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Experimental and computational studies provide compelling evidence that neuronal systems are characterized
by power-law distributions of neuronal avalanche sizes. This fact is interpreted as an indication that these
systems are operating near criticality, and, in turn, typical properties of critical dynamical processes, such as
optimal information transmission and stability, are attributed to neuronal systems. The purpose of this Rapid
Communication is to show that the presence of power-law distributions for the size of neuronal avalanches is not
a sufficient condition for the system to operate near criticality. Specifically, we consider a simplistic model of
neuronal dynamics on networks and show that the degree distribution of the underlying neuronal network may
trigger power-law distributions for neuronal avalanches even when the system is not in its critical regime. To
certify and explain our findings we develop an analytical approach based on percolation theory and branching
processes techniques.
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I. INTRODUCTION

In neuronal systems, but also in many other apparatuses
crucial to living organisms, the emergence of power-law
distributions [1–6] has a remarkable importance. The unique
form of distribution may indicate that the system is operating
near a critical point [7–9] and is therefore benefitting from a
series of potential advantages of critical systems [10–12], such
as optimum information transmission [1,13], dynamical range
and sensitivity to sensory stimuli [14], information capacity
[15,16], and stability [13,17].

In neural systems, power-law distribution of avalanche
sizes and durations (lifetimes) have been observed both in
experiments [1,4,8] and computational models [17–19]. To
validate that power-law distributions are indeed due to criti-
cality, one needs to perform other tests [4], including testing
finite-size scaling relations [4,20] and performing collapse of
temporal profiles [4,20,21]. However, these techniques cannot
determine what mechanisms or conditions keep or pose the
system in the critical regime or if/how the system may lose
its criticality. Nevertheless, other approaches can be used
to demonstrate mechanisms or conditions that can lead to
criticality of biological systems [22] or mechanisms (espe-
cially in living systems) other than criticality that can lead to
power-law distributions [23–29]. In particular, Friedman and
Landsberg [22] considered a simplistic model for neuronal
dynamics and introduced a mechanism through which the hi-
erarchical structure of neuronal networks can generate power-
law distributions even far from criticality. The importance
of network structure underlying neuronal dynamics for the
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generation of power laws has been also reported in other
studies [18,19].

In this Rapid Communication, we demonstrate that the
degree distribution of the network underlying neural dynamics
plays a fundamental role in the emergence of power-law distri-
butions of avalanche sizes. To do so, we consider a simplified
model of neural dynamics on networks, and show that, for
some scale-free networks, avalanche sizes obey power-law
distributions even in subcritical dynamical regime. Moreover,
in other cases in which the avalanche size distribution is a
power law with exponential cut-off, we disclose what struc-
tural parameters determine the cut-off size and show that even
in such cases it is possible to observe distributions that are
approximately power law over several orders of magnitude. In
addition to numerical evidence, we provide an analytical de-
scription of the phenomenon relying on techniques borrowed
from the theory of percolation [30] and branching processes
[31–33]. We believe that our findings may have important
implications in understanding properties of dynamics on real-
world networks that have heavy-tailed degree distributions
[2,5,34–37].

As mentioned above, we consider a simplistic model of
neural avalanches for which we can show lucidly the impact of
the network structure. In our model, an avalanche starts with
a single activated neuron and, at each time step, every one
of the active neurons fires a signal that stimulates all of their
neighbors. This stimulus activates with a probability p each
neighbor that has not been already activated. The avalanche of
activities continues until no new neuron can be activated. This
model is identical to the so-called independent cascade model,
often considered in the context of opinion spreading in social
networks [38–40]. For neural dynamics, it is a more realistic
version of the Friedman-Landsberg model (FLM) [22] as in
our model each time a neuron receives a stimulus it has the
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chance to become activated while in the FLM the activation
does not depend on the number of stimulations. In spite of its
simplicity, our model captures the fast timescale behavior of
integrate-and-fire models [41,42]. This fact follows from the
simplifying assumptions that repetitive activation is neglected
and the stimulations that activate a neuron (by increasing
its potential to above its firing threshold) are set at random
[19,22,43,44].

An advantage of this simplification is that our model is
equivalent to a bond percolation model, thus, the avalanche
size distribution is identical to the probability distribution πs

that a randomly chosen node belongs to a percolation cluster
of size s. This analogy enables us to consider a set of well-
established techniques developed for percolation models and
branching processes. In the following, we first describe our
analytical calculations. Then, we show that our theoretical
predictions are in very good agreement with the results of
numerical simulations.

We provide a unifying framework that can describe the
avalanche properties on both undirected and directed net-
works. We consider networks with negligible source-target
correlation, i.e., the correlation between the degree values
at the ending points of an edge. Nevertheless, for directed
networks (DNs), we include analysis for networks with and
without input-output correlation, i.e., the correlation between
the values of indegree j and outdegree k of a node. Thus
we consider three network types: undirected networks (UNs),
uncorrelated directed network (UDNs), and input-output cor-
related directed networks (CDNs).

To generate UNs with specific degree distribution we use
the configuration model [45–47] and for DNs we use an
extended version of this model [48]. In particular, if the
number of stubs of indegree and outdegree distributions are
unbalanced, we remove, from a fraction u of nodes, some
stubs of the distribution with more stubs such that its tail
conserves its form [48].

II. RESULTS

A. Relevant theoretical findings

Our analytical calculations are built on techniques origi-
nated from studies that shed light on structural properties of
networks [49], spread of epidemics [50], properties of site
percolation on undirected [51] and directed [52] networks,
branching processes [32,53], spread of online information on
Twitter [33], and relevant methods for obtaining the properties
of generating functions [54,55]. The findings most related to
our calculations correspond to those of Refs. [51,52] in which
analytical results for the functional form of the distribution
of cluster sizes in a site percolation process were reported.
To improve upon the findings of these references, we sub-
stitute parts of the approaches they employed with our own
techniques developed on the basis of Refs. [33,49,50,53–55].

B. Constructing the governing equations

For UNs, we consider the degree distribution pk of the
network and for DNs we consider the indegree distribution Pj ,
the outdegree distribution Pk (note that we use k for the degree
in UNs as well as for the outdegree in DNs as, we will later

show that they play the same role in describing the avalanche
sizes), and the joint degree distribution Pjk which equals the
fraction of nodes with indegree j and outdegree k. From the
degree distributions we can obtain the excess degree distri-
bution functions qk = kpk/〈k〉 for UNs or q jk = jPjk/〈 j〉 for
DNs which describe the probability that following a random
edge we find a node with, respectively, degree k + 1 (UNs) or
indegree j and outdegree k (DNs).

We are going to calculate the distribution of avalanche sizes
πs. This quantity depends on ρs, the probability that following
an edge of the network we reach an avalanche (cluster)
with size s [30,49,50,56]. To calculate these quantities we
will need to work with their generating functions defined as,
respectively, H0(z) = ∑∞

s=1 πszs and H1(z) = ∑∞
s=0 ρszs. We

will also need the generating functions for degree k and the
excess degree distributions, defined as

G0(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞∑
k=0

pkzk, UN

∞∑
j,k=0

Pjkzk, DN,

(1)

G1(z) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞∑
k=0

qkzk, UN

∞∑
j,k=0

q jkzk, DN.

(2)

A UN on which a bond percolation process with occupation
probability p is applied should be described by Ĝn(z) =
Gn(1 − p + p z) instead [50,57], where n = 0, 1; it is straight-
forward to show that this property holds also for DNs. We
use this fact to extend the governing equations that Newman
derived for H0 and H1 in the absence of percolation [50] to our
case; thus we get

H1(z) = zG1[1 − p + pH1(z)], (3)

H0(z) = zG0[1 − p + pH1(z)]. (4)

The first difference between our calculations and the method
of Refs. [51,52] for calculation of cluster sizes is that we use
the accurately derived Eqs. (3) and (4) instead of equations
derived from heuristics [58].

The next steps of our approach include (i) calculation of
the leading order nonanalytic behavior of H0(z) by finding
the behavior of G1 and G0 around η = 1 − p + pH1(1), and
(ii) using the asymptotic properties of generating functions
[48,54,55] to obtain πs for large avalanche sizes (s � 1) using
the results of (i). To do so, we integrate the above equations
with the methods described in [51,52] and improve upon parts
of these methods by combining them with techniques and
ideas, including branching processes methods [33,53].

C. Solution methods for different regimes of dynamics

1. The critical and subcritical regimes

In these regimes, H0(1), which equals the probability that a
randomly chosen node is in a finite cluster, can be set to
1 [for the supercritical regime, we can instead assume that
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H0(1) ≈ 1, if p is not much larger than the critical occupation
probability pc]; thus, according to Eq. (4) H1(1) = 1 too.
Accordingly, to obtain the leading order behavior of H1(z)
[from Eq. (3)] and H0(z) [from Eq. (4)], we can assume
H1(1 − w) ∼ 1 − φ, where φ � 1 and z

.= 1 − w for w � 1,
and then expand the degree-dependent generating functions
around z = 1 to get [48]

G1(1 − pφ) ∼ G1(1) − G′
1(1)pφ + G′′

1 (1)(pφ)2 + Dφλ̃−1

+ o(φ2, φλ̃−1) = 1 − p

pc
φ + Bφ2 + Dφλ̃−1

+ o(φ2, φλ̃−1), (5)

G0(1 − pφ) ∼ G0(1) − G′
0(1)pφ + Mφλ−1 + O(φ2)

= 1 − Eφ + Mφλ−1 + O(φ2), (6)

as φ → 0, where pc is obtained analytically according to the
results of Refs. [47,51,52], and the terms with λ or λ̃ are
present only for scale-free networks; these effective exponents
are

λ =
{
λ (UN)
λo (DN) and λ̃ =

⎧⎪⎨
⎪⎩

λ − 1 (UN)
λo (UDN)

λo − λo − 1

λi − 1
(CDN),

where λ, λo, and λi are the exponents for the tail of the distri-
bution of, respectively, the degrees k in a UN, the outdegrees k
in a DN, and the indegrees j in that DN. The other coefficients
in Eqs. (5) and (6) depend on the network degree distribution
[48]. Note that pc > 0 for the range of λ̃ values we considered.

We keep up to the third (second) leading order term of G1

(G0) and substitute the result in Eq. (3) [Eq. (4)] to get

H1(1 − w)
.= 1 − φ ∼ (1 − w)

(
1 − p

pc
φ + Bφ2 + Dφλ̃−1

)

⇒ w ∼ − δ

pc
φ + Bφ2 + Dφλ̃−1 (7)

and

H0(1 − w) ∼ 1 − Eφ + Mφλ−1, (8)

where, in Eq. (7), δ = p − pc. Using Eqs. (7) and (8) we
can show that the leading order nonanalytic term of H0(z),
depending on the dynamical regime, has either the form Rw β

or R
√

1 + s∗w [48], where β is a noninteger number and s∗
and R are constant. According to the asymptotic properties
of generating functions [48,54,55], the first form gives a πs

with a power-law tail and the second form results in a power
law with exponential decay. In particular, for λ̃ > 3 and non-
scale-free networks, πs = R1s−3/2 at the critical point (pc)
and πs = R1s−3/2e−s/s∗

in the noncritical phases; however,
for 2 < λ̃ < 3, πs = R2s−[1+1/(̃λ−1)] at pc (see Supplemental
Material [48] for the definitions obtained for R1 and R2 [59]).
For these cases, Refs. [51,52] reported the same results for
the functional form of πs; however, the equations they used
[instead of Eqs. (3) and (4)] underestimate the prefactors [48].
We also retrieve the result s∗ ∝ δ−2 calculated previously
for UNs (using another method [51]) and we discover that
a similar relation also holds for DNs; furthermore, we find
that the exponential decay factor s∗ is also controlled by

the skewness of the degree distribution according to s∗ ≈
2p2〈k〉〈k3〉

δ2〈k2〉2 for UNs and s∗ ≈ 2p2〈k〉〈 jk2〉
δ2〈 jk〉2 for DNs. This indicates

that even for skewed non-scale-free networks it is possible
that a power-law distribution of avalanche sizes, expanded for
several orders of magnitudes (i.e., as long as s � s∗), emerges.

On the other hand, despite the expectations of
Refs. [51,52], at the subcritical regime of 2 < λ̃ < 3, we
get pure power-law distribution in the form

πs ∼
⎧⎨
⎩

R̂
(
1 + ppc〈k〉

−δ

)( ppc

−δ

)λo−1
s−λo (UDN)

R̂
( ppc

−δ

)λ−1[( ppc

−δ

)̃λ−λ+1
s−λ̃ + s−λ

]
(CDN/UN),

(9)

where R̂ = a∗(1 − u), and a∗ .= 1/
∑

k k
−λ

for k in the tail of
the corresponding k distribution (degree or outdegree distri-
bution) and u < 1 depends on the mass of that tail. To obtain
this result we assumed that the solution of Eq. (7) for 2 <

λ̃ < 3 has the form φ ∼ a1w
α1 + a2w

α2 + · · · , where α1 <

α2 < · · · , and used the dominant balance method [33,44,60]
to obtain the correct form for the leading order terms [48]. As
demonstrated by Eq. (9), the exponent of this distribution in
UDNs is λ̃ = λ = λo, and in CDNs and UNs is λ̃; in CDNs
the leading order term can be corrected with a λ order term if
the difference between the exponents λ̃ and λ is considerably
small. Figure 1 shows that our predictions for the subcritical
and critical regimes of 2 < λ̃ < 3 capture very well the power-
law behaviors of the tail of πs.

In the procedure for deriving Eq. (9) we made no assump-
tion about the sign of δ; however, we immediately notice that
Eq. (9) is only valid for the subcritical regime since in the
supercritical regime (that δ > 0) the prefactor and hence the
probability πs will not be a real non-negative value. In

FIG. 1. The probability πs and its cumulative distribution 
s for
a UDN with λo = 2.7 and λi = 3.7 (top panels) and a CDN with
λo = 3.1 and λi = 3.7 (bottom panels) both with 2 × 107 nodes.
The green or blue dots are the numerical results and the dashed
lines correspond to the theoretical power law πs [Eq. (9) for p < pc]
with the same maximum s as that of the numerical data. The nearly
vertical cut-offs in 
s are caused by the cumulative sum on data
with finite maximum s and not by the shape of πs. In each panel,
the numerical results for lower p values are those located at lower
positions. The networks are constructed using our extension of the
configuration model [48].
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the next section, we show that a set of equations other than
Eqs. (5) and (6) and a modified method should be used to
obtain valid results for the supercritical regime of 2 < λ̃ < 3.

2. The supercritical regime of 2 < ˜λ < 3

We first consider the governing Eqs. (3) and (4). Then as
we know that in the supercritical phase H1(1) < 1, for z values
close to 1 (or z

.= 1 − w with w � 1) we can write

H1(z) = h̃ + ε = 1 − η + ε, (10)

where h̃, η < 1 and ε � 1. Thus, in the right-hand side of
Eqs. (3) and (4),

1 − p + pH1(z) = 1 − pη + pε (11)
.= η + pε, (12)

where η = 1 − pη = 1 − p(1 − h̃) = 1 − p + p̃h. Now, we
can write

H1(z) = z G1(η + pε) (13)

= z
[
G1(η) + G′

1(η)pε + 1
2 G′′

1 (η)p2ε2 + · · · ]. (14)

Therefore, according to Eqs. (10) and (14),

h̃ + ε = z [a0 + a1ε + a2ε
2 + · · · ], (15)

where a0 = G1(η) = h̃ [see Eqs. (3) and (10)], a1 = G′
1(η)p,

and a2 = 1
2 G′′

1 (η)p2. Equation (15) gives

ε ∼ 1 − a1z

2a2z
± 1

2a2z

√
(1 − a1z)2 + 4a0a2z(1 − z). (16)

Now we consider that the supercritical properties of H1(z) can
be well approximated using the behavior of ε near the branch
point z = 1; around this point we have

ε ∼ 1 − a1

2a2
± 1 − a1

2a2

√
1 + s∗(1 − z), (17)

where s∗ = 4a0a2
(1−a1 )2 . Now,

H0(z) = z G0(η + pε) (18)

∼ (1 − w)[G0(η) + G′
0(η)pε + o(ε2)] (19)

∼ analytical terms ± b
√

1 + s∗(1 − z), (20)

where b = pG′
0(η) (1−a1 )

2a2
. Then, according to the asymptotic

properties of generating functions [48,54,55],

πs ∼ ±bs∗1/2

2
√

π
s−3/2 e−s/s∗

as s → ∞ (21)

∼ ± G′
0(η)

√
G1(η)√

2π G′′
1 (η)

s−3/2 e−s/s∗
as s → ∞, (22)

where s∗ .= 2p2G1(η) G′′
1 (η)

(1−pG′
1(η))2 and η is calculated using Eqs. (3) and

(12) according to the prescription described in Sec. S3.2.d
of [48]. Figures 2(e) and 2(f) show that Eq. (22) performs
well in describing the distribution of avalanches with finite
(nonextensive) sizes in the supercritical regime of 2 < λ̃ < 3.
It is worth noting that, in the supercritical regime, extremely
large avalanches do also exist; such avalanches have a size
that scales linearly with the network size. Hence, in the
thermodynamic limit where the network size N → ∞, their

FIG. 2. (a)–(d) The full cluster size distribution at the critical
and supercritical regimes of our neuronal dynamics model for a
UDN with 5000 nodes and the other parameters identical to those
of Fig. 1(a). At the supercritical phase, a bump appears at the tail of
the distribution which corresponds to the percolating clusters whose
sizes diverge at the thermodynamic limit (i.e., as N → ∞). (e), (f)
The distribution 
s (the cumulative distribution of πs) of the finite
clusters (i.e., excluding the bump at the tail) for the supercritical
regime of (e) a UN with λ = 3.3, pc = 0.23, and 5 × 107 nodes and
(f) the UDN of Fig. 1(a). The dots represent numerical simulations
and the dashed lines are the theoretical results. Closer to the critical
point a better agreement between theory and numerics is observed. In
panels (e) and (f), the results for the lower p value are those located
at a lower position.

size also diverges. In finite networks, the effect of such
avalanches on the distribution of avalanche sizes can be
observed as a bump (in DNs) or a single point (in UNs) in
the tail of the distribution. As the system moves further from
the critical point this bump (or point in UNs) separates and
moves away from the rest of the distribution [Figs. 2(a)–2(d)].

An interesting outcome of Eq. (22) is that the depen-
dence of s∗ (the exponential decay parameter) on the in-
verse of δ is no longer purely quadratic; nonetheless, s∗
is still determined by p and skewness of degree distri-
butions through a function that depends on p and the
properties of G1 at η [61]. It is worth mentioning that, for an-
alyzing supercritical avalanches, methods based on Ref. [53]
are also possible; nonetheless, such methods produce rather
poor results [48].

As we mentioned earlier, a prominent implication of our
results for the noncritical cases is that even non-scale-free
networks can produce avalanches distributed according to a
power law for several orders of magnitude. This has signif-
icant implications for the experiments of neuronal dynamics
that are commonly performed on small size samples [62,63];
this is because in such cases pure power laws and the power-
law part of noncritical systems may be indistinguishable (see
Fig. 3).
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FIG. 3. The distribution πs for the subcritical regime of (a) CDNs
and (b) UNs with 5000 nodes for 10 5 avalanches in each network.
The curves, from top to bottom, correspond to a CDN (UN) with,
respectively, exponential, power-law, and log-normal outdegree (de-
gree) distribution. For each of these networks an apparent power-
law tail is observed for πs. (Note that power laws observed in
experimental setups have similar ranges of s [1,8].) The simulations
are performed far from the critical point at occupation probabilities
in the range (0, pc/2). In non-scale-free CDNs, the correlations are
implemented by setting j = k 0.7.

III. CONCLUSIONS

In summary, we have provided analytical proofs, accom-
panied by numerical confirmations, that even in a simplified
description of neuronal dynamics, because of structural het-
erogeneity, different types of critical and noncritical power-
law avalanches with different exponents can be observed.
This finding may help us to better explain the emergence

of power-law neuronal avalanches with exponents different
from 3/2 observed in experiments [64,65] and in realistic
computational simulations [19]. Moreover, critical systems
are known to have crucial advantages such as optimum in-
formation transmission, capacity, and stability [1,13,15–17]
because of their power-law avalanches. Thus the existence
of power laws in other dynamical regimes implies that some
noncritical systems may benefit from similar advantages due
to divergence of the mean values and scale invariance of their
power-law distributions [13]. Furthermore, the emergence of
such noncritical power laws introduces new challenges for
accurate detection of criticality in experimental setups due to
the finite size of the commonly used samples. In addition to
the importance of these findings in the context of neuronal
systems, the insights on percolation properties of networks
that this Rapid Communication provides may find applica-
tions in topics such as network robustness [56,66], epidemic
spreading [50,67,68], and stability of biological systems [69].
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