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Drug combination is now a hot research topic in the pharmaceutical industry, but
experiment-based methodologies are extremely costly in time and money. Many
computational methods have been proposed to address these problems by starting
from existing drug combinations. However, in most cases, only molecular structure
information is included, which covers too limited a set of drug characteristics to efficiently
screen drug combinations. Here, we integrated similarity-based multifeature drug data
to improve the prediction accuracy by using the neighbor recommender method
combined with ensemble learning algorithms. By conducting feature assessment
analysis, we selected the most useful drug features and achieved 0.964 AUC in
the ensemble models. The comparison results showed that the ensemble models
outperform traditional machine learning algorithms such as support vector machine
(SVM), naïve Bayes (NB), and logistic regression (GLM). Furthermore, we predicted 7
candidate drug combinations for a specific drug, paclitaxel, and successfully verified
that the two of the predicted combinations have promising effects.

Keywords: drug combination, multifeature, paclitaxel, neighbor recommender method, ensemble learning

INTRODUCTION

With accumulating research in systematic pharmacology and clinical experiences, the “one drug,
one target” therapeutic mode is found to be limited. The effects of single-target drugs on complex
diseases are not satisfactory since complex diseases like cancer are usually regulated by numerous
different genes and regulation pathways rather than by single genes. Drug combinations have been
designed to achieve better efficacy and fewer side effects than each individual drug (Musa et al.,
2018; Sheng et al., 2018). Traditionally, combinations of drugs tend to be discovered by biological
experiments involving massive selection (Sheng et al., 2018). However, screening synergistic
combinations by experimentation is costly and time consuming. Therefore, it is urgent to screen
drug combinations efficiently and economically. The increasing experimental data from multiple
sources, such as genetics, chemical structures and gene expression profiles, provide an excellent
research foundation for computational methods to investigate drug combinations. Currently, many
researchers focus on machine learning-based computational methods and biotext mining from
electronic medical reports to accelerate drug combination identification.

With the development of the pharmaceutical industry and high-throughput screening of the
human genome, large amounts of drug information are generated, and many clinical and drug
databases are publicly available online. Databases including DrugBank (Law et al., 2014), the
Therapeutic Target Database (TTD) (Chen et al., 2002) and the Drug Gene Interaction Database
(DGIdb) (Wagner et al., 2016) contain experimentally proven drug-target and drug-indication
information, which provide us with comprehensive multiomics drug information. Large numbers
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of drug gene expression profiles, such as the Connectivity Map
(CMap) (Lamb et al., 2006), are accumulated because of the rapid
development of high-throughput techniques. Other drug data,
such as enzymes, side effects and pathways, are also obtainable
in several databases (e.g., DrugBank, KEGG, and SIDER). In
addition, existing drug combinations are collected in data portals
such as the Drug Combination Database (DCDB) (Liu et al.,
2014), which consists of 1363 pairs in total. These enriched
supplies of drug information enable us to approach data-driven
prediction problems such as drug combinations.

Recently, many new techniques and methods have been
established based on the assumption that “similar drugs have
similar activity” to predict the synergistic effects of drug
combinations. These methods have tried to predict new drug
combinations based on similarity to existing drug combinations
(Chen et al., 2016). Cheng et al. (Cheng and Zhao, 2014)
applied five kinds of algorithms [naïve Bayes, decision tree,
k-nearest neighbor, logistic regression, and support vector
machine (SVM)] using four similarity-based features; Vilar
et al. (2013) proposed the chemical structure similarity-based
prediction method and predicted a large number of new
combinations; Zhang et al. (Zhang et al., 2017, 2019; Wen et al.,
2018) used the neighbor recommender method, the random
walk method and the matrix perturbation method to build
prediction models, then they further explore matrix factorization
method and ensemble method on this problem; Shi et al.
(2018) developed a matrix factorization method with a DDI
network and drug side effects vector feature to detect unknown
drug combinations; and Lee et al. (2019) constructed a deep
learning network with autoencoders to accurately find more drug
combinations. These methods provide promising and applicable
approaches to systematically detect unknown drug combinations
with multifeature drug properties.

In this paper, we proposed a machine learning approach
to predict potential drug combinations by integrating multiple
drug features. Since the data sparsity of drug information is
a key challenge in multiple feature prediction, the neighbor
recommender method (NRM) (Zhang et al., 2017) was
introduced to address this problem by leveraging the feature
similarity rating matrix for drug pairs. First, we collected
multiple features of drugs, including drug-indication data,
drug-target data, drug-induced gene expression data, chemical
structure information and known drug-drug combinations
from different sources. Multisource data provided biological
information, phenotypic information and known combinations
to fully characterize drug-drug combinations. The Tanimoto
coefficient was used to measure the similarity between drugs
in terms of each feature. Then, three different classification
models with downsampling methods were constructed, and
the SVM model with the best performance was selected for
later comparison. The drug combination prediction model was
considered a similarity-based problem in many methods, since
under the assumption that drugs with more similarities are
likely to have similar functionality. To make use of diverse
information, the neighbor recommender method was used to
generate similarity-based models based on every selected feature
of the drug. Finally, the ensemble model was built by combining

multiple feature-based models as basic predictors using an
ensemble learning algorithm. According to the performances of
the prediction models, we evaluated the usefulness of different
drug information sources for drug combination prediction.
Afterward, the ensemble model and SVM classification model
were compared, and the ensemble model was selected as the
best prediction model. Furthermore, by comparison to several
state-of-the-art algorithms, we achieved better performances
with NRM and ensemble learning, and a maximum AUC
value of 0.964 was obtained, which indicated the reliability and
universality of our method. To further show this point, we used
our method to predict drug combinations for a specific drug,
paclitaxel, and obtained seven candidate drug combinations. We
also successfully verified two predicted combinations that had
promising effects.

MATERIALS AND METHODS

As an overview, a flowchart of our method is depicted in
Figure 1. The primary processing consisted of several steps: (A)
construct the similarity feature-based model according to the
drug feature profiles; (B) select the useful features and construct
the ensemble model for drug combination prediction; and (C) use
the model to predict potential drug combinations and conduct
experimental validation.

Raw Dataset of Annotated Drug
Combinations
Since our classification methods require existing drug
combinations for training, the known drug combinations
downloaded from the DCDB and PreDC databases (Li
et al., 2015) were labeled positive samples. In our paper,
the combination was performed on pair-wise drugs, and
some drug combinations consist of more than two chemical
compounds, we chose every two drugs in those combinations
and marked them as a pair.

Multifeature Information
In this paper, we considered five drug features to characterize
the similarity of drug pairs, including drug-indication data, drug-
target data, drug-induced gene expression data, and chemical
structure information.

Drug indication information was derived from SCG-Drug
(Quan et al., 2019), while the disease names were previously
unified by using UMLS (similarity threshold 0.75). Drug
instances and targets were mainly collected from DrugBank, TTD
and DGIdb. Drug gene expression profiles were provided by
CMap (Lamb et al., 2006) as an important drug feature (Musa
et al., 2018). The chemical structural similarity of drug pairs
was calculated by the online tool PubChem (Kim et al., 2019)
with the substructure key-based 2D Tanimoto similarity score of
each drug pair (scores ranging from 0 to 100). The drug module
information on indications was calculated using a bioclustering
method based on drug expression profile data (Xiong et al., 2014).
Finally, we obtained 606 drugs with multifeature information.
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FIGURE 1 | The workflow of drug combination prediction.

Drug Similarity Measurement
With large amounts of data generated, a drug could be
represented by a fingerprint vector in different data types. To gain
the best model performance, a suitable similarity measure was
needed as important prior knowledge.

The Tanimoto coefficient (also known as the Jaccard
coefficient) is used to determine the similarity between drug
pairs. The Tanimoto coefficient score is calculated using the
following equation:

Tanimoto coefficient =
NAB

NA + NB − NAB

Where NA is the number of drug A-related targets, indications,
modules, genes and structures; NB is the number of drug
B-related targets, indications, modules, genes and structures, and
NAB is the number of common targets, indications, modules,
genes and structures for drug A and drug B. The value of the
Tanimoto coefficient ranges from 0 to 1.

Classification Method for Drug
Combination Prediction
Logistic Regression
Logistic regression (GLM) (Cheng and Zhao, 2014) is used to
estimate the probability of the response variable using a logistic
function. In our data, the output of the GLM model consists the
probabilities of “existing combinations” and “noncombinations.”

Naïve Bayes
Naïve Bayes (NB) (Watson, 2008) is the simplified version of
the Bayesian method, which is based on the hypothesis that

each attribute is independent. The NB algorithm calculates the
posterior probability of an instance by the following equation:

P (B|A) =
P(A|B) P(B)

P(A)

Support Vector Machine
The SVM (Cheng and Zhao, 2014) is a powerful method for
classification. It separates the dataset by maximizing geometric
spacing and mapping data points into a high-dimensional space.
Kernel parameter γ and penalty parameter C are useful when
searching the optimal SVM model.

In terms of our data, every drug pair was represented by a
vector of five dimensions (using Tanimoto coefficients extracted
from five drug features) along with one category label.

The Neighbor Recommender Method for Drug
Combination Prediction
The neighbor recommender method (NRM) is widely deployed
in industry. We had multisource data that provide diverse
information and confirmed drug combinations. Here, we applied
NRM to those multisource data and predicted the drug
combination. We calculated the probability of two drugs with the
following equation (Zhang et al., 2017):

Yij =

N∑
k=1, k 6=j

Sikakj /

N∑
k=1, k6=j

Sik

where N is the number of drugs, when calculating the possibility
between drugi and drugj, Sik indicates the similarity between
drugi and other drugs in the similarity matrix (except drugj), and
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FIGURE 2 | Receiver operating characteristic (ROC) curves and precision-recall (PR) curves for different models. (A) ROC curves of three machine learning
algorithms (SVM, GLM, and NB) when the ratio of positive and negative samples is 1:1. (B) PR curves of three machine learning algorithms (SVM, GLM, and NB)
when the ratio of positive and negative samples is 1:1. (C) ROC curves of five similarity-based NRM models. (D) PR curves of five similarity-based NRM models.

akj is 1 or 0, which represents whether there is interaction or
noninteraction between drugj and drugk. The probability of drugi
interacting with drugj, scoreji = scoreij = Yij + Yji. Yji, is calculated
in the same way as Yij.

Ensemble Learning for Drug Combination Prediction
Since we used the NRM method to generate models based on five
features, it was natural that we adopted ensemble rules to obtain
better model performances. To the best of our knowledge, the two
most commonly used ensemble rules are the weighted average
ensemble and classifier ensemble rules (Zhang et al., 2017). We
adopted GLM classifier rules to finalize the output from the
base predictors.

The Selection of Drug Features
In total, we collected five drug features to build drug combination
prediction models. However, not every feature was necessary to

include. Here, we implemented ensemble learning on different
numbers of features to find the most relevant ones.

Since we used NRM to generate five different models, we first
used all outputs of the five models as basic predictors in the
ensemble method. This model was considered the benchmark
output. Then, we sorted the models in reverse order based
on model performance. Finally, we combined different outputs
of NRM models to fit ensemble models in turn. Comparison
with the benchmark model was conducted to select the most
relevant drug features.

NRM is based on the hypothesis that drugs with high
similarity tend to have similar activity. We deployed two
significant difference tests, the Kolmogorov-Smirnov test (KS-
test) and Student’s test (T-test), to analyze the feasibility of five
drug features by comparing the difference in Tanimoto values
between positive and negative samples. In the KS test, the value
of D, which represents the maximum vertical difference between
two cumulative distribution curves, was extracted to evaluate the
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FIGURE 3 | Experiments of drug combinations. (A) IC50 value of monobenzone against the A375 cell line. (B) IC50 value of paclitaxel against the A375 cell line.
(C) The scatter plot of CI versus fraction affected (Fa).

difference between positive and negative classes. The range of D
is from−1 to 1.

Evaluation Metrics
We used k-fold cross validation to evaluate the models, and the
value of k was within 3, 5, and 10. Since the sampling method was
taken into consideration, we repeated the sampling process 1000
times to prevent data bias, and the average performances were
the final result.

Two metrics for common binary classification problems, the
area under the ROC curve (AUROC) and the area under the
precision-recall curve (AUPR), were used to evaluate the models
regardless of the threshold. Other machine learning metrics were
also used: f1 score, recall and precision. These three metrics were
calculated from the number of true positives (TP), false positives

(FP), true negatives (TN), and false negatives (FN) using the
following equations:

Recall =
TP

TP+ FN

Precision =
TP

TP+ FP

F1 score = 2 ×
Precision × Recall
Precision+ Recall

Experiments on Drug Combinations
Cell Culture and Reagents
A375 (human melanoma cell line) was purchased from Procell.
Testing drugs, including paclitaxel and monobenzone, were
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purchased from Selleck. Medium and other chemicals used
in cell culture were purchased from MedChemexpress. Cell
Counting Kit-8 was purchased from Bimake. A microplate
spectrophotometer (EON) was purchased from BioTek.

Growth Inhibition Assay in vitro
A375 cells were cultured overnight in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 10% fetal bovine serum
(FBS) in a humidified atmosphere of 5% CO2 and 95% air at
37◦C, then seeded in 96-well plates and incubated overnight.
Next, A375 cells were incubated with different concentrations of
the tested drugs or solvent control for 24 h. The tested drugs
were diluted with 1% DMSO. After the drug treatment, the cell
viability was measured using Cell Counting Kit-8 following the
manufacturer’s instructions, and the absorbance at 450 nm for
samples was measured using a microplate spectrophotometer.
The half maximal inhibitory concentration (IC50) value of each
drug was calculated using GraphPad Prism 7.01. Each drug was
tested in a concentration gradient, and the experiments were
repeated in three biological replicates.

Combination Index Assay
Based on the IC50 values of paclitaxel and monobenzone
monotherapy on A375 cells, nine drug combinations with
different drug concentrations were determined to calculate the
combination index (CI), a median effect principle proposed
by Chou (2006). After the drug treatment, the cell viability
was measured using a Cell Counting Kit-8 according to the
manufacturer’s instructions, and the absorbance at 450 nm for
samples was measured by using a microplate spectrophotometer
and taking the average. The inhibition rates of the cells compared
with the DMSO control group were calculated separately. All
experiments were performed in triplicate. The combination
index (CI) was calculated by CompuSyn software2. CI < 1,
CI = 1, and CI > 1 represent synergism, additive effect and
antagonism, respectively.

All machine learning algorithms were performed by using R
(version 3.4.1). The R package e1071 was loaded for SVM and NB
functions; the random forest algorithm was implemented using
the R package randomForest; and GLM, T-test and KS-test were
conducted with built-in functions of R. A P-value < 0.05 was
considered statistically significant.

RESULTS

Benchmarks
Due to the lack of existing gold standard datasets of known
drug combinations, we annotated experimentally validated
drug combinations from the DCDB and PreDC databases as
benchmarks. Each annotation is curated and contains referenced
information about the drug, including drug-indication data,
drug-target data, drug-induced gene expression data, drug
module data and chemical structure information. The benchmark
includes only experimentally verified drug combinations.

1https://www.graphpad.com/
2www.combosyn.com

Impacts of Negative Sample Ratio Levels
on the Prediction Performance
A total of 1,196 clinically validated drug combinations between
606 drugs were included in this work as positive samples.
The remaining 182,119 samples (C2

606 − 1196) were considered
negative samples, approximately 153 times the number of
positive samples. Thus, our dataset was extremely unbalanced,
which might lead to an overfitting problem. Since the positive
data were far fewer than the negative data, we adopted a random
downsampling method to regenerate negative samples to fit a
model (Rayhan et al., 2017). In this research, we investigated
how the performance varies when the ratio of negative samples
to positive samples increases from 1 to 12. Three classical
classifiers, including GLM, SVM, and NB, were employed for
training and prediction.

Performance of Random Sampling
Classification Models
We used three machine learning algorithms under different ratios
of positive/negative data to predict drug combinations (Figure 1).

When the ratio of positive to negative samples was set to
1, the AUROC ranged from 0.743 to 0.795 (Figure 2A), and
the AUPR ranged from 0.736 to 0.786 (Figure 2B). As shown
in Table 1, the AUROC of the GLM and NB models was not
sharply affected by the ratio of positive to negative classes,
which was approximately 0.75. The values of the other four
metrics declined significantly under different ratios of positive
to negative classes. The performance of SVM was particularly
heavily affected in terms of the AUROC value and all other
metrics (Supplementary Table S1).

Feature Analysis and Selection
To choose the most suitable features, we employed two feature
analyses, the T-test and the KS-test. In the T-test, the median
value of positive samples was significantly higher than that of
negative samples in the features of drug-target similarity, drug-
indication similarity and drug-structure similarity (P < 2E-16,
P< 2E-16, and P = 0.012, respectively). The difference in the drug
expression similarity feature was marginally significant (P = 0.1)
(Supplementary Figure S1A). In the KS test, the overall value
of positive samples was significantly higher than that of negative
samples in the drug target similarity, drug indication similarity
and drug structure similarity features (P < 2.2E-16, P < 2.2E-16,
and P = 1.81E-03, respectively) (Supplementary Figure S1B).

The results of the feature analyses indicated that the features
drug-target similarity, drug-indication similarity, drug-structure
similarity and drug expression similarity tend to produce
better performance.

Then, we built five NRM models based on different drug
features to test the performance of each feature-based model
and drug pair with prediction probability greater than or
equal to 0.5 was considered positive. The performance of
each NRM model is shown in Figures 2C,D according to the
AUROC and AUPR curves: drug indication NRM model (DIM),
drug target NRM model (DTM), drug structure NRM model
(DSM), drug expression NRM model (DEM) and drug module
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TABLE 1 | Performances of different models with a sample ratio of positive: negative = 1: 1.

Model k-Folds Recall AUROC Precision AUPR F1 score

SVM 3 0.681 ± 0.005 0.793 ± 0.007 0.768 ± 0.009 0.782 ± 0.010 0.722 ± 0.006

5 0.684 ± 0.005 0.795 ± 0.006 0.770 ± 0.009 0.785 ± 0.010 0.724 ± 0.006

10 0.686 ± 0.005 0.795 ± 0.006 0.769 ± 0.009 0.786 ± 0.010 0.724 ± 0.006

NB 3 0.389 ± 0.018 0.742 ± 0.009 0.820 ± 0.015 0.733 ± 0.013 0.527 ± 0.018

5 0.388 ± 0.018 0.742 ± 0.009 0.821 ± 0.013 0.734 ± 0.012 0.526 ± 0.018

10 0.388 ± 0.018 0.743 ± 0.009 0.822 ± 0.014 0.736 ± 0.012 0.526 ± 0.018

GLM 3 0.598 ± 0.009 0.784 ± 0.007 0.805 ± 0.010 0.768 ± 0.011 0.686 ± 0.008

5 0.599 ± 0.009 0.786 ± 0.007 0.806 ± 0.009 0.769 ± 0.011 0.687 ± 0.008

10 0.599 ± 0.009 0.786 ± 0.007 0.806 ± 0.010 0.771 ± 0.011 0.686 ± 0.008

TABLE 2 | Performances of ensemble models.

Combination K-Folds Recall AUROC Precision AUPR F1 score

DTM+DIM+DSM+DEM 3 0.262 ± 0.021 0.957 ± 0.005 0.664 ± 0.020 0.383 ± 0.007 0.375 ± 0.025

5 0.260 ± 0.054 0.957 ± 0.010 0.664 ± 0.042 0.383 ± 0.052 0.370 ± 0.053

10 0.260 ± 0.051 0.957 ± 0.005 0.664 ± 0.090 0.384 ± 0.059 0.372 ± 0.062

All five basic models 3 0.260 ± 0.018 0.957 ± 0.005 0.654 ± 0.008 0.385 ± 0.009 0.372 ± 0.020

5 0.257 ± 0.058 0.957 ± 0.010 0.650 ± 0.041 0.385 ± 0.050 0.365 ± 0.058

10 0.256 ± 0.051 0.957 ± 0.006 0.642 ± 0.068 0.385 ± 0.061 0.364 ± 0.060

TABLE 3 | Comparison with state-of-the-art methods evaluated by five-fold validation.

Method AUROC AUPR Method AUROC AUPR Method AUROC

DDINMF 0.872 0.605 LPA 0.926 0.729 HNAI 0.666

Our method 0.851 0.555 Our method 0.945 0.914 Our method 0.964

NRM model (DMM). Detailed performances of the five NRM
models in terms of recall, precision and f1 score are shown in
Supplementary Table S4.

We further analyzed the importance of all features by using
the random forest algorithm to quantify the feature importance
measure by calculating the five feature-based models and
providing the MeanDecreases Gini index. Then, the value of
MeanDecreaseGini was normalized in the range 0–1 by using the
min-max normalization method with the following equation:

x =
x − min (x)

max (x) − min (x)

In Supplementary Figure S1C, the drug-target similarity showed
the highest importance value, and the drug-module similarity

TABLE 4 | Drug combinations predicted by the ensemble model.

Rank Drug 1 Drug 2 Possibility

1 Monobenzone Paclitaxel 0.885637514

2 Doxorubicin Paclitaxel 0.876278314

3 Dexamethasone Paclitaxel 0.833641682

4 Hydrocortisone Paclitaxel 0.62772162

5 Paclitaxel Prednisolone 0.606556951

6 Betamethasone Paclitaxel 0.526487091

7 Camptothecin Paclitaxel 0.525680295

had the lowest weight value. This result was consistent with the
results of the previous feature analysis by T-test. These NRM
models were used as base predictors to train ensemble models
with selective combinations. In this paper, according to the
feature analysis, we finally chose DTM, DIM, DSM and DEM to
construct the final ensemble model.

Performances of Ensemble Models With
Feature Selection
The ensemble model is used here to combine all the suitable
features from feature selection to achieve better performance. We
applied a GLM classifier to integrate all five base predictors with
the default parameters.

We investigated the ensemble classifier performances
of different base predictor combinations based on the
previous feature selection analysis and feature importance
evaluation. The performance comparison in Table 2 shows
that the ensemble classifier with four selective base predictors
(DTM+DIM+DSM+DEM) outperformed the combination of
all five predictors. This indicated that more features did not
guarantee better performance.

The selective feature-based ensemble classifier also
outperformed the unbalanced dataset-trained SVM models,
so the ensemble classifier was adopted as the best model for
further research (Table 2).
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Comparison With Known
State-of-the-Art Methods
We compared the model performances by implementing our
ensemble method on three other published datasets. Yu (Yu
et al., 2018) proposed a novel model for the prediction
of drug combinations based on semi-nonnegative matrix
factorization (DDINMF) with drug structure and off-label side
effect information. Cheng (Cheng and Zhao, 2014) used four
drug features with different machine learning methods (HNAI)
to detect unknown drug combinations. Zhang (Zhang et al.,
2015) adopted the label propagation algorithm (LPA) to predict
unknown drug combinations. The dataset of each publication was
downloaded according to the details in the papers, and five-fold
cross validation was conducted on all datasets. All datasets were
deployed with our proposed ensemble algorithm.

As shown in Table 3, our method outperformed LPA and
HNAI. However, the performance was slightly lower than
that of DDINMF. This result shows that our method has
comparable performance to that of the state-of-the-art methods.
More results of the performance comparison are shown in
Supplementary Table S5.

Validation of Predicted Drug
Combinations
In this research, we used our model to predict pairwise
combination drugs for paclitaxel, which is an FDA-approved
anticancer drug (Weaver, 2014). We split the dataset into training
and test datasets. The training dataset represented drug pairs
without paclitaxel, and the test dataset was the opposite. A drug
pair in the test dataset with a probability greater than or
equal to 0.5 was considered a potential combination of drugs
related to paclitaxel.

Seven positive drug pairs were predicted using our best
ensemble model. A large fraction of the newly predicted drug
combinations (5 out of 7) were confirmed in the DCDB, and one
drug combination (paclitaxel and camptothecin) was validated in
the latest DrugBank database. The only undetected drug pair left
for further study was paclitaxel and monobenzone (Table 4).

The experimental validation results of the IC50 values of the
two tested drugs are shown in Figures 3A,B (monobenzone
Figure 3A, paclitaxel Figure 3B). Paclitaxel and monobenzone
combinations at different concentrations exhibited synergistic
effects on A375 cell lines (CI < 1), and antagonism arose with
increasing concentrations (Figure 3C). These results indicated
that the combination of paclitaxel and monobenzone might be
a promising therapy for melanoma cell proliferation.

DISCUSSION

Predicting drug combinations is an important research topic
in drug discovery because it can reduce costly wet experiments
and find potential drug combinations in an efficient way.
We proposed drug combination prediction models by
utilizing multifeature data on drugs, including drug-target
information, drug-indication information, drug chemical

structure information, gene expression profiles of drugs and
module information on drug indications. The ensemble model
outperformed the state-of-the-art classification method. The
biological experimental results for a predicted drug combination
(paclitaxel and monobenzone) validated our ensemble model
prediction. We believe our methods are a promising strategy to
discover potential drug combinations.
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