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Abstract

Background

Macadamia is a true dicotyledonous plant that thrives in a mild, humid, low wind environ-

ment. It is cultivated and traded internationally due to its high-quality nuts thus, has signifi-

cant development prospects and scientific research value. However, information on the

genetic resources of Macadamia spp. remains scanty.

Results

The mitochondria (mt) genomes of three economically important Macadamia species, Mac-

adamia integrifolia, M. ternifolia and M. tetraphylla, were assembled through the Illumina

sequencing platform. The results showed that each species has 71 genes, including 42 pro-

tein-coding genes, 26 tRNAs, and 3 rRNAs. Repeated sequence analysis, RNA editing site

prediction, and analysis of genes migrating from chloroplast (cp) to mt were performed in

the mt genomes of the three Macadamia species. Phylogenetic analysis based on the mt

genome of the three Macadamia species and 35 other species was conducted to reveal the

evolution and taxonomic status of Macadamia. Furthermore, the characteristics of the plant

mt genome, including genome size and GC content, were studied through comparison with

36 other plant species. The final non-synonymous (Ka) and synonymous (Ks) substitution

analysis showed that most of the protein-coding genes in the mt genome underwent nega-

tive selections, indicating their importance in the mt genome.

Conclusion

The findings of this study provide a better understanding of the Macadamia genome and will

inform future research on the genus.
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1. Introduction

Macadamia spp belongs in the family Proteaceae, classMagnoliopsida, and order Proteales.
The Proteaceae family has five subfamilies, 80 genera, and over 1600 species [1, 2]. Most of

them are distributed in Oceania and South Africa, while a few are produced in East Asia and

South America. Notably, more than 100 species in the Proteaceae family produce flowers that

are traded internationally [3]. Besides, the species grown in the northeastern part of Oceania

are also rich in nuts. The genus Macadamia comprises four species: Macadamia integrifolia,

M. jansenii,M. ternifolia, and M. tetraphylla. These species are naturally distributed in the sub-

tropical rain forests from southeastern Queensland in Australia to northeastern New South

Wales [4, 5]. Among them, M. integrifolia and M. tetraphylla produce edible nuts; thus, most

commercial cultivars are either these two species or their hybrids. The other two species, M.

Jansenii and M. ternifolia produce non-edible nuts containing high levels of bitter cyanide gly-

cosides, thus has not been used to guide the breeding [6, 7].Macadamia seeds are sweet with

high nutritional and medicinal value. Therefore, they have enjoyed the reputation of "King of

Thousand Fruits". They are also used in international transactions due to their high economic

value [8].

Mitochondria (mt) are organelles that primarily convert biomass energy in living cells into

chemical energy to fuel biological activities [9]. Additionally, they participate in other biologi-

cal processes, including cell differentiation, cell apoptosis, cell growth, and cell division [10–

13]. Therefore, mt are central to life activities within individual cells and the entire living body

[14]. Both plastids and mt harbor genetic information and are thought to have evolved through

endosymbiosis of freely living bacteria [15–17]. In most seed plants, nuclear genetic informa-

tion is inherited from both parents, while cp and mt are derived from maternal genes [18].

Thus, we can temporarily ignore the influence of paternal genes, thereby reducing the diffi-

culty of genetic research and promoting the research of genetic mechanisms [19].

Studies have shown that the size of the mt genome varies significantly between different

species. For example, plants have a larger mt genome than animals [20]. Furthermore, mt

genome size in seed plants can vary by at least one order of magnitude ranging from ~ 222 bp

in Brassica napus [21] and ~ 316 Kb in Allium cepa [22] to ~ 3.9 Mb in Amborella trichopoda
[23] and a striking ~ 11.3 Mb in Silene conica [24]. This phenomenon may be caused by the

abundance of non-coding regions and repeated elements in the plant mt genome [25]. DNA

recombination between homologous sequences produces small circular sub-genomic DNA.

The circular genomic DNA coexists with the complete "master" genome in the cell. These

genomes typically have several kb repeats, leading to multiple heterogeneous forms of the

genome [26–31]. The mutation rate of plant mt genomes is very low; however, their rearrange-

ment rate is so high that there is almost no conservation of synteny [32–34].

The development of cost-effective and more efficient DNA sequencing methods like high-

throughput sequencing has accelerated mt genome sequencing. So far (until June 2021), the

mt genomes of 618 green plant species have been released in the NCBI (https://www.ncbi.nlm.

nih.gov/) database. Long-term mutually beneficial symbiosis caused the mt to lose some of the

original DNA, possibly by transfer, leaving only the DNA encoding it [35, 36]. Mt DNA inte-

grates DNA from various sources by intracellular and horizontal transfer [37]. Therefore,

regardless of the length, gene sequence and content, mt genome varies remarkably among dif-

ferent plant species [33]. The mt genome length of the smallest terrestrial plant is about 66 Kb,

and that of the largest terrestrial plant is 11.3 Mb [24, 38, 39]; the number of genes is usually

between 32 and 67 [40]. In this study, the mt genomes of three Macadamia species were

sequenced, assembled, and annotated. Also, their genomic and structural features were ana-

lyzed and compared with other angiosperms (and gymnosperms). This study improves our
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understanding of Macadamia genetics and provides crucial data to inform future research on

the evolution of mt genomes of land plants.

2. Materials and methods

2.1 Genome sequencing

The three Macadamia species examined in this study were collected from Yunnan Institute of

Tropical Crops (Xishuangbanna, China; 101˚28’ E, 21˚92’ N). Total genomic DNA was

extracted from fresh leaves using modified CTAB [41]. Meanwhile, the quantity and quality of

extracted DNA was assessed by spectrophotometry and the integrity was evaluated using a 1%

(w/v) agarose gel electrophoresis. The qualified DNA samples were used for Illumian DNA

library construction, according to the standard procedure. Subsequently, a paired-end

sequencing library with an insert size of 350 bp was constructed. The Illumina Hiseq 4000

high-throughput sequencing platform was used for sequencing. The sequencing strategy

involved PE150 (Pair-End 150) and the sequencing data volume of not less than 1 Gb. Illumina

high-throughput sequencing results initially existing as original image data files were con-

verted into Raw Reads. CASAVA software was used for Base Calling.

2.2 Genome assembly and annotation

SPAdes v.3.5.0 [42] software was used to splice and assemble mt genome sequences. To correct

the splicing results, the raw sequencing data were mapped to mitochondrial sequences using

Geneious software [43]. DOGMA [44] and NCBI were used to annotate the mt genome. The

Blastn and Blastp method was used to compare mt gene-encoding protein and rRNAs among

related species. TRNA scan-SE2.0 [45] and ARWEN [46] were used to annotate tRNA. The

tRNAs with unreasonable length and incomplete structure were eliminated. Subsequently, a

tRNA secondary structure diagram was generated. The final mt genomes of M. integrifolia, M.

ternifolia, and M. tetraphylla have been deposited in the GenBank (Accession number:

MW566570/MW566571/MW566572).

2.3 Analysis of repeat structure and sequence

Microsatellites within the mt genomes of the threeMacadamia species were identified using

MISA [47, 48]. The minimum number of repeats for the motif length of 1, 2, 3, 4, 5, and 6 were

10, 6, 5, 4, 3, and 3, respectively, were identified in this analysis. The tandem repeats were

detected using Tandem Repeats Finder v4.09 software [49] with default parameters.

2.4 DNA transformation from cp to mt and RNA editing analyses

The cp genome of M. integrifolia (NC_025288) was downloaded from the NCBI database.

Chloroplast-like sequences were identified and the genome was mapped using TBtools [50].

The online program Predictive RNA Editor for Plants (PREP) suite [51] was adopted to iden-

tify the possible RNA editing sites in the protein-coding genes of the three Macadamia species.

The cutoff value was set as 0.2 to ensure accurate prediction. The protein-coding genes from

other plant mt genomes were used as references to reveal the RNA editing sites in the mt

genomes of the three Macadamia species.

2.5 Phylogenetic tree construction and Ka/Ks analysis

The genome sequences of the three Macadamia species were compared with those of 35 (S1

Table) other plant species to further verify their phylogenetic position. Notably, the complete

mt genome sequences of these species were available in the NCBI database. Phylogenetic
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analyses were performed on 23 conserved protein-coding genes (atp1, atp4, atp6, atp8, atp9,

ccmB, ccmC, ccmFc, ccmFn, cob, cox1, cox2, cox3,matR, nad1, nad2, nad3, nad4, nad4L, nad5,

nad6, nad7 and nad9) that were extracted from the mt genomes of the 35 plant species using

TBtools [51]. These conserved genes were then aligned using Muscle [52] implemented in

MEGA X [53]; the alignment was modified manually to eliminate gaps and missing data. The

GTR + G + I model was determined to be the best model based on the Akaike Information

Criterion (AIC) and Bayesian Information Criterion (BIC) calculated by ModelFinder [54].

The Maximum Likelihood (ML) algorithm in MEGA X [53] was used to construct a phyloge-

netic tree. The bootstrap consensus tree was inferred from 1000 replications. Cycas taitungen-
sis and Ginkgo biloba were designated as the outgroup in this analysis.

The Ka and Ks replacement rates of protein-coding genes in mitochondrial genomes of the

threeMacadamia species and other higher plants were analyzed. blastn in TBtools was used to

extract the sequences of corresponding protein-coding genes in Macadamia and N. nucifera
genomes. The Ka and Ks replacement rates of each protein-coding gene were estimated using

N. nucifera genome as a reference.

3. Results and discussion

3.1 Genomic features of the mt genomes of the three Macadamia species

The mt genomes of M. integrifolia, M. ternifolia and M. tetraphylla have a typical terrestrial

plant genome ring structure (Fig 1). A total of 71 unique genes were identified in the mt

genomes of the three Macadamia species, including 42 protein-coding, 26 tRNA, and 3 rRNA

genes (Table 1). In addition, two copies of rRNA26, ccmB, rps19, trnN-GTT, and trnH-GTG,

and seven copies of trnM-CAT were identified. It has been established that the mt genomes of

land plants contain a variable number of introns [55]. In the present study, the three mt

genomes had ten genes with introns, length ranging from 13 bp (rps3) to 31,841 bp (cox2)

where ccmFC, rpl2, rps3, and rps10 had two introns, cox2 had three, nad1, nad4, and nad5 had

four and nad2 and nad7 had five introns. Besides, in all protein-coding genes, except atp6,

cox1, nad1, nad4L, rps4, and rps10, which had ACG as the start codon, all the others had ATG

as their start codon. In addition, the stop codons in all the protein-coding genes were: TAA

45.2%, TGA 28.6%, TAG 14.3%, CAA 9.5%, and CGA 2.4%.

The size and GC content of mt genome are the primary characteristics. Here, we compared

the size and GC content of mt genomes between three Macadamia species and 36 other green

plants, including four phorophytes, three bryophytes, two gymnosperms, four monocots, and

23 dicots (S1 Table). The size of the mt genomes ranged from 22,897 bp (Chlamydomonas
moewusii) to 2,709,526 bp (Cucumis melo) (Fig 2). Compared to phorophytes and bryophytes,

the mt genomes of the three Macadamia species are larger. The GC content in the mt genomes

was also highly variable, ranging from 32.24% in Sphagnum palustric to 50.36% in Ginkgo
biloba. Overall, the GC content of angiosperm mt genome (including monocots and dicots) is

higher than that in bryophytes but less than in gymnosperms [56, 57], implying that the GC

contents fluctuated following the angiosperms divergence from bryophytes and gymnosperms.

Interestingly, the GC content significantly fluctuated in algae and was mostly conserved in

angiosperms, although their genome sizes vary significantly.

3.2 Repeat sequences analysis

Microsatellites or simple sequence repetitions (SSRs) are DNA fragments composed of short

sequence repeating units of 1–6 base pairs [58]. Their unique value is created by their polymor-

phism, relative abundance, codominant inheritance, large-scale genome coverage, and PCR

detection simplicity [59]. Based on the SSRs analysis, we identified 87 SSRs with SSRs
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monomers and dimers accounting for 70.11% of the total SSRs. Adenine (A) was the most

repeated monomer with 19 (38%) out of the 50 identified monomer SSRs. The AT repeat was

the most common dimer SSR, accounting for 66.67% of all the identified dimers. However,

one hexamer [ATTAGG(X3)] was present in the mt genomes of threeMacadamia species.

Among the reference mt genome, only Nelumbo nucifera has been published in the NCBI

database. N. nucifera belongs to the family Nelumbonaceae and the same order (Proteales)

with Macadamia. Therefore, the mt genome of N. nucifera was used as a reference for

Fig 1. The circular map of three Macadamia species mitochondrial genome. Gene map showing 71 annotated genes of different functional groups.

https://doi.org/10.1371/journal.pone.0263545.g001
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Table 1. Gene profile and organization of three Macadamia species (M. integrifolia, M. ternifolia and M. tetraphylla).

Group of genes Gene/element Size(bp) GC_Percent AminoAcids

(aa)

InferredInitiation

Codon

Inferred

TerminationCodon

ATP synthase atp1 1530 45.29% 509 ATG TGA

atp4 597 43.05% 198 ATG TAG

atp6 783 39.08% 260 ACG TAA

atp8 480 40.63% 159 ATG TAA

atp9 225 46.67% 74 ATG CAA

Cytochrome c

biogenesis

ccmB(2) 621,621 42.83% 206 ATG TGA

ccmC 771 44.23% 256 ATG TAA

ccmFCa 1356 46.53% 451 ATG TAA

ccmFN 1734 47.58% 577 ATG TGA

Ubichinol cytochrome c

reductase

cob 1182 42.39% 393 ATG TGA

Cytochrome c oxidase cox1 1584 44.26% 527 ACG TAA

cox2a 822 42.34% 273 ATG TAG

cox3 798 45.11% 265 ATG TGA

Maturases matR 1968 52.64% 655 ATG TAG

NADH dehydrogenase nad1a 978 44.99% 325 ACG TAA

nad2a 1467 40.90% 488 ATG TAA

nad3 357 41.74% 118 ATG TAA

nad4a 1488 42.67% 495 ATG TGA

nad4L 303 37.29% 100 ACG TAA

nad5a 1989 41.78% 662 ATG TAA

nad6 630 40.95% 209 ATG TGA

nad7a 1185 45.23% 394 ATG TAG

nad9 573 42.93% 190 ATG TAA

Ribosomal proteins

(LSU)

rpl2a 999 52.15% 332 ATG CAA

rpl5 561 44.74% 186 ATG TAA

rpl10 516 46.32% 171 ATG TAA

rpl16 492 43.09% 163 ATG TAA

Ribosomal proteins

(SSU)

rps1 606 43.56% 201 ATG TAA

rps2 648 39.20% 215 ATG CAA

rps3a 1692 43.91% 563 ATG TAG

rps4 1059 40.51% 352 ACG TAA

rps7 447 43.18% 148 ATG TAA

rps10a 333 39.04% 110 ACG CGA

rps11 444 45.27% 147 ATG CAA

rps12 378 45.50% 125 ATG TGA

rps13 351 39.60% 116 ATG TGA

rps14 303 40.92% 100 ATG TAG

rps19(2) 285,285 40.00% 94 ATG TAA

Transport membrane

protein

sdh3 336 37.20% 111 ATG TGA

sdh4 450 41.33% 149 ATG TGA

Ribosomal RNAs rrn5 119 52.94%

rrn18 2061 55.12%
rrn26(2) 3989,3989 53.02%

(Continued)
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comparative analysis in the present study. The monomers in N. nucifera were lower than in

the threeMacadamia species, while pentamers and hexamers in N. nucifera were significantly

higher than in the threeMacadamia species (Fig 3A). Moreover, the SSRs in mt genomes of

M. integrifolia, M. ternifolia, M. tetraphylla, and N. nucifera were mainly single-nucleotide A/T

motifs, and dimer AT/TA motifs. Within the Macadamia genus, the mt SSRs among the

Table 1. (Continued)

Group of genes Gene/element Size(bp) GC_Percent AminoAcids

(aa)

InferredInitiation

Codon

Inferred

TerminationCodon

Transfer RNAs trnR-CCG 75 57.33%

trnN-GTTb(2) 75,72 49.33%
trnD-GTCb 74 63.51%

trnC-GCA 76 52.63%
trnQ-TTG 72 47.22%

trnE-TTC 72 50.00%
trnG-GCC 74 54.05%

trnH-GTGb(2) 75,75 54.67%

trnK-TTT 75 46.67%
trnM-CATb(7) 72,75,73,72,77,72,72 59.72%,46.67%,43.84%,

59.72%,44.16%,59.72%,59.72%

trnF-AAA 75 49.33%

trnF-GAA 74 47.30%

trnP-TGG 75 54.67%

trnS-TGA 88 51.14%

trnS-GCT 91 46.15%

trnW-CCAb 74 51.35%

trnY-GTA 84 51.19%

Notes: The numbers after the gene names indicate the duplication number. Lowercase a indicates the genes containing introns, and lowercase b indicates the

chloroplast-derived genes.

https://doi.org/10.1371/journal.pone.0263545.t001

Fig 2. The sizes and GC contents of 39 plant mitochondrial genomes. The blue dots represent the genome size and the orange trend line shows the variation

of GC content across the different taxa.

https://doi.org/10.1371/journal.pone.0263545.g002
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Fig 3. The comparison of microsatellites and oligonucleotide repeats in three Macadamia species and N. nucifera
mitochondrial genomes.

https://doi.org/10.1371/journal.pone.0263545.g003
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different species are highly similar (Fig 3B). However, compared with N. nucifera, there were

both differences and similarities. For example, the single nucleotide A/T in the three Macada-
mia species has 23-unit repeats, while N. nucifera has only nine. Nevertheless, their single-

nucleotide C/G numbers were the same (two-unit repeats) (Fig 3B). In addition, the AG/CT

and AT/AT motifs unit repetitions are the same, although N. nucifera also has an AC/GT

motif, lacking in the threeMacadamia species. Interestingly, the pentanucleotide AATGT/

ACATT, ACTAG/AGTCT, and ACATT/AGTAT also had the same number of repetitions in

the threeMacadamia species and N. nucifera. Overall, the greater the nucleotide motif, the

greater the difference between the threeMacadamia species and N. nucifera.

Core repeating units ranging from 1 to 200 bases (tandem repeats) are widely present in

eukaryotes and some prokaryotes genomes [60]. In the present study, 25, 21, and 20 tandem

repeats (10–33 bp) were identified in the M. integrifolia, M. ternifolia, and M. tetraphylla with

a match greater than 95% (S2–S4 Tables). The tandem repeats (11–20 bp and 21–30 bp) signif-

icantly varied among the three Macadamia species (Fig 3C), where M. ternifolia had the least

number of repetitions, while M. integrifolia and M. tetraphylla had a very similar number of

repetitions. However, N. nucifera had the least (11–20 bp and 21–30 bp) and had the highest

(0–10 bp, 31–40 bp, 41–50 bp) tandem repeated compared to the three Macadamia species.

Besides, no repetitions ranged from 51–60 bp among the four genomes, while the number of

repetitions was the same for 60–70 bp and above.

3.3 The prediction of RNA editing

RNA editing is a post-transcriptional process entailing the addition, deletion, or conversion of

bases in the coding region of a transcribed RNA. The conversion of cytosine to uridine is com-

mon in cp and mt genomes of plants [61–65], which improves protein preservation in plants.

The accurate detection of ribonucleic acid editing is inseparable from the proteomics data. In

the present study, we predicted 42 protein-coding genes (including two multi-copy genes:

ccmB and rps19) in the mt genomes of the threeMacadamia species using the PREP-mt pro-

gram [51]. The findings revealed that the RNA editing sites were 688, 689, and 688 (Fig 4).

Fig 4. The distribution of RNA-editing sites in the mt protein-coding genes of three species of Macadamia. The bars of different colors represent the

number of RNA-editing sites of each gene.

https://doi.org/10.1371/journal.pone.0263545.g004
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Among the protein-coding genes, nad4 had the most RNA editing sites (59 sites), while atp8,

rpl2, rpl10, rps1, rps2, rps7, rps10, rps11, rps13, rps14, rps19, sdh3, and sdh4 had less than 10

RNA editing sites. 236 RNA editing sites occurred in the first base position of the codon, 472

sites appeared in the second base position, and there was no RNA editing in the third base

position. M. ternifolia had more than one RNA editing site, unlike the other two Macadamia
species.

The RNA editing increases the diversity at the start and stop codons in protein-coding

genes. However, even with RNA editing, 30.2% (208 positions) of amino acid hydrophobicity

and 12.5% (86 positions) of amino acid hydrophilicity remained unchanged in the M. integri-
folia and M. tetraphylla mt genomes. However, 6.7% (46 positions) of amino acids were con-

verted from hydrophobic to hydrophilic, and 47.9% (330 positions) from hydrophilic to

hydrophobic. In addition, five amino acids were converted from glutamine to stop codons and

two from arginine to stop codons (Table 2). The findings in this study revealed that most

Table 2. Prediction of RNA editing sites.

Type RNA-editing Number Percentage

hydrophobic GCA (A) = > GTA (V) 1 30.23%

GCG (A) = > GTG (V) 6

GCT (A) = > GTT (V) 4

CTC (L) = > TTC (F) 7

CTT (L) = > TTT (F) 16

CCC (P) = > TTC (F) 6

CCT (P) = > TTT (F) 14

CCA (P) = > CTA (L) 61

CCC (P) = > CTC (L) 14

CCG (P) = > CTG (L) 44

CCT (P) = > CTT (L) 35

hydrophilic CAT (H) = > TAT (Y) 24 12.50%

CAC (H) = > TAC (Y) 11

CGC (R) = > TGC (C) 15

CGT (R) = > TGT (C) 36

hydrophobic-hydrophilic CCA (P) = > TCA (S) 16 8.28%

CCC (P) = > TCC (S) 13

CCG (P) = > TCG (S) 6

CCT (P) = > TCT (S) 22

hydrophilic-hydrophobic CGG (R) = > TGG (W) 43 47.97%

TCC (S) = > TTC (F) 47

TCT (S) = > TTT (F) 58

TCA (S) = > TTA (L) 101

TCG (S) = > TTG (L) 59

ACA (T) = > ATA (I) 7

ACC (T) = > ATC (I) 1

ACG (T) = > ATG (M) 8

ACT (T) = > ATT (I) 6

hydrophilic-stop CGA (R) = > TGA (X) 2 1.02%

CAG (Q) = > TAG (X) 1

CAA (Q) = > TAA (X) 4

Notes: Compared with the other two species of Macadamia, M. ternifolia had only one more RNA-editing site (CTT (L) = >TTT (F)).

https://doi.org/10.1371/journal.pone.0263545.t002
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amino acids were converted from serine to leucine (23.3%, 160 sites), proline to leucine

(22.4%), and serine to phenylalanine (15.3%). The remaining 269 RNA editing sites included

other RNA editing types, such as Ala-Val, His-Tyr, Leu-Phe, Pro-Phe, Pro-Ser, Arg-Cys, Arg-

Trp, Thr-Ile, Thr- Met, Gln-X, and Arg-X (X = stop codon). Compared to M. integrifolia and

M. tetraphylla, M. ternifolia only had one more RNA-edited site (Leu-Phe).

3.4 DNA migration from cp to mt

The cp-like sequences in the mt genome were detected by comparing against the complete cp

genome sequence of M. integrifolia obtained from the NCBI database (Fig 5). We detected 28

fragments in the mt genome of M. integrifolia, ranging in size from 32 bp to 5,210 bp. The cp-

like sequence had 36,902 bp, accounting for 5.4% of the mt genome. Five complete annotated

tRNA genes were detected, namely trnH-GTG, trnM-CAT, trnW-CCA, trnD-GTC, and trnN-
GTT, with some fragments of rrn18 genes. The findings also revealed that 28 insertion regions

accounted for 23.2% of the cp genome, including seven complete protein-coding genes (petL,

petG, ndhE, rps15, rpl23(X2), rpl2) and eight complete tRNA genes (trnH-GUG, trnD-GUC,

trnM-CAU, trnW-CCA, trnP-UGG, trnP-GGG, trnI-CAU, trnN-GUU). Besides, several pro-

tein-coding genes were also identified, including psbA, rpoB, psbD, psbC, ndhC, rpl2, ycf2(X2),
ndhB, rps7(X2), ndhD, ndhB and ycf1, and some tRNA genes (trnI-GAU, trnA-UGC, trnN-
GUU), which migrated from the cp genome into the mt genome. But, most of these genes lost

their integrity during the evolution process, and only their partial sequences were found in the

mt genome. Furthermore, most cp-like sequences were located in the spacer region of the mt

genome. These findings are consistent with previous research, where during evolution, tRNA

genes were more conserved than the protein-coding genes and rRNA genes since they play an

important role in mt genome [66].

3.5 Phylogenetic analysis within higher plant mt genomes

Australia is the origin and center of diversity of the Proteaceae, and this is distributed across

remnant landmasses of the southern supercontinent Gondwana [67]. The order Proteales

inclusive of Proteaceae, Platanaceae and Nelumbonaceae was established relatively recently,

on the basis of molecular data, and morphological synapomorphies for the order are yet to

be identified [68, 69]. Phylogenetic analysis was performed to understand the evolution of

the three Macadamia species compared to 29 dicots, four monocots, and two gymnosperms

(out-groups). The phylogenetic tree was constructed based on the comparisons in the data

matrix of 23 conserved protein-coding genes (Fig 6). The findings revealed that the phyloge-

netic tree strongly supports the separation of Proteales from rosids and asterids, the separa-

tion of eudicots from monocots and angiosperms from gymnosperms. The evolutionary

relationships among all the taxa separated into 20 families (Leguminosae, Cucurbitaceae,

Apiaceae, Apocynaceae, Solanaceae, Rosaceae, Caricaceae, Brassicaceae, Salicaceae, Bataceae,

Malvaceae, Vitaceae, Lamiaceae, Nelumbonaceae, Proteaceae, Butomaceae, Arecaceae, Poa-

ceae, Cycadaceae, and Ginkgoaceae) were efficiently deduced in the phylogenetic tree (Fig

6). The Macadamia chloroplast genome confirms the placement of this family with the mor-

phologically divergent Plantanaceae (plane tree family) and Nelumbonaceae (sacred lotus

family) in the basal eudicot order Proteales [70]. In addition, Phylogenetic analysis of chloro-

plast genomic variation revealed a latitudinal population structure of wild M. integrifolia
germplasm, suggesting long-term regional isolation of maternal lineages [71]. Overall, evolu-

tionary analyses of organelle genomes suggest that Proteaceae are most closely related to

Nelumbonaceae.
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3.6 The substitution rates of protein-coding genes

In genetics, non-synonymous (Ka) and synonymous (Ks) substitution rates help understand

the evolutionary dynamics of protein-coding genes among similar species since the Ka to Ks

ratio indicates gene selection [72, 73]. In the present study, N. nucifera was used as a reference

Fig 5. Schematic representation of mitochondrial genome, chloroplast genome and chloroplast-like sequence of M. integrifolia. Dots and heat maps inside

the two chromosomes show where genes are located. The green lines in the circle show the regions of chloroplast-like sequences inserted from the chloroplast

genome into the mt genome.

https://doi.org/10.1371/journal.pone.0263545.g005

PLOS ONE Assembly and comparative analysis of the complete mitochondrial genome of three Macadamia species

PLOS ONE | https://doi.org/10.1371/journal.pone.0263545 May 3, 2022 12 / 19

https://doi.org/10.1371/journal.pone.0263545.g005
https://doi.org/10.1371/journal.pone.0263545


species to calculate the Ka/Ks ratio of 40 protein-coding genes present in the mt genome of

threeMacadamia species. The Ks of atp9 and rps14, and the Ka of rps12 was 0. Besides, in

most protein-coding genes, the Ka/Ks ratio was significantly less than 1 (Fig 7). However, the

Fig 6. The phylogenetic relationships of three species of Macadamia with other 35 plant species. The Maximum Likelihood tree was constructed based on

the sequences of 23 conserved protein-coding genes. Colors indicate the families that the specific species belongs.

https://doi.org/10.1371/journal.pone.0263545.g006
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Ka/Ks ratio of nad4, rpl2, rps3, rps4, and rps10 was greater than 1, with the rps3 ratio being

2.34, implying that these genes might have undergone mutation related positive selection fol-

lowing Macadamia and N. nucifera differentiation from their last common ancestor [74].

Besides, the ATP synthase, Cytochrome C biogenesis, Ubiquinol Cytochrome C reductase,

and Maturases of Ka/Ks ratios were below 1, implying that the negative selection acted on

these genes (Table 2). Therefore, these genes may be highly conserved during the evolution of

higher plants [75].

4. Conclusions

The complete mt genomes of M. integrifolia, M. ternifolia and M. tetraphylla share many com-

mon features with angiosperm mt genomes. In this study, we found that the mt genomes of

the threeMacadamia species were circular like most mt genomes. Compared them with the

GC content of the mt genome of 36 other green plants, the results supported the conclusion

that the GC content in the Macadamia species and angiosperms are highly conserved. In addi-

tion, we conducted studies on SSRs and longer tandem repeats in the three sets of data.

Besides, 688 RNA editing sites were identified in 42 protein-coding genes, providing impor-

tant clues for predicting gene function with new codons. By detecting gene migration, we

observed 28 fragments (with five complete tRNA genes) were transferred from the cp genome

to mt genome. The subsequent phylogenetic analysis results also showed their accuracy in

plant classification. Moreover, based on the Ka/Ks substitution of protein-coding genes, most

coding genes have undergone negative selection, indicating that the protein-coding genes in

the mt genome are conserved in Macadamia species. The findings of this study provide infor-

mation on the mt genome of Macadamia species, which is key in understanding the evolution-

ary history of the family Proteaceae.

Fig 7. The Ka/Ks values of 40 protein-coding genes of three Macadamia species.

https://doi.org/10.1371/journal.pone.0263545.g007
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