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Abstract

How do we use our memories of the past to guide decisions we’ve never had to make before? Although extensive work
describes how the brain learns to repeat rewarded actions, decisions can also be influenced by associations between stimuli
or events not directly involving reward — such as when planning routes using a cognitive map or chess moves using
predicted countermoves — and these sorts of associations are critical when deciding among novel options. This process is
known as model-based decision making. While the learning of environmental relations that might support model-based
decisions is well studied, and separately this sort of information has been inferred to impact decisions, there is little
evidence concerning the full cycle by which such associations are acquired and drive choices. Of particular interest is
whether decisions are directly supported by the same mnemonic systems characterized for relational learning more
generally, or instead rely on other, specialized representations. Here, building on our previous work, which isolated dual
representations underlying sequential predictive learning, we directly demonstrate that one such representation, encoded
by the hippocampal memory system and adjacent cortical structures, supports goal-directed decisions. Using interleaved
learning and decision tasks, we monitor predictive learning directly and also trace its influence on decisions for reward. We
quantitatively compare the learning processes underlying multiple behavioral and fMRI observables using computational
model fits. Across both tasks, a quantitatively consistent learning process explains reaction times, choices, and both
expectation- and surprise-related neural activity. The same hippocampal and ventral stream regions engaged in anticipating
stimuli during learning are also engaged in proportion to the difficulty of decisions. These results support a role for
predictive associations learned by the hippocampal memory system to be recalled during choice formation.
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Introduction

Every day, we learn new information that is not immediately

relevant to our current goals. We might learn the layout of a new

neighborhood, or, while traveling a familiar street, happen upon a

restaurant that is about to open. Though we might not receive any

rewards — e.g., a friendly neighbor or a great meal — during our

initial experience, we still learn our way around. If, later, we

decide to seek a particular reward, we are usually quite capable of

using the knowledge we gained from such exploration to achieve

our goal. This is known as goal-directed or model-based decision

making: the construction of plans to achieve rewards, incorporat-

ing knowledge about contingencies in the world [1–3]. The neural

systems that support these forms of decisions are a focus of much

ongoing research.

In this study, we provide evidence that the hippocampus and

related cortical regions support the contingencies necessary to

perform model-based decisions. We show that ongoing learning of

the required contingencies can be measured in two kinds of

behavior: simple responses and deliberative choices. Further, we

show that BOLD signal in the regions of interest scales with

multiple computational variables that describe the use of these

contingencies to perform action selection.

Representations in model-based decisions
Model-based decisions stand in contrast to a simpler sort of

learned decision making whose neural instantiation is better

understood: simply learning to repeat rewarded behaviors [4–6].

To explain the former, more knowledge-driven path to decisions,

researchers have long argued that the brain maintains internal

representations of the contingency structure of a task — a ‘‘world

model’’ or, in spatial tasks, a ‘‘cognitive map’’ — that can be

adaptively applied to drive behavior. Like a map of space, these

representations describe the relationships between situations and

actions, separate from any ties to reward. The reliance on these

representations is a defining characteristic of goal-directed

decisions [1,2]. Therefore, to identify the neural mechanisms of

these decisions, researchers must first identify the representations

that guide them.
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From learning to action
Here, to examine in detail the process by which contingency

representations are learned and inform action choice, we

combined a sequential learning task [7] with an interleaved

decision task in which rewards depended on contingencies learned

in the first task. In the learning task, participants were presented

with one of four photograph images at a time, and asked simply to

press the key corresponding to that image. Which of the four

images appeared next depended, probabilistically, on the image

currently being viewed. The sequential learning task allowed us to

measure the gradual, trial-by-trial, acquisition of these probabilis-

tic contingencies linking the four image stimuli. Participants’

responses provided two observable measurements of learning:

reaction time to identify each image, and image-specific BOLD

activity in the ventral stream visual cortex.

Reaction times to identify an image indicated the degree to

which subjects expected it, given the previous one — a classic and

relatively direct measure of the learned predictive association [8–

12] — and category-specific BOLD also reflected engagement of

the neural representation of each image in anticipation of its

presentation [13]. By fitting computational models to this

progression of subject expectations, we extracted a computational

signature of the learning process, the learning rate, and used it to

generate timeseries of decision variables based on these learned

contingencies.

This enabled us to quantitatively characterize the influence of

these associations when participants were asked, in the interleaved

decision probes, to draw on them to make decisions. Specifically,

participants were told that one of the four images was, for a short

period of time, to be associated with a reward. They were then

asked which of two other images would lead to that rewarded

image as quickly as possible. This manipulation has a form similar

to a latent learning paradigm [14,15], in which contingencies are

learned separately from their link to reward. By requiring subjects

to use knowledge of the contingencies to guide their decisions, this

design allows us to probe how and whether the contingencies are

used to seek trial-specific goals — contingencies that are

exclusively the realm of model-based decision processes.

Comparing the learning rates fit to behavior and BOLD

responses we observed a striking match between hippocampal

correlates of sequential learning and the learning underlying the

reaction times, choices, prediction errors, and ventral visual stream

activity, during both simple identification responses and deliber-

ative decisions for reward. These results suggest that regions

involved in sequential learning, including hippocampus and

ventral cortical areas, indeed provide the necessary contingency

representations to support model-based choice — and, critically,

demonstrate the use of particular associations learned by these

regions during model-based decision making.

Results

Our task trains participants on probabilistic sequential contin-

gencies linking image stimuli (Figure 1). Then, on probe trials

interspersed with the learning, the task offers participants the

opportunity to make decisions for rewards, using their estimates of

those sequential contingencies to inform their choices (Figure 2).

Previously, we showed that two neural processes — associated

with the hippocampus and striatum, respectively — develop

separate estimates of the contingencies in the learning portion of

this task [7]. As the hippocampal system has long been a candidate

for learning the relations (e.g., maps or models) supporting flexible

choice, our hypothesis is that goal-directed decisions will depend

on the contingency estimates learned by the hippocampal system.

To test this hypothesis, we fit computational learning models to

explain behavioral and neural observables (such as reaction times,

decisions, and BOLD activity) in terms of recent experience with

image transitions. Following the approach developed previously

[7], for each observable we estimate a learning rate parameter,

which measures how far into the past its behavior is affected by

previous events. Since the learning rate measures which particular

events the observable is sensitive to, we use it as signature of the

underlying associative learning process. We then compare these

estimates across different observables to investigate whether they

might be driven by common learned associations.

We first examine reaction times for behavioral evidence of

prediction learning during the sequential image presentations,

verifying that the key results from the earlier study are replicated in

the present design. Next, we examine how this learning is used to

guide goal-directed choices for reward.

We then carry these analyses over to neuroimaging data,

observing neural correlates of learned predictions across both task

phases. One source of such correlates is image category-specific

BOLD signals in visual ventral stream regions during the

sequential learning task. During choice probes, we identify

analogous content-specific activations that reflect deliberative

computations supporting model-based decisions.

Behavior
Two processes learn serial order relationships. Par-

ticipants performed a sequential response task in which they were

asked to press a key corresponding to one of four exemplar images,

each displayed one at a time (Figure 1). The sequence was

generated according to a first-order Markov process: at each step,

an image’s successor was chosen from a probability distribution

over the four images. The distributions over next images were

different for each current image. Participants were instructed as to

the existence, but not the content, of this transition structure. They

were told that these contingencies would change periodically, and

without notice, throughout the experiment.

Author Summary

We are always learning regularities in the world around us:
where things are, and in what order we might find them.
Our knowledge of these contingencies can be relied upon
if we later want to use them to make decisions. However,
there is little agreement about the neurobiological
mechanism by which learned contingencies are deployed
for decision making. These are different kinds of decisions
than simple habits, in which we take actions that have in
the past given us reward. Neural mechanisms of habitual
decisions are well-described by computational reinforce-
ment learning approaches, but have not often been
applied to ‘model-based’ decisions that depend on learned
contingencies. In this article, we apply reinforcement
learning to investigate model-based decisions. We tested
participants on a serial reaction time task with changing
sequential contingencies, and choice probes that depend
on these contingencies. Fitting computational models to
reaction times, we show that two sets of predictions drive
simple response behavior, only one of which is used to
make choices. Using fMRI, we observed learning and
decision-related activity in hippocampal and ventral
cortical areas that is computationally linked to the learned
contingencies used to make choices. These results suggest
a critical role for a hippocampal-cortical network in model-
based decisions for reward.

Cortico-Hippocampal Correlates of Model-Based RL
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As has often been observed in such tasks [8], reaction times

(RTs) were facilitated for images that were conditionally more

probable given their predecessor (Figure 3). The impression that

RTs are faster for conditionally more probable images is

confirmed by performing a multiple linear regression with the

ground-truth (programmed) conditional probability as the explan-

atory variable of interest. Across participants, the regression weight

for this quantity was indeed significantly negative (one-sample t-

test, pv7e{9; mean effect size 0.44 ms RT per percentage

conditional probability) and, at an individual level, reached

significance (at pv0:05) for all 17 participants.

This speeding allowed us to use RT as a behavioral index of

participants’ image expectation, and to leverage this to study how

subjects updated their expectations trial-by-trial, by fitting

computational learning models to the RT timeseries. As in our

previous study [7], RTs were well explained by combining two

incremental learning processes [16,17]. The processes each

separately learn a table of conditional image succession probabil-

ities, updating it incrementally in response to the prediction error

at each observation, but with the size of this update in each of the

independent processes controlled by a different learning rate

parameter (a1,a2). To explain reaction times, the two conditional

Figure 1. Serial reaction time task. Images were presented one at a time for a fixed 3000 ms each, regardless of the keypress response. At the
first correct keypress, a gray bounding box appeared around the image and was displayed for 300 ms, or until the end of the fixed trial time,
whichever was less. Reaction time was recorded to the first keypress. Successive images were chosen probabilistically according to a first-order
Markov transition process (i.e., a 4x4 matrix of conditional probabilties). The conditional probabilities were changed abruptly at three points during
the task, unaligned to rest periods and with no visual or other notification. (Images shown here are not those used in the study, but public domain
stand-ins from clker.com that reflect the category of the photographs used during the experiment.)
doi:10.1371/journal.pcbi.1003387.g001

Figure 2. Choice task. Participants were asked to use their knowledge of the sequential transition structure to make decisions for reward. Choice
rounds consisted of three steps. First, participants observed the reward amount and target image for one second. Next, they were given five seconds
to choose one of two images to start the sequence from again. This choice was of varying difficulty, depending on how likely it was for each choice
image to be followed by the reward image. For the next several presentations after choice, each observation of the valued image was accompanied
by reward. (Images shown here are not those used in the study, but public domain stand-ins from clker.com that reflect the category of the
photographs used during the experiment.)
doi:10.1371/journal.pcbi.1003387.g002

Cortico-Hippocampal Correlates of Model-Based RL

PLOS Computational Biology | www.ploscompbiol.org 3 December 2013 | Volume 9 | Issue 12 | e1003387



probability predictions are combined in a weighted average with

some proportion p. This two-process learning model provided a

better fit to RTs than a one-process model for all 17 subjects

individually (average log Bayes Factor 12.53, with no individual

Bayes Factor in favor of the one-process model), and for the

population as a whole (summed log Bayes Factor 213.08). The

means, over the population, of the model’s best fitting parameters

were a1~0:007, a2~0:65, with a weight of p~0:77 to the slower

rate. To generate regressors for fMRI we refit the group’s

behavior, taking all parameters as fixed effects across the

population. (This regularizes the parameter estimates and allows

us to examine variations in neurally implied learning rate estimates

relative to a common baseline.) The fixed-effect parameter

estimates were a1~0:004 and a2~0:546, weighted at p~0:863,

which did not significantly differ from the ensemble of individual

estimates (all pw0:4).

These data are consistent with our hypothesis that sequential

learning arises from two distinct learning processes, which are

superimposed to produce reaction time behavior.

Only slow-process associations drive choice. Our next

aim was to examine how these predictions were used to make

decisions for reward, and in particular to what extent decisions

draw on either or both of the learning processes that drive reaction

times.

At pseudorandom intervals throughout the task, participants

encountered a choice probe (Figure 2) in which they were asked to

use their current estimates of image contingencies to make

decisions for reward.

Participants were informed that one of the four images was now

worth money ($1 to $5) each time it occurred during the next

several trials. They were next asked to choose from which of two

other images to restart the sequence, so as to maximize their

chance of winning money.

To examine how learned sequential transition probabilities

influence choice behavior, we fit choices with a model in which

participants chose between the two starting images on the basis of

the estimated probability of each image leading to the rewarded

image in one step. (We did not find evidence that participants took

into account the possibility that choosing an image would lead to

the rewarded image on timesteps following the first.) In particular,

the model assumes that the chance of choosing an option depends

on a decision variable defined as the difference between the

conditional probability that the rewarded image would follow each

of the two options. In this model, choice preferences depend on

the transition probabilities learned in the preceding sequential

response trials, and therefore they also depend on the learning

rate. Because each learning rate implies a different series of

transition probabilities, they also imply a different timeseries of

choice preferences.

We fit learning models to the choices to answer the question:

Which learning rate (or rates) for transition probabilities provided

the best explanation for choice behavior? Considering the

possibility that, like RTs, choices were due to some weighted

combination of probabilities learned at two rates, we compared

one- and two-process models. However, in this case a model with a

single free learning rate provided a better fit for all 17 subjects

individually (mean log Bayes Factor 2.31), and across the

population (summed log Bayes Factor 39.26 versus the two rate

model).

This single free learning rate, fit to choices, matched the slow

learning rate fit to reaction times. Across subjects, the mean best-fit

learning rate was 0.10+/20.05, which was smaller than the fast

Figure 3. Behavioral analyses. a. Reaction time on the image identification task decreases as the ‘ground-truth’ probability – the probabilities
generated by the task program, and uninstructed to the participant – of that image appearing, conditional on the previous image increases. Here, for
each participant, RTs were first corrected for their mean and a number of nuisance effects, estimated using a linear regression containing only these
effects as explanatory variables. b. Across subjects, the fitted learning rate values that best explain behavior. For reaction times, the best-fitting model
contained two learning rates (one ‘slow’, the other ‘fast’), whose estimates were combined linearly according to a fitted weighting parameter. For
choice behavior, the best-fitting model contained one learning rate, statistically indistinguishable from the slow rate fit to reaction times, but
significantly different from the fast.
doi:10.1371/journal.pcbi.1003387.g003

Cortico-Hippocampal Correlates of Model-Based RL
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learning rate obtained for RTs (pv9e{5) but not significantly

different from the slow learning rate (pw0:07) (Figure 3). These

results suggest that choices, unlike reaction times, exclusively result

from associations learned at a single timescale, consistent with the

slow process observed in RTs.

How are these learned transition probabilities used to compute

action values? The standard model is that expected values are

computed by multiplying the probability of each option image

leading to the goal image by the reward value of that goal image.

These expected values are then transformed into choice proba-

bilities using a softmax function, with a free parameter b.

Another approach, inspired by race models [18], is based on

the idea that the outcome predictions driving choice might

involve discrete retrievals of next-step images, proportional to

the estimated transition probabilities [19,20]. In this model,

choice probabilities result from a thresholded comparison

process after some number of draws from the binomial

distribution (p(RDO1),p(RDO2)) defined by the transition proba-

bilities. This approach is similar to the sort of sequential

sampling processes used to model perceptual decisions [21].

Fitting this model to the set of choices by each participant gives

an additional parameter, n, the average number of draws. Here,

binomial sampling noise introduces stochasticity in the choices

similar to the softmax logistic distribution often used in decision

models [22], with n playing a role analogous to softmax’s inverse

temperature. (See Materials and Methods, section Choice models, for

more details.) In fact, choices are also similarly fit by the

softmax, and the foregoing results concerning learning rate are

robust to either choice rule. We adopt the sampling model

because the process-level description of decision noise motivates

analyses of neuroimaging data during choice formation,

presented below.

At the fixed, slow learning rate, the best-fit value of n was

4.675+/21.25 samples, across subjects. As in our learning rate

analysis, we estimated this as a fixed effect (4.177), for generating

our fMRI regressors (see Choice difficulty in Neuroimaging results).

Neuroimaging
We next identified neural correlates of each learning process.

Stimulus anticipation in each process has distinct neural

substrates. We began by looking for correlates of participants’

anticipation of the next image to appear. Specifically, we sought

activity that reflected how difficult it might be to predict this next

image. Previous work [7,9,10] has shown that BOLD activity in

hippocampus and elsewhere covaries with the participants’

modeled uncertainty about future events. This may reflect a

process of spreading activation, by which an image triggers

activations of likely successor images, which are more numerous in

situations of uncertainty. Also consistent with this idea, the

anterior portion of the hippocampus was recently shown more

directly to reflect such anticipation in sequential relationships

among abstract stimuli [23].

Here, uncertainty is formally defined as the ‘‘forward entropy,’’

or entropy of the model’s prediction about the identity of the next

image, conditional on the current one. This is a trial-by-trial

function of the model’s learned transition probabilities, which in

turn depend on the learning rate fit to behavior. These regressors

are specified as parametric modulators on delta functions placed at

the onset of the currently presented image.

The two-process model as fit to reaction times therefore gives

rise to two entropy timeseries, one each from predictions

generated at the fast and slow learning rates. Based on our

previous results [7], we expected to find different correlates

corresponding to the entropy timeseries from each process: in

hippocampus for the slower learning rate and in striatum for the

faster learning rate. We defined, using the AAL template library,

anatomical masks of the structures in which we observed above-

threshold activations in our previous study: left hippocampus for

slow learning rate entropy and bilateral caudate for fast learning

rate entropy [7]. Accordingly, when forward entropy was

computed according to the slow learning rate process, a cluster

of significantly correlated activity was observed in the region

identified in our previous study, left anterior hippocampus (peak

226, 210, 218; pv0:04 corrected for family-wise error due to

multiple comparisons over an anatomically-defined mask of left

hippocampus; Figure 4).

We ran a separate regression containing an identical GLM

except for the entropy regressor, which was now computed

Figure 4. BOLD signal reflecting anticipation of the next stimulus. a. BOLD signal correlated with forward entropy in the fast process. Activity
in the dorsal caudate was significant after correction over an anatomically-defined mask of bilateral caudate. b. BOLD signal correlated with forward
entropy in the slow process. Activity in the anterior hippocampus was significant after correction over an anatomically-defined mask of left
hippocampus. Both a and b displayed at pv0:005, uncorrected.
doi:10.1371/journal.pcbi.1003387.g004

Cortico-Hippocampal Correlates of Model-Based RL
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according to the fast learning rate. In this GLM, we observed

activation on the tail of right caudate (peak 24, 214, 26) that was

significant when corrected for multiple comparisons over an

anatomically-defined mask of bilateral caudate (pv0:005). (A

symmetric cluster in left caudate was observed at pv0:005
uncorrected, but did not survive correction for multiple compar-

isons.)

The foregoing results suggest two prediction processes that each

learn at a rate corresponding to one of those observed in the RT

behavior, with anatomically separate substrates. As in our previous

study [7], we more directly tested the correspondence of learning

rate to neural structure within a single GLM by independently

estimating the learning rate that best explained entropy-related

BOLD signals in each area. We located voxels of interest in an

unbiased manner and fit the learning rate using a Taylor

approximation to the entropy regressor’s dependence on the

parameter [7,24,25]. Neural learning rate estimates are visualized,

superimposed over the behaviorally-obtained learning rates, in

Figure 5.

Matching our previous results [7], the fast learning rate from

RTs matched the one computed from BOLD signal in the

striatum. In the mean over participants, the learning rate implied

by BOLD in caudate was aBOLD~0:507. This rate was

significantly larger than the slow learning rate fit to RTs

(pv3e{9), but not significantly different from the fast learning

rate (pw0:74).

In our prior study [7], the slow learning rate from RTs matched

the one computed from BOLD signal in the anterior hippocam-

pus; here, though the hippocampal BOLD learning rate

(aBOLD~0:099) was numerically closer to the slow rate fit to

RTs, it was statistically different from both that rate as well as the

fast (both pv0:04). Importantly, however, it was not statistically

distinguishable from the learning rate fit to choices (pw0:99) —

thus supporting the critical link, from learning to choices — and

also significantly smaller than the striatal learning rates computed

from BOLD (paired samples; p~0:01).

Taken together with the behavioral model fits, these neuroim-

aging results and learning rate computations support the

suggestion that two distinct processes learn to estimate the

sequential contingencies embedded in our image identification

task. Further, neural activity in two structures reflects anticipation

(indexed by forward entropy) according to the estimates of each

processes, with learning rates that differ from one another and

approximate those identified in reaction time behavior.

Neural decision computations are uniquely explained by

the slow process. We next sought correlates of decision

computations driven by the learned transition probabilities. Our

analysis of choice behavior indicated that decisions were informed

by the sequential contingencies learned at a rate consistent with

the slow learning rate fit to RTs. Therefore we hypothesized that

activity related to decision computations would also be identified

with a similar learning rate. If this indeed reflected a common

Figure 5. Learning rate aBOLD computed from BOLD signal. Learning rates computed from each of our regions of interest, overlaid on the
learning rates fit to reaction time behavior. The best-fitting learning rates are displayed for each type of trial: sequential image-identification trials,
decision trials, and choice outcome trials. For learning trials in hippocampus and caudate, learning rates are computed using the forward entropy
regressor. For learning trials in face- and house-selective cortex, learning rates are computed using the estimated probability of the image appearing
on the next trial. For decision trials in hippocampus, learning rate is computed using the choice difficulty regressor. For decision trials in face- and
house-selective cortex, learning rates are computed using the portion of the choice difficulty regressor specific to that image. For outcome trials in
nucleus accumbens, learning rate is computed using the reward prediction error regressor. Error bars: 1 SEM.
doi:10.1371/journal.pcbi.1003387.g005

Cortico-Hippocampal Correlates of Model-Based RL
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underlying learning process, it would engage the anterior

hippocampus, which was shown to support slow learning in the

sequential learning task.

We first analyzed activity during the deliberation period leading

up to the choice. Similar to our analysis of anticipatory activity

during sequential response trials, we probed the neural correlates

of deliberation by asking: how difficult was it for the participant to

make this decision? We used as our measurement of choice

difficulty the uncertainty (variance) in the decision variable (the

value difference between options) that led to the current choice,

computed using the choice model parameters fit to behavior (for

details, see Choice models in Materials and Methods). This quantity,

which was motivated by the process-level model of decision noise,

is similar to the entropy measure used to define uncertainty during

the learning task. The key difference is that the distribution being

analyzed lumps images into two categories (rewarded vs non-

rewarded) rather than predicting all four separately.

This regressor was specified at the time of onset of the choice

screen.

In our region of prior interest, an area of left anterior

hippocampus was activated, though only marginally significant

after multiple comparison correction over our anatomical mask

(p~0:064; Figure 6b). This activation is similar to that seen to

entropy during the stimulus prediction task.

Does this activity reflect learning similar to one of the processes

observed in RT behavior? We again estimated the learning rate

implied by these BOLD correlates. The learning rate computed

from anterior hippocampal BOLD during choices matched the

slow learning rate fit to RT. The mean learning rate that best

explained this activity was aBOLD~0:018 (Figure 5). This was

different from the fast learning rate from RT behavior (pv0:03),

but did not differ from the slow RT learning rate (pw0:35). The

involvement of the hippocampal region in both phases of the task,

showing the same type of learned associations, supports the idea

that a common learning process supports both behaviors.

Choice difficulty engages a fronto-temporal memory

network. Additionally, at the whole brain level, the choice

difficulty measure revealed correlates in a broad fronto-temporal

network that appears to correspond to a component of the ‘default

network’, a set of brain regions that has been associated with

constructive memory and mindwandering [26,27].

In particular, two clusters survived correction for multiple

comparisons over the entire brain: a region of anterior medial PFC

(peak 4, 64, 22; p~0:046), and a region of posterior cingulate

cortex (peak 22, 218, 32; p~0:015; Figure 6a). Also, activation in

a third component of the default network, the dorsomedial PFC

(peak 14, 40, 40) survived whole-brain multiple comparison

correction for cluster extent (pv4e{4), but not peak (p~0:21).

Together with the above-reported anterior hippocampal cluster,

the overall pattern of activation is consistent with previous

observations of the fronto-temporal memory component of the

default network [28].

We ruled out alternative explanations for activity in these

regions, or other variables that might correspond to the notion of

‘choice difficulty’. The choice difficulty regressor was not

significantly correlated with reaction time (across subjects, mean

R~{0:14), nor the expected value of the choice (mean R~0:15).

Prediction error activity in striatum. This same hippo-

campally-linked, slow process learning also matched the neural

reward prediction error (RPE) in nucleus accumbens [29–31]. We

analyzed the RPE at the time of the onset of the first image

following the choice, since that was the timepoint that primarily

influenced the decision in our behavioral analysis. Here, the RPE

is defined as the difference between the obtained reward (or $0, if

an image other than the rewarded one occurs) and the expected

value of the option chosen. Since the expected value depends on

the learned image transition probabilities, this signal again should

depend on the learning rate.

Figure 6 illustrates activity in nucleus accumbens correlated

with the RPE regressor computed from the slow learning rate

(peak 10, 12, 22 ; pv0:001 after correction for family-wise error

due to multiple comparisons over an anatomical mask of the

nucleus accumbens). Again, the learning rate in the NAcc was best

matched to the slow learning rate fit to RT. The mean learning

rate implied by NAcc activity was aBOLD~0:0193. Across the

population, this rate was smaller than the fast learning rate

obtained from RT behavior (pv0:02) but was not different from

the slow learning rate computed from RT behavior (pw0:25).

Thus, these results are again consistent with the idea that the

choice phase of the task is driven by the slow, hippocampally-

linked process.

To verify that these results are indiciative of a reward prediction

error signal, and not simply driven by the receipt of reward, we

extracted the coefficients for reward value and expectation

separately. A signal reflecting the computation of reward

prediction error should positively covary with the former, and

negatively with the latter. This was in fact the case: across the

population, the correlation coefficient at the peak voxel was

Figure 6. BOLD signal during choices and outcomes. During deliberation periods after choice options were presented, we observed activity in
a. posterior cingulate (22, 218, 32), anterior mPFC (4, 64, 22) and b. left hippocampus (peak 224, 210, 218), all significantly correlated with choice
difficulty in the slow process. c. BOLD signal at outcome. A cluster in the nucleus accumbens (peak 10, 12, 22) correlated with reward prediction error
as computed using the expectations derived from the slow process. All activations displayed at pv0:005, uncorrected.
doi:10.1371/journal.pcbi.1003387.g006
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significantly positive for reward value (pv0:016, by two-tailed,

one-sample t-test) and significantly negative for expected value

(pv0:035).

Content-preferring visual regions are selectively driven

by anticipation for stimulus category. One interpretation of

activity related to forward entropy during the sequential image

identification trials (Figure 4 above) is that it might result in the

aggregate from the retrieval of likely targets in anticipation of the

upcoming image. To seek more direct evidence for such retrieval

at the item level, we leveraged the fact that our design used four

category-specific exemplars as stimuli. Each of these exemplars

was chosen because it represents a category that has been shown to

preferentially engage a particular region of higher-order visual

cortex: bodies [32], faces [33], houses [34], and household objects

[35]. We examined whether activity in these regions was related to

the estimated probability (from the model fit to participant

behavior) that the corresponding image would appear on the next

trial. This probability timeseries is a parametric measure of the

strength of the estimate for a given image, specified at the time of

onset of the preceding image. We tested these effects only for

houses and faces, because these categories were the most

consistently identified with regions in our initial localizer analysis.

First, we identified face- and house-sensitive regions using the

relevant (in-task) localizer contrast: regions that responded more

for trials on which the face was presented than they did on trials on

which the house was presented, and vice-versa. We selected the

voxels that survived correction over a combined anatomical mask

of the right ventral stream regions: fusiform gyrus, parahippo-

campal gyrus, and inferior occipital lobe, chosen to encompass

previously observed content-sensitive regions [32–35], and reflect-

ing the fact that these activations tend to be right-lateralized in our

areas of interest. The face and house selective regions are depicted

in Figure 7 (face peak 42, 248, 220, p~0:025 ; house peak 28,

282, 22, p~0:008).

These face- and house-selective regions were then used to seek

activity sensitive in a graded fashion to anticipation of the face or the

house, respectively. Within these regions, we tested for activity

preferentially related to the probability of the face (as opposed to

the house) appearing next, and vice versa. (Note that any such

activity cannot be explained by a confounding tendency of the

house actually to appear after it is expected, since the GLM also

models the actual presentation of the faces and houses, and the test

of the parametric effect of probability therefore turns only on the

portion of activity orthogonal to this.) Indeed, activations within

the face- and house-selective regions were significantly (though

negatively) correlated with the probability of the corresponding

image appearing next (face: peak 42, 266, 214, p~0:0266;

house: peak 26, 270, 28, p~0:033). The face and house-selective

regions and the corresponding contrasts selective for anticipation

of each image are displayed in Figure 7.

Like entropy, the anticipatory probability regressor depends, in

the model, on the learning rate that produces the probability

estimates. We again estimated the learning rate, aBOLD, that best

explained anticipatory activity in each of these category-selective

regions (Figure 7). In both regions, the learning rate was best

matched to the slow, hippocampal learning process. In the face

region, the mean learning rate was aBOLD~0:04. This rate was

smaller than the fast learning rate fit to RTs (pv0:03), but not

significantly different from the slow learning rate (pw0:07). In the

house region, the mean learning rate was aBOLD~0:12. Across the

population, this rate was numerically closer to the slow rate, but

significantly different from both the fast and the slow However it did

not significantly differ from other slow learning rates we estimated:

that fit to choice behavior (pw0:84), or the hippocampal learning

rate computed from BOLD (paired samples; pw0:86). Finally, this

rate was significantly smaller than the learning rate computed from

striatal BOLD (paired samples; pv0:04).

Together, these results confirm that anticipatory activity in the

image-sensitive regions corresponds with the estimated probability

of each image appearing next. Further, they concord with the

notion that learning implied by these signals most closely conforms

to a slow learning process identified in reaction time, choice, and

hippocampal BOLD.

Content-selective regions are selectively driven by

difficulty of deliberating about a stimulus category. Ac-

tivity in content-preferring regions was linked to the slow,

hippocampal process during choice trials as well. Our choice

model, fit to behavior, involved drawing samples of associations

that would lead to the rewarded image. Here, we looked for

activity in content-selective regions consistent with the reinstate-

ment predicted by this process. For this analysis, we split our

measure of choice difficulty into separate components, associated

with each of the four different image categories (though limiting

our analysis again to faces and houses). In particular, we

considered the uncertainty about the probability that each image,

separately, would lead to the rewarded image. We hypothesized

that if the decision process involved retrieving each image’s

associates in attempting to compute its chance of leading to

reward, then activity in the category-sensitive regions might be

modulated by the difficulty of making this determination. Indeed,

at the slow learning rate, the BOLD signal was positively

correlated with the category-specific choice difficulty in the

content-sensitive regions previously identified (face: peak 40,

262, 216, p~0:013; house: peak 30, 276, 26, p~0:044 ; all

p-values corrected for multiple comparisons over the respective

regions identified in our visual localizer).

Again, the activity in both face and house-selective regions

was best matched to the slow learning process. The mean

learning rate implied by activity in the face-selective region was

aBOLD~0:063. This rate was slower than the fast rate identified

in RT behavior (pv0:03), and did not differ significantly from

the slow learning rate fit to RTs (pw0:07). The mean learning

rate implied by activity in the house-selective region was

aBOLD~0:085. This rate was also smaller than the fast

RT learning rate (pv0:005). Consistent with our hypothesis, it

did not differ significantly from the slow RT learning rate

(pw0:05).

For a full accounting of the comparisons between each of the

learning rates identified in choices, reaction times, and BOLD, see

Table 1.

Taken together, these results tie activity in the ventral visual

stream during decisions to an associative learning process

consistent both anatomically and in terms of learning rate with

that examined during sequential responding. Thus, altogether,

these results suggest that the associative learning processes whose

correlates were observed in hippocampus and the ventral visual

stream during the sequential response trials also support deliber-

ative, goal-directed planning in decisions for reward.

Discussion

It is well established that decisions can be influenced by

knowledge of contingencies embedded in the environment. The

current study examined the neural computations underlying the

learning of these contingencies, and linked them to computations

underlying the decisions themselves. We present evidence that

model-based decisions are supported by a contingency learning

process involving hippocampus and ventral visual cortex, whose
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Figure 7. Image-selective regions. The regions defined by the in-task localizer contrasts house w face and face w house, are colored yellow (left:
face, right: house). The face localizer yielded the largest cluster of activation in a region of right fusiform gyrus. The house localizer yielded the largest
cluster of activation in a region stretching from posterior parahippocampal gyrus to the occipital lobe. Regions selectively sensitive to the estimated
probability of an image appearing next (on sequential response trials) are colored blue. Regions selectively sensitive to the difficulty of deciding
whether a particular image would lead to reward are colored red. Displayed at pv0:005, uncorrected.
doi:10.1371/journal.pcbi.1003387.g007

Table 1. Learning rates implied by BOLD in each region of interest.

Region-Regressor aBOLD Not fast? Not slow? Not choice LR? Not HC? Not caudate?

HC-Entropy 0.099 * *! n.s. - *

HC-Difficulty 0.018 * n.s. n.s. n.s. *

Caudate-Entropy 0.507 n.s. ** ** * -

NAcc-RPE 0.0193 * n.s. n.s. n.s. *

Face-Probability 0.04 * n.s. n.s. n.s. *

Face-Difficulty 0.063 * n.s. n.s. n.s. *

House-Probability 0.12 * *! n.s. n.s. *

House-Difficulty 0.085 ** n.s. n.s. n.s. **

*- pv0:05.
**- pv0:005.
!- test ran counter to our hypothesis about the learning rate of that region.
doi:10.1371/journal.pcbi.1003387.t001
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activity changed with this learning and was observed in concert

with multiple kinds of instrumental behavior.

These results go beyond previous research that indirectly

inferred the contribution of contingency learning to decisions, by

using characteristics of the decisions and neural activity related to

decision variables (action values or prediction errors; [36–38]), or

conversely by examining activity related to contingency learning

[15] without directly comparing it to choices. Here, we used

additional observables — reaction times and fMRI signatures of

reactivation of past experiences — to examine the learning of

contingencies more directly, and to demonstrate that a component

of this learning was quantitatively well matched to that implied by

decisions.

Learning rate comparisons
We are able to compare learning across different task phases

(learning and choice) and sorts of measurements (reaction times,

choices, and BOLD correlates of different quantities) by treating

them all as different windows on a computational learning process.

We fit each sort of data with a standard computational model of

how predictions are learned from recent experience, and compare

the learning rate parameters that best explain these measurements.

The pattern of data in Figures 3 and 5 and Table 1 shows a

striking consistency in these estimated learning rates between the

different measurements.

However, there are a number of caveats to keep in mind about

these analyses. First, it is in principle not possible to conclude that

any two of these learning rate estimates are ‘‘the same’’ as one

another — only that they are not statistically distingishable. But

this pattern of negative findings is supported by positive ones, for

instance that the differences between the various manifestations of

‘‘slow’’ and ‘‘fast’’ learning rates are significant (Table 1). Also, our

findings that apart from exhibiting similar learning rates, neural

activity during choice and decisions implicate common neural

structures support the interpretation that all this activity relates to

a common underlying learning process. Ultimately, however,

establishing a definitive link between activity during learning and

choice will require additional work using methods that can probe

causal relationships between brain function and behavior.

A related point is that the estimates of learning rates from

BOLD in Figure 5 consistently tend to be less extreme than their

behavioral counterparts, i.e. slightly slower relative to the fast

learning rate and faster relative to slow. In a couple of cases, this

difference between BOLD and behavioral estimates is significant,

seeming to contradict the interpretation that all these measure-

ments reflect a common learning process. We believe this relates to

another important set of caveats with this study, which is that it is

methodologically challenging to estimate learning rates from

BOLD data due to the nonlinear relationship between the learning

rate and the decision variables that have BOLD correlates

(entropy, etc.). To permit estimation, we approximate this

relationship as linear using a first-order Taylor expansion

[7,25,39]. This allows us to estimate the learning rate in the

context of the same standard fMRI analysis (using a general linear

model) as the rest of our results, and in turn means these analyses

cope in the standard ways with the many methodological

complications of fMRI (including for instance intersubject random

effects, temporal and spatial autocorrelation, hemodynamics, and

regressor colinearity). This method appears to perform robustly in

this and our previous study [7] and other closely related analyses of

parametric brain-behavior relationships [38,40,41], but there has

not yet been a formal simulation study quantifying the error

introduced by this approximation. One key sort of approximation

error that we have examined [7] arises from our choice of the

midpoint between fast and slow learning rates as the point around

which to linearize. We choose this point to minimize the distance

between the linearization point and the hypothetically relevant

learning rates, since the error from linear extrapolation is expected

to accumulate with distance. However, this choice interacts with

the way we identify voxels of interest for fitting the learning rate,

by identifying peaks in activity assuming this midpoint learning

rate. Intuitively, this selection biases the estimated learning rates

toward this midpoint (see our previous study using this approach

for a more thorough technical explanation [7]). Although this

effect is innocuous with respect to the conclusions in this article, it

may account for some of the observed difference between neural

and behavioral estimates in Figure 5.

Hippocampus and striatum
Our choice task has one of the key features of a latent learning

task [15]: sequential contingency learning precedes the introduc-

tion of a new and unpracticed rewarding goal. In particular, given

the sparse occurrence of the choice probes, and the different

combinations of rewarded and starting images, these decisions

implicate a model-based response strategy requiring participants

to evaluate options’ chances of reaching the new goal based on the

predictive associations being continually learned in the sequential

image presentation trials. Conversely, choices of this sort leave

little room for model-free reinforcement learning based only on

the success of particular choices at earning money in previous

choice trials.

Consistent with this, a key neural player in both the learning

and decision phases in our results is the hippocampus. The

hippocampal system is associated with flexible memory for

stimulus-stimulus relations [42–44] and is a longstanding candi-

date for maintaining contingency structure in the service of goal-

directed decisions [2,19,45–48]. In part, these suggestions are

based on the analogy with spatial tasks, in which it has long been

argued that the hippocampus implements a cognitive map [49,50].

A suggestive connection of these ideas to nonspatial tasks is

ubiquitous findings that the the hippocampal system is implicated

in acquired equivalence, transitive inference, and sensory precon-

ditioning effects [41,51–53], as well as the flexible use of

conceptual [54] and structured [55] knowledge. All of these

effects demonstrate a bias in novel choice probes caused by

previously learned stimulus-stimulus relations. Model-based deci-

sion making relies on a similar ability to flexibly chain together or

recombine associations in novel ways, as exercised in latent

learning tasks like our choice probes here.

Accordingly, we hypothesized that participants would draw on

hippocampally-linked contingencies to make decisions. Indeed, the

learning rates that best explained both choices and BOLD signals

during the decision trials were not distinguishable from those seen

in hippocampus and nearby ventral stream visual cortex during

sequential responding, while differing significantly from those seen

in BOLD activity in caudate and the fast process in reaction times.

This quantitative convergence between learning processes exam-

ined during different tasks and through the lens of different

observables substantiates the idea that model-based decisions and

incidental stimulus-stimulus learning, like other sorts of relational

learning and transfer [41,53–55] are supported by the same

hippocampal memory system.

Interestingly, the literature concerning these tasks suggests what

appear to be two distinct (but potentially complementary)

mechanisms supporting the flexible transfer of relational knowl-

edge to novel probes. Some studies have demonstrated that better

performance on transfer probes is predicted by hippocampal

BOLD activity at learning but not test time [53,56] suggesting that
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transfer is somehow supported by processes that occur already

during encoding. One hypothesis is that such activity reflects the

immediate transfer of learning, when information is first obtained,

to other related associates by a process of spreading activation. In

other studies [54,55], neural activity at probe time also related to

correct performance or with the relational information itself. This

suggests the importance of processes occurring at the time of

retrieval, and is consistent with theories (as in the standard account

of model-based RL) that transfer is supported by some sort of

active inference, planning or search at the time of the novel choice.

Our result (discussed further below) that hippocampal activity

tracked the difficulty of the decision probes speaks to the latter

mechanism, providing relatively direct evidence that the hippo-

campal system engages in more computation for harder transfer

problems (see also Simon & Daw [57]). Altogether, these two

distinct but complementary mechanisms appear to be each well

supported across the literature, and could plausibly both

contribute in different circumstances.

The type of model-based decision making studied here contrasts

with ‘‘model-free’’ habit learning, of the sort associated with

dorsolateral striatum [58], predominant temporal-difference

learning accounts of reward prediction error signal seen in

dopamine neurons [6], and the striatal BOLD response [29–31].

That said, parts of striatum are clearly necessary for model-based

decision making in rodents as well [59,60]. Perhaps related, in

human neuroimaging, even reward prediction errors observed in

ventral striatum — though often characterized as reflecting the

teaching signal for model-free stimulus-response learning — have

recently been shown to report information about the state-state or

relational structure of a task that would be known only to a model-

based system [38,41]. This may suggest some crosstalk between

model-based and model-free learning in the brain. The reward

prediction errors in the decision phase of the present task are

consistent with these results, in that they reflect stimulus-stimulus

predictions combined with trial-specific rewards to which a purely

model-free reinforcement learner would be blind. The present

results also extend these findings by showing that the stimulus-

stimulus learning rate driving these prediction error effects

matches that from the hippocampal system during the sequential

response task, suggesting all these are indeed driven by a common

learning process.

During the sequential response task, activity was not observed in

the ventral striatal region commonly associated with reward

prediction errors. This may reflect the lack of overt reinforcement

in this more implicit association task. Instead, activity in a more

dorsal/posterior region of striatum reflected a transient (high

learning rate) adaptation process, which also had separate

correlates in reaction times. We speculate that this activity (and

the associated component of the reaction times) may reflect a

second process of response learning, which did not carry over into

the decision task. Indeed, the stimulus sequence in serial reaction

time tasks of the sort we use is accompanied by an equivalent

motor sequence (of button presses), leading previous authors to

suggest [61–63] that participants might learn either or both of two

distinct types of sequential associations: stimulus-stimulus and

response-response. That these processes then are uniquely tied to

separate brain systems — hippocampus and striatum — suggests

that they reflect learning of information specialized to each of

those systems. Given the broader functional roles of both

structures, it is tempting to hypothesize that hippocampus is

associated with stimulus-stimulus associations and striatum with

response-response [64–66]. While we did not explicitly dissociate

response-response and stimulus-stimulus associations, the weight of

the literature tying each of these types of information to each brain

structure suggests this hypothesis and encourages us to carry it

forward throughout the below discussion. Importantly, by asking

participants to seek a particular stimulus given another, our

decision probes isolate only stimulus-stimulus associations and

cannot be solved on the basis of response-response associations.

Thus, the finding that the hippocampal activity (and its learning

rate) contributed to these choices, but not the striatal one, is

consisistent with these structures’ hypothesized involvement in

stimulus and response prediction. Further, the exclusive use of the

slow-process associations in forward-looking, model-based choice

suggest that these associations are of a type that may be flexibly

recombined, a property long associated with hippocampal

representations and not those of striatum [48,52,67].

That this learning was ‘slow’ in the hippocampus may at first

seem to run counter to the notion that this structure supports

flexible, rapidly bound learning, as in episodic memory. Model-

based decisions are also characterized similarly, for instance

because they tend to dominate behavior during initial learning but

not following overtraining. However, it is important to emphasize

that the theoretical ‘flexibility’ of the model-based system is in its

ability to recombine the learned associations, applying them in

novel contexts to novel goals: it is fundamentally about what is

learned (e.g., a world model rather than a fixed policy) rather than

how quickly. The question over what timescale any associations

are learned is distinct from this issue – indeed, much previous work

[57,68] implies that the learning rate should normatively be

controlled by factors such as the volatility of the environment and

the reliability of observations. In this context, the learning rate

measures the degree to which the model-based system can draw on

experiences learned from the far past, in applying them to these

novel contexts. A low learning rate indicates a long memory; a

higher learning rate indicates a shorter memory.

The mechanisms which might give rise to these learning

dynamics are an interesting topic for further research. Here, we

have provided evidence that hippocampally-learned information is

used in behavior via fetching memories of past transition events.

That these candidate transition events might be drawn from

memories stretching over tens of trials (spanning under a minute)

into the past is well within understood capacity limitations of the

hippocampal memory system. (For a further treatment of these

issues, see the discussion provided in our previous paper using this

task [7].)

Anticipatory activation of stimulus representations
In category-selective regions of the ventral visual cortex, we

observed reinstatement of stimulus-stimulus associations in a

manner that was modulated by task demands, across our two

different tasks. Over the sequential response trials, we observed

that BOLD activity correlated with stimulus expectations in

category-selective regions of the ventral visual stream. Specifically,

activity in face- (or house-) selective regions of extrastriate visual

cortex were also preferentially modulated by the expectation that

the face (or house) image would appear next. The finding that

activity parametrically fluctuates with stimulus predictions in both

hippocampus and the ventral visual areas — and that the learning

rates explaining these effects match one another — provides

evidence that both areas are participating in a common associative

learning process. At a more mechanistic level, it may be possible to

interpret both entropy-related activity in hippocampus and

probability-related activity in the ventral visual areas in terms of

associative spreading that activates the representations of likely

successors to the currently observed image.

On its face, the finding that anticipatory activity in the ventral

areas decreases with conditional probability might seem to run
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counter to such a mechanism. That is, one might expect that, if

probability is attributed largely to a single image, then the

representation of that image should be more strongly activated.

The contrary observation could be explained by a similar

mechanism to the one that has been offered to explain ‘repetition

suppression’ of BOLD (and spiking) responses [69,70]. Here, a

more narrowly tuned population could be recruited for more

strongly expected stimuli. However, this explanation is insufficient

to explain the parallel anticipatory activation we observe during

choice trials, which are presumably the result of a common

mechanism for anticipatory retrieval in the service of behavior.

A different interpretation of the effect is suggested by

envisioning stimulus prediction as an active process of accessing

memories. In particular, previously observed successors might be

stochastically retrieved in a likelihood-weighted fashion to build up

a statistical profile of the subsequent image, with this mnemonic

evidence accumulated in a manner analogous to diffusion-to-

bound models of perceptual discrimination [21,71]. This idea is

consistent with suggestions that anticipatory activity in category

regions is driven by evidence accumulation [72]. If such a process

terminates when evidence reaches some threshold, then spiking

activity would be elevated only over a shorter interval of time and,

thus, on trials with strong evidence observed signal would be lower

when integrated over the length of the hemodynamic response

[73].

The activity of these same category-selective regions during the

decision trials could be understood in a similar manner, in terms of

retrieving memories to evaluate candidate actions. Here, activity

in the face (and house) areas of ventral visual cortex correlated

with our measure of the difficulty of deciding whether the choice of

that stimulus would lead to reward. This observation supports a

model where evaluation of decision options occurs by bounded

accumulation of evidence — memories stochastically sampled to

evaluate the likely consequences of a choice (here, the successor

image and its reward status).

Episodic retrieval in forward search
Our aggregate (as opposed to stimulus-specific) choice difficulty

measure was also positively correlated with activity in the anterior

MPFC and posterior cingulate cortex. Activations under our

reporting threshold were also observed in dorsal MPFC and

anterior and posterior hippocampus. These regions together

comprise the fronto-temporal memory component of the well-

known ‘‘default network’’ [28]. Although originally characterized

by its increased, coherent, activity during periods of rest, a role in

deliberative evaluation is consistent with functional hypotheses for

this network, in which activity is modulated by prospective or

constructive memory. Tying together experimental data from

multiple levels of observation and across task and rest modalities,

Buckner & Carroll [26] suggest the default network ‘‘enables

mental exploration of alternative perspectives based on our past

experiences’’, a proposal they expanded on in later discussions

[27]. Burgess [74] offers a complementary suggestion for one

component of the network, proposing that BA10 in particular acts

as a ‘gateway’ between a focus on internal (e.g., mnemonic) and

external (e.g., sensory) representations. These proposals — along

with observations of hippocampus and default network activity

during look-ahead planning [75–77] — concord with our

interpretation of the choice difficulty correlate as reflecting

reinstatement of prior experiences.

Finally, by offering a closer look at how the brain employs

associations in the service of model-based decision making, our

study suggests a route toward addressing one key puzzle in this area.

To wit, whereas simple reward learning has a straightforward neural

implementation (embodied in model-free temporal difference

theories and relatives [6,78,79]), and the inference that these be

accompanied by model-based choice is well established [3], the

mechanism by which the brain actually implements such compu-

tations remains opaque. The idea we have advanced above, that

successor states are retrieved stochastically (see also [45]), and their

values integrated, connects directly with known neural mechanisms.

In particular, although the idea of model-based planning as a

mnemonic version of evidence accumulation differs at least

superficially from more abstract conceptualizations based on tree

search [3,80,81] or Bayesian inference [82,83], sampling from

successor states provides a more realizable process-level account of

model-based evaluation in circumstances (such as chess) when the

full set of future trajectories is too large to explore systematically.

Moreover, it connects closely with evidence accumulation mecha-

nisms that are well studied in the context of perceptual decision

making, and comports with other suggestions that sampling or

diffusion models apply to value-based decisions as well [28,84–87].

It also joins those ideas with a literature suggesting that episodic

memories can influence decisions [46,56,88].

Materials and Methods

Participants
Twenty-four right-handed individuals (twelve female; ages 18–

40 years, mean 28) participated in the study. All had normal or

corrected-to-normal vision. All participants received a fixed fee of

$40 unrelated to performance, for their participation in the

experiment, plus additional compensation of between $0 and $40

depending on their performance in one pseudorandomly-selected

decision round. Participants were recruited from the New York

University community as well as the surrounding area and gave

informed consent in accordance with procedures approved by the

New York University Committee on Activities Involving Human

Subjects.

Exclusion criteria. Data from seven participants were

excluded from analysis due to their being unusable for various

reasons, leaving seventeen participants analyzed here. For three

participants, this was due to failure to behaviorally demonstrate

learning of the sequential contingencies embedded in the task. As

we did in our previous study [7], we excluded subjects for failure to

learn when a regression model with only nuisance regressors (the

‘constant’ model) proved a statistically superior explanation of

participant RTs than any of the other models considered here,

which each include regressors of interest specifying the estimated

conditional probability of images (see Analysis, below). Statistical

superiority over the constant model was measured by the Bayesian

Information Criterion (BIC; [89]), used to correct likelihood scores

when comparing models with different numbers of parameters.

The rationale for excluding these subjects was that if they fail to

learn the contingencies, it is not possible to ask the central question

of the present study: how they use this learning to guide choices.

For the others, data were unusable due to operator error in

operating the MRI unit (one participant), excessive head motion

(two participants) and a failure to enter decisions on choice trials

due to misunderstood instructions (one participant). Volumes

during which instantaneous motion was w0:25 mm in any

direction were excluded from analysis. Data from participants

were excluded due to excessive motion when a large percentage

(w5%) of volumes were excluded by this criterion.

Task design
Participants performed a serial reaction time (SRT) task in

which they observed a sequence of image presentations and were
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instructed to respond using a pre-trained keypress assigned to that

image. The experiment was controlled by a script written in

Matlab (Mathworks, Natick, MA, USA), using the Psychophysics

Toolbox [90]. The stimulus set consisted of four grayscale images

that were matched for size, contrast, and luminance. The images

were chosen because they represent categories known to prefer-

entially engage different areas of the ventral visual stream —

bodies [32], faces [33], houses [34], and household objects [35].

Each participant viewed the same four images. During behavioral

training, the keys corresponded to the innermost fingers on the

home keys of a standard USA-layout keyboard (D, F, J, K).

Participants were instructed to learn the responses as linking a

finger and an image, rather than a key and an image (e.g. left

index finger, rather than ‘F’). For the MRI sessions, the same

fingers were used to respond on two MR-compatible button boxes.

The mappings between the four images and four responses were

one-to-one, pseudorandomly generated for each participant prior

to their training session, trained to the criterion prior to the fMRI

session, and fixed throughout the course of training and

experiment sessions. Participants were informed that the key-to-

image mapping was fixed, and that they were not being evaluated

on the correctness of responses.

At each trial, one of the pictures was presented in the center of

the screen, where it remained for three seconds, plus or minus

uniformly distributed pseudorandom jitter, up to 474 ms in

increments of 59 ms (the length of one slice in the MRI session).

Participants were instructed to continue pressing keys until they

responded correctly or ran out of time. Correct responses triggered

a gray bounding box which appeared around the image for the

lesser of 300 ms or the remaining trial time (Figure 1). Thus, each

image presentation occurred for the programmed amount of time,

regardless of participant response. The inter-trial interval consisted

of 237 ms of blank screen.

The test phase of the scanning session proceeded with three

blocks of 250 trials: 210 sequential response trials, 20 reward

display screens (see Choice trials, below) and 20 choice trials. The

first two blocks were followed by a rest period of participant-

controlled length. During the rest period, participants were

presented with a screen that was blank except for a fixation cross.

Scan blocks after the first were initiated manually by the operator

only after the participant pressed any of the relevant keys twice, to

alert the operator that they were prepared to continue the task.

Total experiment time — inclusive of training, practice and test

periods — was approximately 1.5 hours, conducted continuously.

Stimulus sequence. For training, the sequence of images

was selected according to a uniform distribution. Participants were

instructed to emphasize learning the mappings between image and

finger, disregarding speed of response in favor of correctly

identifying the on-screen image.

In the test phase, participants were instructed to respond as

quickly as they could, disfavoring accuracy as they had already

been trained to criterion. The sequence of images was generated

pseudorandomly according to a first-order Markov process,

meaning that the probability of viewing a particular image was

solely dependent on the identity of the previous image, with the

conditional relationship specified by a 464 transition matrix

(Figure 1). To motivate the choice trials, unlike in our previous

study [7], participants were informed that conditional probability

structure existed in the task. Four transition matrices were

generated pseudorandomly at the start of the experiment for each

subject, in a manner designed to balance two priorities: (i) to

equalize the overall presentation frequencies for each image over

the long and medium term (formally: fast mixing to a uniform

stationary distribution), while (ii) examining response properties

across a wide sample of conditional image transition probabilities.

The procedure used to generate matrices satisfying these

constraints is described in detail in our previous study [7].

Transition matrices were replaced at three evenly-spaced

intervals — the second matrix was used starting on trial 188, the

third matrix on trial 376, and the fourth on trial 563. Participants

were informed that the structure would change, but they were not

informed of when or how. The experiment display offered no

indication of the shift to a different transition matrix, nor were

matrix changes aligned with the onset of rest periods.

Time to first keypress was recorded as our primary behavioral

dependent variable. Participants were not informed that RTs were

being recorded, and no information was provided as to overall

accuracy or speed either during or after the experiment. Trials on

which the first keypress was incorrect were discarded from

behavioral analysis.

Choice trials. Twenty choice rounds were interspersed

throughout each of the three scanning sessions, for sixty choice

rounds total per participant. Each choice round consisted of three

parts (Figure 2). First, the reward display screen, visible for one

second, notified the participant of which image was going to be

rewarded and how much each occurrence of it would be worth.

The rewarded image was chosen pseudorandomly from a uniform

distribution over potential images. Reward values were whole

dollar values between one and five, chosen pseudorandomly from

a uniform distribution. Next, after a variable inter-stimulus

interval of between two and eight seconds, chosen from a

truncated exponential distribution with a mean of four, the

participant was given five seconds to select between one of two

different images. The two option images were chosen pseudor-

andomly from a uniform distribution, with the condition that they

not be identical to the reward image. Participants were instructed

to choose the image that was most likely to get them to the reward

over the next few trials, and thereby earn the most money.

Immediately after the choice was entered, the subsequent image

was picked according to the conditional distribution implied by the

image that the participant selected. The next image was then

displayed after the standard ITI of 237 ms. Beginning with this

first image after the choice — the ‘outcome’ image — text above

each ensuing image indicated either a dollar amount (between $1

and $5), if it was the rewarded image, or $0 if it was not (Figure 2),

for the extent of the choice round. The length of the choice round

— that is, the number of images presented with dollar figures

above them — was chosen from a truncated exponential

distribution, with minimum of one, a maximum of eight and a

mean of four, and adjusted to ensure a total of 80 trials across all of

the choice rounds in a each session. To allow for equilibration of

any transient effects, choice rounds did not occur within the first

thirty trials of each scanning session.

Analysis
Our analysis proceeded in several steps meant to first

characterize the associative learning process, and then use this

characterization to test behavioral and neural predictions about

choices. Each participant’s trial-by-trial RTs for correct identifi-

cations were regressed on explanatory variables including the

estimated conditional probability of the picture currently being

viewed given its predecessor — defined, in separate models

(described below), in a number of different ways representing

different accounts of learning — together with several effects of no

interest. Trials on which the first keypress was not correct were

excluded from behavioral analysis. Effects of no interest included

stimulus-self transitions, image identity effects and a linear effect of

trial number. Stimulus-self transitions were included to account for
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variance due to motor response readiness for the same keypress

appearing twice in a row, above and beyond the preparation

implied by any effect of the variables of interest. Image identity

effects were included to account for any differential response time

by each finger. Trial number effects were included to account for

any monotonic shift in response time over the course of the

experiment. These nuisance effects were identical across all models

considered; the models differed in how they specified the

explanatory variable of interest, the conditional probability of

each image. In our initial analysis, the conditional probabilities

were specified as the ground-truth contingencies: the probabilities

actually encoded in the transition matrix. Having established that

RT reflected such learning by demonstrating a significant

correlation with these idealized probabilities (Figure 2), subsequent

analyses used computational models to generate a timeseries of

probability estimates such as would be produced by different

learning rules with the same experience history as the participant

(see Learning models for details). Similarly, the learning rules for

conditional probability were fit (separately) to choices in the

decision trials, estimated so as to maximize the likelihood that the

model would have selected the same options as did the participant,

given the same series of experience (see Choice models for details).

The learning models involved additional free parameters

controlling the learning and decision processes (e.g. learning rates),

which were jointly estimated together with the regression weights by

maximum likelihood. For behavioral analysis, models were fit and

parameters were estimated separately for each participant. At the

group level, regression weights were tested for significance using a t-

test on the individual estimates across participants [91]. To generate

regressors for fMRI analysis (below) we refitted the behavioral

model to estimate a single set of the parameters that optimized the

RT and choice likelihoods aggregated over all participants (i.e.

treating the behavioral parameters as fixed effects). This approach

allowed us to characterize baseline learning-related activity separate

from individual variation in neurally implied learning rates relative

to this common baseline. For the former, in our experience

[22,25,38,92–95], enforcing common model parameters provides a

simple regularization that improves the reliability of population-

level neural results. Our neural model characterizes between-

subjects variation in the learning rate parameter over this baseline,

because it includes (as additional random effects across participants)

the partial derivatives of each of the regressors of interest with

respect to the learning rate.

Learning models. Based on our previous results analyzing

contingency learning in an SRT task [7], we considered learning

rules of the form proposed by Rescorla and Wagner [17] (see also

[15]), which update entries in a 464 stimulus-stimulus transition

matrix in light of each trial’s experience. The appropriate estimate

from this matrix at each step was then used as an explanatory

variable for the RTs in place of the ground-truth probabilities.

Formally, at each trial the transition matrix was updated

according to the following rule, for each image i:

P(iDIt{1)~P(iDIt{1){aP(iDIt{1),i=It

P(iDIt{1)~P(iDIt{1)za(1{P(iDIt{1)),i~It

ð1Þ

where It is the identity of the image observed at trial t and a is a

free learning-rate parameter. This rule preserves the normalization

of the estimated conditional distribution.

Our primary model of interest for reaction times — again,

drawn from our previous work [7] — was a weighted combination

of two Rescorla-Wagner processes, each with different values of

the learning rate parameter a.

Each process updated its matrix as above, independently, but

the behaviorally expressed estimate of conditional probability was

computed by combining the output of each process according to a

weighted average with weight (a free parameter) p:

pP1(ItDIt{1)z(1{p)P2(ItDIt{1) ð2Þ

As the models considered here differ in the number of free

parameters, we compared their fit to the reaction time data using

Bayes factors ([96]; the ratio of posterior probabilities of the model

given the data) to correct for the number of free parameters fit. We

approximated the log Bayes factor using the difference between

scores assigned to each model via the Laplace approximation to

the model evidence [97]. This approximation was used because it

provides a more fair comparison across models which use

parameters of differing contributions to model complexity [98].

The evidence calculations assumed a uniform prior distribution for

the values of the learning rate and weight parameters. In

participants for whom the Laplace approximation was not

estimable for any model (due to a non-positive definite value of

the Hessian of the likelihood function with respect to parameters)

the Bayesian Information Criterion [89] was instead used to

estimate the posterior probabilities for all models. Model

comparisons were computed both per individual, and on the log

Bayes factors aggregated across the population.

Choice models. Each of the learning rates obtained from

fitting reaction times also predicts a different series of option

preferences on choice trials. We compared the relative fit to choice

behavior of probability estimates at each learning rate or

combination of learning rates. Each choice trial involves the

choice between two options for the start image, which we index

below as O1 and O2, and a rewarded image, R.

We took as the decision variable the difference between the

probability that each option would lead to the rewarded image in a

single step: (P½RDO1�{P½RDO2�), where the probabilities are the

conditional image transition probabilities estimated by the

learning model at the current point in the task. Motivated by

race and sampling models [18], the model instantiates the decision

variable on a particular trial by conducting some number n of

draws from a binomial distribution around each learned transition

probability. The mean proportion of successes on the first option is

P½RDO1�, with binomial variance
P½RDO1��(1{P½RDO1�)

n
, and similarly

for O2. We estimate the choice likelihood by adopting a Gaussian

approximation to the binomials, so that the resulting decision

variable (the difference in sample proportions) has a mean and

variance given by the difference and sum, respectively, of the

means and variances of the two sample proportions. We compute

the likelihood that the subject chooses O1 or O2 using the CDF of

this Gaussian, and aggregate the log probabilities for the options

actually chosen across the experiment to compute the likelihood of

the choices given different probability learning models and

parameters.

As fMRI regressors, we also use this model to define the per-trial

choice difficulty as the variance of the decision variable (the sum of

the binomial variances), and the per-category choice difficulty as

the binomial variance of that category’s probability estimate.

fMRI methods
Acquisition. Imaging was performed on the 3T Siemens

Allegra head-only scanner at the NYU Center for Brain Imaging,

using a Nova Medical (Wakefield, MA, USA) NM011 head coil.

For functional imaging, 40 T2*-weighted axial slices of 3 mm
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thickness and 3 mm in-plane resolution were acquired using a

gradient-echo EPI sequence (TR = 2.37 seconds). Three scans of

400 acquisitions each were collected, with the first four volumes

(9.48 seconds) discarded to allow for T1 equilibration effects. We

also obtained a T1-weighted high-resolution anatomical image

(MPRAGE, 16161 mm) for normalization and localizing func-

tional activations.

Imaging analysis. Preprocessing and data analysis were

performed using Statistical Parametric Mapping software version 8

(SPM8; Wellcome Department of Imaging Neuroscience, London,

UK). EPI images were realigned to the first volume to compensate

for participant motion, co-registered to the anatomical image, and,

to facilitate group analysis, spatially normalized to atlas space

using a transformation estimated by warping the subject’s

anatomical image to match a template (SPM8 segment and

normalize). Following the default settings in SPM, to account for

warping due to normalization to the template image, data images

were resampled to 2 mm (rather than 3 mm) isotropic voxels, in

the normalized space [24]. Finally, data were smoothed using a 6-

mm full-width at half maximum Gaussian filter. For statistical

analysis, data were scaled to their global mean intensity and high-

pass filtered with a cutoff period of 128 seconds. Volumes during

which instantaneous motion was w0:25 mm in any direction were

excluded from analysis.

Statistical analysis. Statistical analyses of functional time-

series were conducted using general linear models (GLM), and

coefficient estimates from each individual were used to compute

random-effects group statistics. Delta-function onsets were spec-

ified at the beginning of each stimulus presentation, and — to

control for lateralization effects — nuisance onsets were specified

for presentations on which right-handed responses were required.

This had the effect of mean-correcting these trials separately. All

further regressors were defined as parametric modulators over the

initial, two-handed stimulus presentation or choice onsets. All

regressors were convolved with SPM8’s canonical hemodynamic

response function. We used two separate GLMs for our main body

of analyses: first, one analyzing sequential and response trials

collectively, and a second breaking them down by image category.

In these GLMs we specify a number of parametric regressors

derived from the model, often together with these regressors’

partial dervatives with respect to the learning rate parameter. For

the main analyses, all such regressors were evaluated using a

(single) learning rate taken at the midpoint between the two

identified in our best-fitting behavioral model, the two-learning

rate model of Eqns 1 and 2. This enables us to detect activations

related to these regressors without a bias toward one learning rate

or the other, then use the partial derivatives to estimate the

learning rate that best explains the signal (see Learning rate analysis).

We also performed ancillary GLM analyses to illustrate

activations related to regressors computed using either learning

rate identified in RT behavior. For these, the parametric

regressors were substituted with the equivalent ones evaluated at

one of those learning rates and the partial derivative regressors

were omitted. Such analyses were carried out in separate GLMs

due to correlation between regressors generated using different

values of the learning rate parameter. However, it is important to

note that these models were only used for generating figures to

visualize the spatial extent of activity. Our formal results fitting

learning rates to activity and comparing these estimates between

areas are each conducted within a single GLM whose regressors

(the main explanatory variable of interest and its partial derivative

with respect to learning rate) in different weighted sums together

approximately span the continuum of learning rates (see Learning

rate analysis).. This allows the fit of different learning rates to an

area to be formally assessed in a single model, while avoiding the

problems of correlation between regressors and of specifying a

discrete set of candidate learning rates a priori.

In all analyses, unless otherwise stated, activations are reported

for areas where we had a prior anatomical hypothesis at a

threshold of pv0:05 after correction for family-wise error (FWE)

in a small volume defined by constructing an anatomical mask,

comprising the regions of a priori interest. Our anatomical regions

of a priori interest were: left hippocampus for slow process

associations and bilateral caudate for fast process associations,

based on our previous results [7]; right ventral stream cortical

regions for visual localizer responses and anticipatory recall of

category representations: fusiform gyrus, parahippocampal gyrus,

and inferior occipital lobe, based on previous reports of visual

category-selective patches of cortex — bodies [32], faces [33],

houses [34], and household objects [35]; and nucleus accumbens,

based on numerous previous reports of Reward Prediction Error

(e.g. [30,31,38]). Anatomical regions were defined using the

Automated Anatomical Labeling (AAL) atlas [99], except nucleus

accumbens, which was taken from the mask produced in [38].

Masks were dilated by 4 mm in all directions to allow for

inconsistencies in alignment with the population mean structural

image. Unless otherwise stated, activations outside regions of prior

interest are reported if they exceed a threshold of pv0:05, whole-

brain corrected for family-wise error. All voxel locations are

reported in MNI coordinates, and results are displayed overlaid on

the average over participants’ normalized anatomical scans.

GLM1: Main effects. The first GLM was used to analyze

main effects of sequential response and choice trials. It contained

the following regressors. First, to control for non-specific effects of

reaction time (which, as demonstrated by our behavioral results,

was correlated with our primary regressor of interest, the

conditional probability), the RT on each sequential response trial

was entered into the design matrix as a parametric nuisance effect.

As a result all subsequent regressors, including all regressors of

interest, were orthogonalized against this variable, ensuring that it

accounted for any shared variance. We next included the

conditional probability of the current image, to control for effects

of surprise on the current trial. Building on our previous work [7],

this regressor was not treated as a regressor of interest in our

current experiment. Our primary regressor of interest on

sequential response trials was the entropy of the distribution over

the subsequent stimulus, given the image It currently viewed:

H(Itz1)~{
X

Itz1

½log P(Itz1DIt)):P(Itz1DIt)� ð3Þ

where It denotes the image displayed on trial t, but the sum is over

all four possible image identities, Itz1. Whereas the conditional

probability measures how ‘surprising’ is the current stimulus, this

quantity, which we refer to as the ‘forward entropy’, measures the

‘expected surprise’ for the next stimulus conditional on the current

one, i.e. the uniformity of the conditional probability distribution.

The entropy regressor was followed by the partial derivative of

this forward entropy, with respect to the learning rate (see Learning

rate analysis). Finally, nuisance regressors, last in orthogonalization

priority, were entered to model variance due to the effects of:

missed trials (those in which the participant did not press any keys

in the allotted time), error trials, and self-transition trials (house-

house, etc.).

For decision analysis, we specified onsets at the time of the

presentation of the two options, and also at the first trial of the

reward round, referred to as the ‘outcome’ trial. At the time

options were presented, we first specified nuisance regressors: the
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reaction time of the choice, and the value of the rewarded image

(between $1 and $5). Last were our primary regressors of interest:

the difficulty of the choice (see Choice models), and the partial

derivative of this regressor with respect to learning rate.

On outcome trials, we specified as a nuisance regressor the

reaction time of the response. Following was our primary regressor

of interest, the Reward Prediction Error (RPE): the reward

received minus the expected value of the image chosen (the

probability of receiving the reward image times the round’s reward

value), and its partial derivative with respect to learning rate.

GLM2: Image-specific effects. We used a second GLM to

analyze image-specific effects in sequential response and choice

trials. Critically, nuisance onsets were specified for trials on which

each image category was presented. Additional nuisance onsets

were specified for right handed choices and sequential responses,

to control for effects of lateralization.

Onsets of interest were specified for sequential response and

choice trials. For these analyses, we specified a set of four

parametric regressors, one for each image type, over the sequential

response and choice onsets. As we did not want our analysis to

implicitly prioritize one or another variable, we disabled SPM’s

serial orthogonalization. On sequential response trials, our

regressors of interest were the anticipated probability of each

image — body, face, house, object — occuring next. We specified

reaction time as a regressor of no interest, along with regressors for

missed trials, errors, and self-self trials.

For choice trial onsets, we specified as the primary regressors of

interest the choice difficulty for each category separately (see Choice

models). Separate timeseries for the difficulty of deciding whether

each image led to reward were modeled at every decision period

(irrespective of whether that image was part of the decision set),

and entered as parametric modulators over these onsets.

Subsequent nuisance regressors were entered for the identity of

the images on the screen, the identity of the rewarded image, the

image categories used as options, the reward value, and the

expected value of the decision. Again, these regressors were not

orthogonalized against one another.

We also considered the possibility that analyses testing

probability effects (Figure 7) were biased by selecting face- and

house-sensitive voxels, then testing the effect of interest in those

voxels in the same trials [100]. Accordingly, we measured the

correlation between the selecting and testing regressors in the final

design matrix. After filtering and whitening, the selecting and

testing contrasts were not strongly correlated, and the mean of the

measured correlation is in the opposite direction of the effect we

observed (mean correlation coefficient across subjects: 0.1399+/

20.0238 for the face regressors, 0.0765+/20.0308 for the house

regressors). That is, to whatever extent there is a bias due to voxel

selection, it would tend to work against the result we obtained.

Learning rate analysis. In the best-fitting behavioral model,

the learned transition matrix arises from two modeled learning

processes, each with a free parameter for its learning rate. Thus, a

naive attempt to seek fMRI activations related to either

hypothesized process separate from the other would need two

separate but correlated sets of our various model-derived

regressors of interest, such as entropy in sequential response trials

and RPE on outcome trials. An alternative specification allows us

to evade the problem of mutual correlation while also reasoning

statistically about the learning rate that best explains BOLD

activity related to a particular variable in a particular area.

To do this, we specify each regressor of interest in our GLMs

together with its partial derivative with respect to the learning rate

parameter. The weighted sum of these two regressors approxi-

mates (linearly, using a first-order Taylor expansion) how the

modeled signal would change under different values of the

learning rate parameter. Conversely, the best fitting learning rate

can be approximated from the betas obtained for the two

regressors [7,25,101]. Each regressor and its partial derivative

were evaluated at the learning rate midway between the two

behaviorally-obtained rate. The regression weight estimated for

the derivative measures how far from the midpoint, and in which

direction, was the learning rate that best explained BOLD. This

analysis allowed us to formally investigate the possibility that

learning rates expressed across regions of the brain (and multiple

distinct computational variables) differed from one another,

identify the pattern by which these learning rates varied, and

compare them to the learning rates obtained from behavior.

Specifically, we constructed the regressors of interest as

estimated by a single process learning at the rate a0 — which

we set to the average of the two behaviorally identified rates —

and included an additional regressor measuring how the a0

regressors would change if they had been generated from the

model with a different learning rate. Technically, we defined these

additional regressors as the partial derivatives of the original

timeseries with respect to the learning rate parameter, evaluated at

a0 [101]. This analysis allows us to estimate the change in learning

rate, relative to the reference point a0, that would best explain

BOLD in an area, by using a regression to estimate coefficients for

the first two terms in the Taylor expansion of the dependence of

the regressor on the learning rate. This takes the following form:

F (aBOLD)&F (a0)z(aBOLD{a0)
dF (a)

da
ð4Þ

Here F(a) is the regressor of interest (i.e., the RPE or entropy

timeseries), viewed as a function of the learning rate a, and aBOLD

is some other learning rate for which the regressor would best fit

the BOLD signal. To encode learning rates in this analysis, we

used a change in variables by which the original Rescorla-Wagner

learning rate was transformed by an inverse sigmoid, so that it

ranged through the real numbers and estimates of it could be

treated with Gaussian statistics. Thus, the learning rates reported

from the fMRI response to the partial derivative (which includes a

derivative of the sigmoid transform, by the chain rule), are

sigmoid-transformed means of the underlying variable, v.

Similarly, the illustrated confidence bounds are the sigmoid-

transformed S.E.M.s of v.

This linear approximation to the (nonlinear) relationship

between the regressor and the learning rate parameter allows

the use of a GLM to approximately estimate the learning rates that

would best explain BOLD correlates to the regressor. In

particular, the weight estimated for the partial derivative regressor

corresponds to aBOLD{a0 (or, more particularly, k[aBOLD{a0], if

the net effect of the regressor on BOLD is scaled by multiplying

both sides of the approximation by some factor k). This is just the

degree to which the best-fit (inverse-sigmoid transformed) learning

rate for explaining the BOLD response differs from a0, the value

used to calculate our regressor of interest and its derivative.

We thus computed estimates of aBOLD for each regressor

(entropy or probability) at a voxel by first extracting the regression

weights for the partial derivative regressor for each subject. To

normalize these coefficients to a common scale in units of

transformed learning rate (even if they originated from different

regions), we divided these weights by the average, across subjects,

of the regression weights for the corresponding regressor F(a0) at

the voxel, this corresponding to the overall scale factor k

mentioned above. Lastly, we added the reference value a0,
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converting the result into the range of our behaviorally-obtained

rates. Our statistical analyses were all performed on the learning

rate estimates in the transformed units, taken across the

population. Specifically, we test whether the computed aBOLD is

statistically distinguishable from learning rate values obtained by

fitting behavior, via t-tests against each (transformed) fit rate. We

also test whether aBOLD differs between regions, by comparing the

estimates in paired-sample t-tests. For our plots of BOLD learning

rates, we mapped the mean estimates and their confidence

intervals through the sigmoid to depict them in units of Rescorla-

Wagner learning rate.

To maximize power, to examine learning-rate effects at areas

where there was learning-related activity, and to identify areas to

allow between-region comparisons, we performed these analyses of

leraning rates at voxels that we selected as peaks of contrasts on the

main effect of the conditional probability, entropy, or prediction

error regressors (not their derivatives), again using the midpoint

rate a0. This was one motivation for choosing a0 to be the

midpoint of the fast and slow rates – i.e., that it is roughly equally

suited to detect activity related to either rate. Additionally, the

linear approximation to aBOLD is most accurate when the

difference aBOLD{a0 is small, suggesting a choice of a0 that is

equally close to both relevant learning rates. We selected the

voxels of peak group activation within each of our a priori regions

of interest. Differences between parameters in the subsequent tests

were considered reliable at a level of pv0:05.

Finally, note that selecting ROIs on the basis of correlation with

a regressor of interest, then estimating the learning rate there,

implies a bias that is innocuous with respect to our questions of

interest, which generally concern to which of the extreme learning

rates does the BOLD activity best correspond. It is intuitive — and

can be shown [7] — that the estimated learning rate is biased

toward the midpoint used for selection, and therefore away from

the extremes that our hypothesis tests concern.

Supporting Information

Figure S1 Multiple views of the main effects. Saggital, coronal,

and axial views of each of the effects reported in the main text.

Each row displays activation corresponding to one of the

parametric regressors: First, the forward entropy regressor,

generated using the slow process. Second, the forward entropy

regressor, generated using the fast process. Third, the choice

difficulty regressor (views on the hippocampal correlates). Fourth,

the choice difficulty regressor (views of the mPFC and PCC

correlates). Fifth, the reward prediction error regressor. All images

are displayed at a threshold of pv0:005, uncorrected.

(TIFF)

Table S1 Clusters greater than 10 contiguous voxels (at

pv0:001) correlated with the forward entropy regressor computed

at the slow learning rate.

(TIFF)

Table S2 Clusters greater than 10 contiguous voxels (at

pv0:001) correlated with the forward entropy regressor computed

at the fast learning rate.

(TIFF)

Table S3 Clusters greater than 10 contiguous voxels (at

pv0:001) correlated with the choice difficulty regressor computed

at the slow learning rate.

(TIFF)

Table S4 Clusters greater than 10 contiguous voxels (at

pv0:001) correlated with the reward prediction error regressor

computed at the slow learning rate.

(TIFF)
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