSIOLOGY OF MuSK-MG

The AChR Clustering Pathway
To understand how autoantibodies directed against MuSK
impair transmission at the NMJ, leading to the full clinical
spectrum of myasthenia, it is necessary to understand the key
function of MuSK in the development and maintenance of the
NMJ and particularly in the clustering of AChRs (Figure 1).
MuSK is essential during the early stages of NMJ development,
mediating the signaling between the motor nerve terminal and
the muscle fiber, and guiding innervation by the growing motor
nerve towards areas where pre-patterned AChR clusters are
expressed (DeChiara et al., 1996; Glass et al., 1996b; Flanagan-
Steet et al., 2005; Panzer et al., 2006).

The signaling molecule that triggers all the downstream
events of the AChR clustering pathway is a heparan-sulfate
proteoglycan called agrin, which is secreted by the motor nerve
terminal and binds to its receptor, low-density lipoprotein
receptor-related protein 4 (LRP4), expressed on the muscular
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FIGURE 1 | Schematic representation of the neuromuscular junction (NMJ) and the clustering pathway of acetylcholine receptors (AChRs). (A) On the muscle
post-synaptic membrane, low density lipoprotein receptor-related protein 4 (LRP4) and Muscle Specific Kinase (MuSK) form a loose tetramer, and, at this stage,
AChRs are dispersed along the sarcolemma. (B) Agrin is secreted by the motor nerve terminal into the synaptic cleft and interacts with LRP4 inducing a
conformational change in the LRP4-MuSK tetramer. This leads to MuSK activation through an auto-phosphorylation loop of the tyrosine residues in its
intracytoplasmatic domain. (C) The recruitment of DOK7 amplifies MuSK phosphorylation and triggers the phosphorylation cascade downstream that involves
several intermediate proteins including Crk, Ckr-l, Abl, and Scr. Concomitantly, a subsidiary pathway leads to cytoskeletal rearrangements through the activation of
Rac1 and Rho GTPases. The clustering pathway culminates in the phosphorylation of the subunits of the AChR and the recruitment of rapsyn, which anchors the
AChR clusters to the underlying actin filaments. Furthermore, LRP4 participates in presynaptic development through a retrograde signal which increases the
clustering of ACh vesicles in the motor nerve terminal. (D) Via the extracellular matrix (ECM), MuSK interacts also with ColQ which, in turn, is attached in tetramers to
the enzyme acetylcholinesterase (AChE) responsible for the hydrolysis of acetylcholine (ACh) after its binding to the AChR.

sarcolemma (Godfrey et al., 1984; McMahan, 1990; Glass et al.,
1996a; Zhang et al., 2008; Figures 1A,B). LRP4 plays a double
role in synapsis maturation: it mediates agrin-induced MuSK
activation and, through a retrograde-signaling to the motor
axon, it contributes to the pre-synaptic maturation increasing
the clustering of acetylcholine vesicles (Wu et al., 2012; Yumoto
et al., 2012; Figure 1C). Alongside agrin, laminin-121 and other
proteins of the laminin family, which are synthesized by the
muscle cell and expressed in the basal lamina, are essential in

shaping the final structure of the NMJ. They contribute to the
formation of the junctional folds and balance the growth of the
pre-synaptic components of the NMJ such as the synaptic bouton
of the nerve terminal and the Schwann cells (Noakes et al., 1995;
Patton et al., 2001).

When agrin binds to the first β-propeller (BP) domain
of LRP4 (Zhang et al., 2011), it strengthens a heteromeric
tetramer with MuSK in a 2:2 stoichiometry. This conformational
change in LRP4-MuSK interaction triggers the auto- and trans-
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phosphorylation of MuSK intracytoplasmic domain and the
beginning of a phosphorylation cascade that culminates with
the clustering of AChRs (Zong et al., 2012; Figure 1B). To
sustain MuSK activation and stimulate the downstream pathway,
however, the recruitment of an additional intracellular adaptor,
the Downstream of Kinase 7 (DOK7), is necessary. DOK7, in the
form of a dimer, interacts with the intracytoplasmic domain of
MuSK, enhancing the trans-phosphorylation of MuSK’s tyrosine
residues (Bergamin et al., 2010).

MuSK and DOK7 activate each other and this reciprocal
activation triggers all the downstream events, which have
been only partially defined. Following MuSK-DOK7 activation,
several other adaptor proteins are phosphorylated and recruited,
in particular Crk and Crk-L (Hallock et al., 2010), as well as
other kinases, such as Abl (Finn et al., 2003), Scr (Mittaud
et al., 2001), and the GTPases Rac1 and Rho which induce
cytoskeleton modifications contributing to the maturation of
AChR clusters (Weston et al., 2003; Bai et al., 2018). The
whole cascade converges into the phosphorylation of the
AChR subunits and rapsyn; rapsyn is a structural protein that
self-aggregates providing a scaffold that anchors AChRs with the
actin cytoskeleton—through the mediation of microtubule actin
cross-linking factor 1 (MACF1)—to form the mature clusters
(Borges and Ferns, 2001; Lee et al., 2009; Zuber and Unwin, 2013;
Oury et al., 2019; Xing et al., 2019; Figure 1C).

To prevent the formation of AChR clusters in extrasynaptic
sites, and to reduce the risk of tetanic contraction caused by an
overstimulation of the muscle, several negative regulators control
the clustering pathway and the expression of AChRs on the
muscle membrane. One of the most important of these regulators
is acetylcholine itself which downregulates the expression of
AChRs. During neuromuscular transmission, ACh binds to the
AChRs and subsequently is removed by acetylcholinesterase
(AChE), within the extracellular matrix (ECM), that hydrolyzes
acetylcholine to choline and acetate. AChE is bound to ColQ, the
collagen that is arranged as trimers to form a triple helix. AChE
binds to the collagen tails of ColQ in the form of tetramers (Krejci
et al., 1991; Gašperši č et al., 1999). ColQ is located in the ECM,
where it is anchored via MuSK to the synapse (Cartaud et al.,
2004; Figure 1D).

In the absence of AChE, sustained ACh stimulation induces
a prolonged Ca++ influx which activates calpain, a protease
constitutively inhibited by rapsyn, triggering AChR cluster
dispersal mediated by Cdk5 (Lin et al., 2005; Chen et al., 2007).
While in AChR-MG an excess of ACh caused by treatment
with AChE inhibitors does not contribute significantly to
AChR loss, perhaps because it is effectively counterbalanced
by the activation of a functional MuSK-DOK7 pathway, AChE
inhibitors exacerbate MuSK-MG symptoms; this is likely due to a
downregulation of the AChR following the ACh increase without
the counterbalancing provided by the MuSK pathway (see the
following section regarding treatment). Also, the prolongation
of endplate currents observed in a MuSK-MG mouse model
(Patel et al., 2014) suggests that MuSK antibodies that interfere
with the interaction between MuSK and ColQ (Kawakami et al.,
2011; to which AChE is attached) might reduce the catalytic
activity of the AChE further contributing to the resistance

of MuSK-MG patients to treatment with AChE inhibitor
(Patel et al., 2014).

Another negative regulator of the clustering pathway is
the SRC homology two domain-containing phosphotyrosine
phosphatase 2 (SHP2). This phosphatase is activated by MuSK
through the intermediate action of Src and SIRPα1 proteins and,
in a negative feedback loop, it reduces MuSK phosphorylation
(Zhao et al., 2007). SHP2 is thought to also play a role during
embryonic development by preventing the formation of AChR
clusters in extra-synaptic sites that are not directly in contact
with the motor nerve terminal (Qian et al., 2008). From a clinical
perspective, targeting this or other negative regulators of AChR
clustering could represent a potential strategy to develop novel
and specific therapeutic approaches.

MuSK Antibodies—Discovery and
Pathogenicity Studies
The constant and finely-tuned activation of the agrin-LRP4-
MuSK-DOK7 pathway maintains the AChRs in high-density
clusters on the post-synaptic membrane that is vital for the
correct function of the NMJ. Indeed, clustered receptors are
optimal to respond to the signal transmitted by the motor nerve
terminal, channeling the depolarization down into the folds
where the opening of the voltage-gated sodium channels triggers
the muscle action potential.

The existence of a distinct target for patients with MG who
did not have AChR antibodies had been proposed as early as
1976 (Lindstrom et al., 1976) and demonstrated, in principle,
in 1986 in which immunoglobulin preparations from AChR-Ab
negative myasthenic patients were able to impair neuromuscular
function (Mossman et al., 1986). At that time, a specific target was
not identified but, retrospectively, more than half the patients
used were positive for MuSK antibodies (AV unpublished data).
Eventually, the existence of an IgG antibody was shown by
demonstrating the binding of AChR-Ab negative patient IgG
to the TE671 human immortalized muscle cells (Blaes et al.,
2000; Scuderi et al., 2002). In 1996, the Yancopoulos group
at Regerneron Inc USA had discovered MuSK as an essential
protein in muscle development restricted to the NMJ (Glass
et al., 1996a). MuSK was thus a very good candidate for the
missing target and this was demonstrated by showing binding to
COS cells expressing recombinant MuSK, and by binding to the
recombinant extracellular domain of MuSK in an ELISA. Also,
MuSK IgG antibodies inhibited agrin-induced AChR clustering
on C2C12 myotubes (Hoch et al., 2001). MuSK was shown
independently to be immunoprecipitated and identified by mass
spectroscopy by the Evoli group (Scuderi et al., 2002) and the
approach to immunoprecipitate MuSK from the TE671 cells
confirmed and optimized by Littleton et al. (2009).

One of the most intriguing aspects of the pathogenicity of
MuSK antibodies resides within the nature of the antibodies
themselves. Compared to AChR-MG, where autoantibodies
are mainly of the IgG1 and less frequently IgG3 subclasses
(Vincent and Newsom-Davis, 1982), MuSK antibodies are,
on the contrary, mostly IgG4s (McConville et al., 2004).
Unlike IgG1-3 antibodies, IgG4s are functionally monovalent
(Figure 2). This is because single amino acid differences between
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IgG1 and IgG4 in the hinge region of the CH3 backbone
allow for greater stereometric flexibility (Figures 2A,B). As
a consequence, intrachain (instead of interchain) disulfide
bridges form under reducing conditions, thereby leaving the
two half-molecules of IgG4 without covalent connection (van
der Neut Kolfschoten et al., 2007). Further single amino acid
differences in the CH3 domain reduce noncovalent interactions
between the heavy chains (Figure 2B). Taken together this allows
the Fab-arm exchange phenomenon (reviewed in Vidarsson
et al., 2014) by which each half-antibody exchanges with other
half-antibodies that are randomly selected from the pool of total
IgG4 half-antibodies (Figure 2C). As a result, most if not all
IgG4 MuSK antibodies are monovalent, rather than divalent, for
their antigen (Koneczny et al., 2017), which does not allow for
divalent-dependent internalization of the antigen, a mechanism
widely recognized in antibody-mediated diseases. Additional
single amino acid differences in the CH2 domain of IgG4 render
it unable to bind to C1q to activate the complement cascade or
FcγR to activate immune cells. Instead, IgG4 antibodies can only
block the function of a protein or inhibit its interaction with other
proteins (reviewed in Koneczny, 2018).

With the discovery of MuSK as the antigen, both in vitro and
in vivo models provided strong evidence of the pathogenicity
of MuSK antibodies. Subsequent experiments carried out
on different animal models—either passively immunized
with MG patients’ plasma or actively immunized with
purified recombinant MuSK—showed clinical symptoms
and/or impaired neuromuscular transmission consistent with
the myasthenic phenotype, including muscle weakness and
fatigability, reduction of endplate AChR numbers, and reduction
of endplate potential (EPP) and miniature EPP amplitudes
(Shigemoto et al., 2006; Cole et al., 2010; Klooster et al.,
2012; Viegas et al., 2012). Notably, delayed-synapsing muscles
(specifically diaphragm, sternomastoid and tibialis posterior), in
which synaptogenesis requires a longer period to complete, were
more severely affected in a MuSK immunized model compared
to fast-synapsing muscles (intercostal, adductor longus and
tibialis anterior; Xu et al., 2006). This suggests that differences in
muscle development could affect susceptibility to the effects of
MuSK antibodies and might partially explain the clinical pattern
of weakness in MuSK-MG.

Insights regarding the pathogenic mechanism by which
MuSK antibodies cause myasthenia were provided by further
in vitro experiments performed on cultured myotubes, which are
derived from the mouse C2C12 immortalized muscle cell line. In
mouse myotubes incubated with plasma or purified antibodies
obtained from MuSK-MG patients, MuSK phosphorylation
was markedly reduced (Huijbers et al., 2013; Koneczny et al.,
2013); and not restored by recombinant agrin. Moreover, AChR
clustering was substantially reduced (Hoch et al., 2001; Koneczny
et al., 2013; Huda et al., 2020). The inhibition of MuSK
phosphorylation was shown to be dependent on IgG4 antibodies,
which prevented the binding of LRP4 to MuSK (Huijbers et al.,
2013; Koneczny et al., 2013).

Figure 3 shows an example of the in vitro effect of
MuSK purified IgG4 antibodies on C2C12 myotubes for AChR
clustering and MuSK phosphorylation. In this established model,

FIGURE 2 | Structural determinants of IgG4 subclass antibodies. (A)
IgG4 consists of two heavy (H) and two light (L) chains, each with one variable
(V) domain, and one (CL) or three (CH1–CH3) constant domains. In the hinge
region, the two heavy chains are connected covalently by two interchain
disulfide bridges. The variable domains and the first constant domain form the
Fab fragment, which binds the antigen, while the hinge and the CH2–CH3
domains form the Fc region which provides effector function such as binding
of C1q or Fc gamma receptors. (B) IgG1 and IgG4 have over 90% sequence
homology, but single amino acid differences affect the structure and function
of the antibody. Three relevant examples are serine at position 228 instead of
a proline, allowing for structural flexibility and a switch to intrachain disulfide
bridges. Proline at position 331 prevents binding of C1q, and arginine at
position 409 leads to reduced non-covalent interactions between the two
heavy chains. (C) Under reducing conditions (e.g., 1 mM glutathione),
IgG4 can undergo Fab-arm exchange. The interchain disulfide bridges
change to intrachain disulfide bridges, disconnecting the two half-molecules
of the antibody. These then stochastically recombine with other
half-molecules, forming bi-specific antibodies. Under reducing conditions, the
different states of IgG4 are in equilibrium.

to study the clustering of AChRs, myotubes are exposed to
the compound/sample of interest (such as recombinant agrin,
patients’ plasmas, or purified antibody preparations) up to 16 h to
allow full cluster maturation. The AChR clusters are then labeled
with fluorescent α–bungarotoxin, a toxin purified from the krait
snake venom that binds specifically and irreversibly to the α

subunit of the AChR (Changeux et al., 1970). The shape, size,
and number of AChR clusters are then analyzed and quantified.
Typically, myotubes express few spontaneous AChR clusters
(Figure 3A—DMEM). After overnight incubation with agrin, the
number of clusters dramatically increases (Figure 3A—agrin)
but this is prevented by the presence of MuSK antibodies
(Figure 3C—MuSK IgG4 + agrin). Alongside the analysis
of AChR clustering, MuSK phosphorylation can be detected
through western blotting after incubation of the cells with the
antibodies and immunoprecipitation of MuSK. A representative
western blot is shown in Figure 3B. The western blot membrane
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FIGURE 3 | Effects of MuSK IgG4 antibodies on AChR clustering and MuSK phosphorylation on C2C12 mouse myotubes. (A) Myotubes form few spontaneous
AChR clusters (upper panel—DMEM) but, after physiological stimulation with agrin, their number increase markedly (middle panel—agrin). However, when the
myotubes are exposed to MuSK antibodies, agrin-induced AChR clustering is severely impaired (lower panel—MuSK IgG4). Images are taken with an Olympus
IX71 fluorescence microscope at 20× magnifications. Scale bar represents 50 µm. (B) Example of western blots to analyze MuSK phosphorylation. On the left, blot
probed for phosphorylated tyrosine residues; on the right, the same blot is stripped and reprobed for MuSK expression. MuSK corresponds to a band at 97 kDa.
MuSK phosphorylation is typically not detectable in the presence of medium only (first column—DMEM). After incubation with agrin for 45 min, MuSK
phosphorylation increases markedly (second column—agrin) but this is prevented in the presence of MuSK IgG4s (third column—MuSK IgG4). Unpublished work,
similar to Koneczny et al. (2013) and Huda et al. (2020).

is first probed with an anti-phosphotyrosine antibody and the
bands corresponding to MuSK identified at 97 kDa (Figure 3B,
left). The level of phosphorylation is then normalized to the
total expression of MuSK which is detected on the same
nitrocellulose membrane that has been stripped and reprobed
with a specific anti-MuSK antibody (Figure 3B, right). Basal
MuSK phosphorylation is usually barely detectable in normal
myotubes but increases sharply after agrin incubation (bands
shown in Figure 3B are after 45 min of exposure). Consistently
with the inhibition of AChR clustering, MuSK-IgG4 antibodies
prevent the increase of MuSK phosphorylation in the presence of
normal agrin stimulation.

MuSK antibodies were demonstrated to prevent the
interaction between LRP4 and MuSK (Koneczny et al., 2013;
Figure 4A). They target mainly the first Ig-like domain of
MuSK, an epitope which is located on the extracellular part of
the protein and mediates LRP4-MuSK binding (McConville
et al., 2004; Otsuka et al., 2015). According to this pathogenic
model, the disruption of the functional tetramer formed
by MuSK and LRP4 prevents MuSK from being activated
following agrin-LRP4 binding (Huijbers et al., 2013; Küçükerden
et al., 2016). MuSK is therefore not able to respond to agrin
stimulation and, consequently, the entire AChR clustering
cascade is inhibited. The on-going turnover of AChRs and

dispersal by acetylcholine (see above) leads ultimately to the
reduction in AChR clusters on the post-synaptic membrane
of the NMJ. Moreover, in vivo models of MuSK-MG lack the
presynaptic adaptive increase of ACh release (quantal content)
observed in AChR-MG models (Mori et al., 2012; Viegas et al.,
2012; Patel et al., 2014). A likely explanation is that MuSK
antibodies disrupt the retrograde signaling mediated by LRP4,
which increases the release of acetylcholine compensating
the dispersal of AChRs (Figure 4A). An additional proposed
mechanism of MuSK antibodies, that could be available to
both IgG 1–3 and monovalent IgG4 autoantibodies, could be
to block the ColQ-MuSK interaction (Figure 4B; Kawakami
et al., 2011). This could reduce AChE at the MuSK-MG synapse
and, conversely, increase the concentration of ACh within the
synapse and causing dispersal of the receptors; it is proposed that
this could be responsible for the hypersensitivity to treatment
with AChE inhibitors in MuSK MG patients (Evoli et al., 2008;
Morsch et al., 2013).

Another Player of the Game: The IgG1,
2 and 3 Subclass Antibodies
Alongside the prominent, and better-characterized, MuSK
IgG4 antibody population, a variable proportion of MuSK IgG1,
2 and 3 antibodies are usually detectable in most patients. The
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FIGURE 4 | Proposed pathological mechanisms of MuSK autoantibodies at
the NMJ. (A) In MuSK-MG, autoantibodies of the IgG4 subclass bind to the
ectodomain of MuSK preventing its interaction with LRP4 and therefore block
down-stream signaling. The phosphorylation cascade is therefore inhibited
causing the ultimate dispersal of AChR clusters. Loss of retrograde signaling
mediated by LRP4 may also explain the absence of presynaptic adaptive
increase of ACh vesicles observed in MuSK-MG animal models which are
otherwise characteristic in AChR-MG. (B) Block of ColQ-MuSK binding by
MuSK autoantibodies has been proposed to be a pathogenic mechanism
that may lead to a loss of AChE from the ECM at the NMJ. (C) Divalent
binding of commercial or cloned (monospecific) MuSK antibodies has been
proposed to cause MuSK dimerization and activation, leading to ectopic,
extra-synaptic AChR clusters. These would not participate in neuromuscular
transmission as they would lack adjacent motoneuron terminals. For the
formation of ectopic AChR clusters, AChR may also be recruited from
synapses thus depleting the NMJ from AChR. (D) In vivo MuSK antibodies
(IgG1–3) may recruit C1q and activate the classical complement pathway,
causing complement-mediated damage at the NMJ. (E) MuSK antibodies
could also cross-link MuSK and lead to increased internalization of MuSK,
thus effectively depleting MuSK from the muscle membrane and cause a loss
of agrin-LRP4-MuSK-DOK7 signal transduction.

role and importance of these antibody subclasses are still a matter
of debate but there is evidence that IgG1-3s could also actively
contribute to the pathogenic process of MuSK-MG. Similar to

IgG4s, MuSK IgG1-3s are indeed able to disperse in vitro agrin-
induced AChR clusters in C2C12 myotubes, even though they do
not inhibit the LRP4-MuSK interaction (Koneczny et al., 2013).
In the same study, IgG1-3s also prevented cluster formation
in an additional in vitro model in which AChR clusters were
constitutively induced in the myotubes by the overexpression
of DOK7 rather than by the normal stimulation with agrin.
As DOK7 acts downstream of MuSK, these findings suggest
that the effect of MuSK IgG1-3s may not be limited to the
potential disruption of LRP4-MuSK-DOK7 interaction but could
also involve other parts of the AChR clustering pathway.

In addition to these findings, in vivo evidence of IgG1-3
pathogenicity is provided by a model in which a mouse
knockout of murine IgG1-equivalent to human IgG4-developed
myasthenic features when immunized against MuSK. In this case,
the immune response was sustained by the murine equivalent
of human IgG1-3 antibodies (Küçükerden et al., 2016) and the
authors suggested that both complement activation and direct
blocking of LRP4-MuSK interaction could be the underlying
mechanisms of the disease.

Initial insights on the pathogenic mechanism through which
MuSK IgG1-3s might act is suggested by two recent in vitro
studies in which monoclonal MuSK antibodies were generated
from patient-derived clonal MuSK-specific B cells and plasma
cells and tested on C2C12 myotubes (Huijbers et al., 2019; Takata
et al., 2019). These antibodies were engineered and produced
as divalent proteins irrespective of their original subclasses
(either IgG1, 2 or 3 or IgG4). In the absence of physiological
agrin stimulation, these monoclonal antibodies actively increased
MuSK phosphorylation (likely due to their divalent binding to
two MuSK molecules) and, at the same time, AChR clustering
was inhibited. Interestingly, divalent MuSK antibodies were
found to induce low levels of AChR clustering, which were
suggested to result in extra-synaptic AChR clusters that may
deplete AChR from synapses (Figure 4C). Nevertheless, the
number of induced AChR clusters was very low. Mutations in the
kinase domain of MUSK which increases MuSK phosphorylation
while impairing the clustering of AChRs have also been
reported recently (Rodríguez Cruz et al., 2020) suggesting that
a non-physiological MuSK activation could be detrimental for
the formation of clusters. Since gain-of-function mutations and
MuSK-activating antibodies both impair AChR clustering, there
are new and still unanswered questions regarding the precise
mechanisms through which MuSK phosphorylation regulates
the clustering pathway. Further potential mechanisms that have
been suggested for MuSK IgG1-3s are activation of complement
(Figure 4D; Tüzün et al., 2011) and cross-linking and endocytosis
of MuSK (Figure 4E; Cole et al., 2010). These are unlikely to
be mechanisms of IgG4s, as it cannot bind C1q and activate
complement, and is bi-specific and unable to cross-link MuSK.
The mechanisms are, however, in theory, available to MuSK
IgG1-3 subclass antibodies.

DIAGNOSIS OF MuSK-MG

As for other disorders of the NMJ, the diagnosis of MuSK-MG is
based on clinical symptomatology, electromyography recording,
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and antibody detection. Clinical suspicion arises when the
patient presents with typical myasthenic features, namely
fluctuating muscle weakness and fatigability, diplopia and/or
eyelid ptosis, and predominant involvement of bulbar and
respiratory muscles. Additional empirical evidence that supports
the diagnosis of MuSK-MG is the lack of response—or even
the worsening of symptoms—following administration of AChE
inhibitors (Evoli et al., 2003; Guptill et al., 2011). Although
the exact mechanism that sustains this effect is not completely
understood, in vivo studies showed that MuSK-MG models lack
the presynaptic adaptive increase of ACh release observed in
AChR-Ab models (Mori et al., 2012; Viegas et al., 2012; Patel
et al., 2014). Furthermore, a loss of AChE from the synapse
as a consequence of a block of ColQ-MuSK interaction has
been proposed (Kawakami et al., 2011). Following treatment
with AChE inhibitors, the higher amount of ACh released into
the synaptic cleft could increase the physiological dispersal of
AChRs, which in turn would not be compensated by a functional
agrin-LRP4-MuSK activation, therefore worsening the condition
(Morsch et al., 2013).

When performed on clinically affected muscles (usually face
and neck), electrophysiological studies with decrement and/or
single-fiber jitter recording represent a useful tool to support
the diagnosis of myasthenia, while studies on limb muscles
may be negative (Farrugia et al., 2006a). Nevertheless, particular
attention must be taken in the interpretation of electrophysiology
results in cases of suspected MuSK-MG as misleading signs
of denervation and neuromyotonia has been reported in the
presence of MuSK antibodies (Simon et al., 2013; Furuta et al.,
2015; Huijbers et al., 2016). Therefore, the whole clinical picture
of the patient should always be evaluated carefully.

The detection of MuSK antibodies in patients’ sera represents
the gold standard to confirm a clinical diagnosis of MuSK-
MG. Three different laboratory techniques are available to detect
MuSK antibodies: the radioimmunoprecipitation assay (RIA),
ELISA, and the cell-based assay (CBA). The RIA represents
the most common and specific test, reaching almost 100% of
specificity (although it is difficult to estimate its sensitivity
due to the variability in the proportion of MuSK-MG patients
among the different populations studied). The assay involves
immunoprecipitation of the extracellular domain of 125I-MuSK
incubated with patient sera (Matthews et al., 2004; McConville
et al., 2004). MuSK ELISAs are commercially available and
occasionally used in research studies, but we observed that a
small fraction of MuSK antibody-positive patient sera tested by
RIA was not recognized as positive in ELISA (Koneczny et al.,
2017). Alternatively, a CBA can be used, avoiding the need for
radioactivity and providing a more physiological environment
of the antigen, as MuSK is expressed in mammalian cells,
warranting appropriate glycosylation, folding and positioning at
the cell surface. A typical CBA is shown in Figure 5 in which HEK
293 cells are transfected with recombinant MuSK tagged with
a fluorescent protein (in this case mCherry) and then exposed
to different dilutions of serum from MuSK-MG patients and
healthy individuals (used as control). MuSK antibodies attached
to the cell surface are then detected with a secondary fluorescent
anti-human antibody. Positivity is graded according to the degree

of cell surface fluorescence and co-localization with labeled
MuSK-transfected cells (Leite et al., 2008; Huda et al., 2017). The
use of the CBA on patients who were seronegative by RIA—for
both AChR and MuSK antibodies—slightly increased MuSK
antibody detection. On those patients detected only with the
MuSK CBA, it is worth noting that myasthenic symptoms were
reported to be milder and their antibodies were less effective in
inhibiting AChR clustering in in vitro assays (Huda et al., 2017).

TREATMENT OF MuSK-MG

In general terms, myasthenia gravis can be considered one of
the few treatable neurological disorders in which a complete and
stable remission can be achieved for a significant proportion
of patients. However, the form caused by antibodies against
MuSK often represents a difficult therapeutic challenge due to
its severity and often poor response to treatment.

Symptomatic Drugs
As mentioned above, symptomatic therapy with
acetylcholinesterase inhibitors is often ineffective and,
conversely, can induce exacerbation of myasthenia (Evoli
et al., 2003; Guptill et al., 2011). Another symptomatic drug,
3,4-diaminopyridine that improves neuromuscular transmission
by increasing the presynaptic release of ACh vesicles, showed
promising results when tested in an in vivo model (Morsch et al.,
2013) and when administered on a few selected pediatric and
adult MuSK-MG patients (Skjei et al., 2013; Evoli et al., 2016).
Increasing the release of ACh vesicles without affecting the
duration of ACh in the synaptic cleft could be one reason why
the 3,4-diaminopyridine is more effective than ACh-esterase
inhibitors. The β-adrenergic agonists salbutamol and ephedrine
have been successfully used in the treatment of congenital
myasthenic syndromes, specifically with mutations in AGRN,
DOK7, COLQ, and MUSK (Lee et al., 2018; Owen et al., 2018),
and also showed effectiveness when tested on a MuSK-MG
patient (Haran et al., 2013). In addition to the evidence provided
by empirical clinical experience, the use of sympathomimetic
drugs in myasthenic syndromes is supported by evidence
regarding the role of sympathetic innervation in maintaining
shape, size, and function of NMJs (Khan et al., 2016). In this
study, chemical sympathectomy induced a reduction in size
and complexity of the NMJs, and a concomitant decrease in
amplitude and time to peak of the compound muscle action
potentials (CMAP) in model animals. These effects were rescued
by sympathomimetics. Although this treatment approach
appears to be promising, randomized clinical trials are still
needed to evaluate systematically the potential efficacy, and
safety, in MuSK-MG.

Finally, it is worth mentioning that counteracting the specific
pathogenic effects of IgG4 antibodies on MuSK phosphorylation
could represent a novel approach in the development of new
symptomatic treatments for MuSK-MG. A recent in vitro
study showed that the selective inhibition of an intracellular
phosphatase, the SH2 domain-containing phosphatase 2 (SHP2),
can increase MuSK phosphorylation and prevent AChR clusters
from dispersal when C2C12 myotubes were exposed to MuSK
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FIGURE 5 | Cell-based assay (CBA) of MuSK IgG4 antibody subclasses. HEK293 cells are transfected with MuSK-mCherry (in red; A,D) and exposed to MuSK-MG
IgG4 antibodies (lower panels) or antibodies purified from a healthy individual as control (upper panel). MuSK antibodies attached to the cell surface are then
detected with a secondary fluorescent antibody specific for the IgG subclasses of interest (in green; B,E). The merged image from healthy control shows the absence
of co-localization between MuSK-transfected HEK cells and purified antibodies (C). Conversely, MuSK IgG4 antibodies give a very strong positive signal (E) with full
colocalization with MuSK in the merge picture (F). Images are taken with an Olympus IX71 fluorescence microscope at 40× magnifications. Scale bar represents 50
µm. Unpublished work, similar to Huda et al. (2017).

IgG4 antibodies, preventing their detrimental effects (Huda et al.,
2020). A similar approach to preserve the integrity of the NMJ
was performed in SOD1-G93A mice, a model of motor neuron
disease, which were treated with a monoclonal antibody to MuSK
that directly increases MuSK phosphorylation (Cantor et al.,
2018). In this case, boosting the activation of MuSK slowed the
course of the experimental disease, preventing the progression of
diaphragm denervation, and prolonged the overall lifespan of the
animals. Although different models and experimental techniques
were used in the two aforementioned studies, their results suggest
that modulating MuSK or downstream phosphorylation could
represent a promising way towards the development of new
selective treatments for disorders affecting the NMJ.

Corticosteroids and Other
Immunomodulatory Treatments
Overall, the general guidelines for the use of steroids and other
immunosuppressants do not differ between MuSK- and AChR-
MG, and treatment should be tailored according to the individual
response of each patient. Steroids, in particular prednisone
and prednisolone, are generally introduced early on for their
effectiveness in controlling symptoms. Response to steroids is
variable and, compared to AChR-MG, a higher proportion
of MuSK-MG patients require high doses and prolonged
treatment to achieve full control of the disease (Guptill and
Sanders, 2010; Evoli et al., 2012). The major issue of long-term
administration of steroids concerns the occurrence of relevant
side effects such as increased blood pressure, risk of diabetes,
overweight, osteoporosis, and possibly increasing a tendency
to muscle atrophy already significant in MuSK-MG patients

(Benveniste et al., 2005; Farrugia et al., 2006b). For these reasons,
once full symptom control is reached, the steroids should be
decreased progressively to achieve the lowest dose that maintains
pharmacological remission. Immunosuppressive drugs, such as
azathioprine and mycophenolate, are often introduced as steroid-
sparing agents when it is not possible to wean the patient
from a long-term high dose of steroids. However, a high
proportion of MuSK-MG patients require combined therapy
with immunosuppressants and steroids to achieve satisfactory
symptom control, further highlighting an overall lower response
to treatments compared to AChR-MG (Evoli et al., 2008, 2012;
Sanders and Evoli, 2010).

The treatment of severe relapses, with mainly bulbar
symptomatology, and life-threatening myasthenic crisis are
similar between MuSK- and AChR-MG. Acute administration of
intravenous immunoglobulins (IVIg) and plasma exchange are
both usually effective (for the latter up to 96% of positive response
irrespective of patients’ antibody status) with rapid control of
the symptoms which last for about 4–6 weeks (Usmani et al.,
2019). Although considered equal in the treatment of myasthenia
(Rønager et al., 2001), plasma exchange has been reported to
be faster and more effective compared to IVIg in MuSK-MG
patients (Guptill and Sanders, 2010; Pasnoor et al., 2010) and,
therefore, should be prioritized.

Refractory MG patients, in whom at least two independent
immunosuppressive treatments have been carried out at
therapeutic dosage without benefit in controlling the disease,
should be considered for treatment with rituximab, a monoclonal
chimeric IgG1 that depletes B lymphocytes through specific
binding to the CD20 transmembrane antigen (Maddison et al.,
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2011; Kaegi et al., 2019; Di Stefano et al., 2020). In MuSK-MG
patients, rituximab treatment appears to be particularly effective
and this could be because IgG4 antibodies sustain the main
pathogenic mechanism of the disease. Short-lived plasma cells
producing IgG4 antibodies may be more susceptible to the
drug as indicated by studies on other diseases caused by
IgG4 antibodies (such as pemphigus and IgG4-related disease)
in which significant clinical improvement and reduction in
antibody titers were observed (Khosroshahi et al., 2010; Díaz-
Manera et al., 2012; Carruthers et al., 2015; Kamisawa and
Okazaki, 2017; Kurihara et al., 2019). The use of rituximab
treatment in MuSK-MG is supported by several case reports,
local studies, and, more recently, by bigger nation-wide group
analysis (Hain et al., 2006; Khosroshahi et al., 2010; Nowak
et al., 2011; Díaz-Manera et al., 2012; Keung et al., 2013; Hehir
et al., 2017; Topakian et al., 2019). Currently, treatment with
rituximab in MuSK-MG has a level IV evidence according to
the latest multicenter prospective review conducted by Hehir
et al. (2017). Although randomized clinical trials still need
to be performed, all the studies conducted so far consistently
indicate rituximab’s long-lasting effectiveness and safety for

MuSK-MG patients, and an increase of its use in current
clinical practice. Considering the high rate of positive response,
it would be advisable that rituximab treatment is considered
also for those severe patients who require a high level of
immunosuppression even if they do not meet the criteria of
refractory disease.
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