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Abstract

Background: The specific position of functionally related genes along the DNA has been shown to reflect the
interplay between chromosome structure and genetic regulation. By investigating the statistical properties of the
distances separating such genes, several studies have highlighted various periodic trends. In many cases, however,
groups built up from co-functional or co-regulated genes are small and contain wrong information (data
contamination) so that the statistics is poorly exploitable. In addition, gene positions are not expected to satisfy a
perfectly ordered pattern along the DNA. Within this scope, we present an algorithm that aims to highlight
periodic patterns in sparse boolean sequences, i.e. sequences of the type 010011011010... where the ratio of the
number of 1’s (denoting here the transcription start of a gene) to 0’s is small.

Results: The algorithm is particularly robust with respect to strong signal distortions such as the addition of 1’s at
arbitrary positions (contaminated data), the deletion of existing 1’s in the sequence (missing data) and the
presence of disorder in the position of the 1’s (noise). This robustness property stems from an appropriate
exploitation of the remarkable alignment properties of periodic points in solenoidal coordinates.

Conclusions: The efficiency of the algorithm is demonstrated in situations where standard Fourier-based spectral
methods are poorly adapted. We also show how the proposed framework allows to identify the 1’s that participate
in the periodic trends, i.e. how the framework allows to allocate a positional score to genes, in the same spirit of
the sequence score. The software is available for public use at http://www.issb.genopole.fr/MEGA/Softwares/
iSSB_SolenoidalApplication.zip.

Background
There is increasing evidence that the organization of the
genome plays a crucial role in the interplay between
genetic regulation and chromosome structure. At the
smallest scale, several experimental studies have high-
lighted the importance of the positions of the transcrip-
tion factor binding sites in the functioning of small
transcriptional regulatory networks [1-3]. At a larger -
but still local - scale, in bacteria many transcription
units are known to be located along the DNA close to
the gene that encodes their regulating transcription fac-
tors [4-6]. At the global scale of the chromosome, both
in Escherichia coli and in Saccharomyces cerevisiae, it
has been previously realized that the genes that are

regulated by the same transcription factor have a ten-
dency to be periodically spaced along the DNA [7,8].
Recently, the relative positions of phylogenetically con-
served gene pairs were also shown to tend to periodi-
cally organize along the DNA in E. coli [9]. Such
periodic organization has been proposed to be responsi-
ble for the spatial co-localization of co-regulated genes
[10]; indeed, a periodic ordering along the DNA of distal
binding sites that can be cross-linked by a bivalent tran-
scription factor (or a larger complex), just as in the case
of the lac operon or of the l bacteriophage repressor,
leads to a quick and homogeneous formation of tran-
scription factories [11].
More generally, in any kind of signals, the presence of

periodic regularities reveals an underlying notion of
order. As such, this can provide hints about the signal
genesis and/or a base for a further processing of the
information, just as in crystallographic experiments.
However, the detection of periodic patterns can be
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drastically hampered by signal distortions [12,13]. Speci-
fic techniques, which depend on the nature of the signal,
therefore need to be developed - see e.g. [14,15] in the
context of gene expression data. In this article, we pre-
sent a method to detect periodic patterns in boolean
sequences, i.e., the signal X(l) is a one-dimensional signal
that takes values in {0, 1}, the coordinate l is discrete
and takes values in N. More particularly, we address the
question of sparse sequences, that is the ratio of the
number of 1’s to 0’s is much smaller than 1. A prototy-
pic example concerns the organization of genes along
DNA. For instance, the human genome contains
approximately 3 × 104 genes that are distributed along a
3 × 109 base-pair long DNA - in this case, l stands for
the position of the base-pairs forming the DNA. Hence,
the ratio 1/0 is on the order of 10-5.
One of the major difficulties of periodic detection,

especially in the case of sparse data, lies in the robust-
ness of the method with respect to noise, data contami-
nation and missing data. Noise leads to positions of 1’s
that are different from the ideal periodic case. This is a
ubiquitous source of signal distortion since perfect peri-
odic patterns stem from specific types of phenomena, e.
g. the ordering of atoms in crystals. Data contamination,
often referred to as false positives, refers to the points {l,
X(l) = 1} that come from wrong information. Such con-
tamination is commonplace in bioinformatics, especially
when predicting features using datasets that are built
from genome-wide experiments [16]. Preventing it
mostly leads to missing true findings (missing data), that
is X(l) = 0 for values of l such that X(l) should be equal
to 1, which is often referred to as false negatives. As a
result, datasets may contain both false positives and
false negatives - they always do in datasets coming from
high-throughput biological experiments [16].
Within this scope, we present a periodic pattern

detection method that is particularly robust with respect
to noise, data contamination and missing data. The
method has two facets, namely, i) it highlights the pre-
sence of periodic patterns and ii) it identifies the points
that participate in the periodic trends, which are dis-
cussed in the two next sections. As an illustration, using
both artificial and real datasets, we then show the lim-
itations of standard Fourier-based spectral methods in
situations where the present tool is fully efficient.

Highlighting periodic regularities in boolean sequences
We shall consider a boolean sequence X(l) of length L so
that l Î {0, ..., L - 1} - e.g., in the case of gene positions, l
stands for a base-pair coordinate and L for the length of
the genome. We call N the number of points {l, X(l)}
such that X(l) = 1 (e.g. the number of genes). For the sake
of simplicity, in the following, these points will be
referred to as sites. Our periodic pattern detection

method relies on the fact that the sites that are periodi-
cally organized according to a period P tend to align
when the coordinate l is wrapped around a P-periodic
solenoid - the solenoids are built as follows: first, the sig-
nal support is divided into segments of length P; second,
the segments are converted into circles (perimeter = P);
third, the circles are aligned with respect to the locking
up points (Fig. 1). In turn, the site alignments lead to
clustering tendencies after a projection onto the face
view of the solenoid (Fig. 1). Interestingly, this clustering
tendency, or equivalently the tendency for sites to align
along the solenoid axis, remains largely unaffected by a
small amount of disorder in the positions (noise), by site
deletions (false negatives, missing data) or by addition of
sites at locations out of phase with respect to the periodi-
city (false positives, contaminated data). As a result, the
presence of a P-periodic motif can be efficiently detected
by using a scoring function that reflects the good cluster-
ing properties of the projected sites along the face view
of the P-periodic solenoid - hence, the method has been
called the solenoidal coordinate method (SCM). In parti-
cular, such a method is expected to be robust towards
strong signal distortions, as we shall see below. The sole-
noidal picture is useful to have an intuitive (geometric)
understanding of the method. From a formal point of
view, a site at position x leads to a position xP on the face
view of the P-periodic solenoid, which is simply given by
the congruence modulo P, i.e. × ≡ xP mod P. As a conse-
quence, in the following we will refer the positions xP to
as the positions modulo P. We shall use the terminology
site modulo P as well.
Scoring function
The scoring function used here takes into account the
self-information [17], or equivalently the information
content, that is related to the distances separating the
sites modulo P. More precisely, let us call p(xP) the
p-value for any two such sites to be separated by a dis-
tance xP, supposing a random uniform distribution of the
sites in {1, ..., P}. The scoring function then adds up the
information contents [- log(p(xP))] of the nearest sites.
Due to the presence of low p(xP)’s coming from both
small and large distances xP, the presence of a P-periodic
pattern results in a high scoring function. Geometrically
speaking, small distances correspond to dense regions of
the solenoid face view and large distances to poor regions
(Fig. 2). To summarize, the scoring function at the core
of the SCM consists of i) a modulo operation and ii) a
cluster analysis of the resulting sites, which rewards both
dense and poor regions. In geometrical terms, this can be
viewed as i) a solenoidal projection and ii) a cluster analy-
sis of the projected sites (Fig. 1).
Solenoidal spectra
The SCM consists, in fine, in computing the value of the
scoring function (Eq. 3) at different periods P. It
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therefore consists in computing a spectrum, which is
called hereafter the solenoidal spectrum (SoS). The pre-
sence of periodic patterns is then revealed by peaks in
the spectrum that are exceptionally high. To quantita-
tively evaluate the likelihood of the peaks, the scores are
interpreted in terms of a p-value. At a given period, this
p-value corresponds to the probability of having a
higher score by randomly drawing the sites according to
a uniform law. The computation of the p-values gener-
ates a p-valued solenoidal spectrum (pSoS). In this
regard, supposing that the spectrum is composed of Np

independent peaks, the probability p to have more than
one spectrum having at least one peak with a p-value
lower than p* reads

p p N p= − − ∗1 1( ) . (1)

This allows to quantitatively evaluate the statistical
significance of a pSoS, though the independence of the
peaks, if any, may be a delicate point to prove. In any

case, the probability for such a spectrum to occur by
chance is lower than 1 1− − ∗( )p N p .

Identifying the periodic points
In a periodical dataset, all the sites are not expected to
be positioned accordingly to the apparent periodicity. In
particular, in addition to some wrongly predicted posi-
tions, datasets may contain sites that are generated from
different sources or that belong to different families (e.
g., different families of co-regulated genes). The posi-
tions of these sites are therefore not expected to be cor-
related. Interestingly, the SCM allows to determine
which sites are concerned by a given periodicity. More
precisely, a positional score can be defined for each site,
which is related to the likelihood for the site to be peri-
odically positioned with respect to the other sites of the
dataset.
Given a period P, the positional score of any site i is

calculated by analyzing the position of the nearest
neighbors modulo P, i.e. the nearest neighbors on the

Figure 1 Principle of the solenoidal coordinate method. Upper panel: The construction of the P-periodic solenoids is based on three steps: i)
the signal support is divided into segments of length P, ii) the segments are converted into circles, iii) the circles are aligned with respect to the
locking up points. Lower panel: A set of sites (in red, upper left corner) come from a pattern that periodically repeats at some period P (blurred
red points). Some of the initial periodic sites are missing (false negative, missing data) or have different positions (noise), and random sites have
been added (false positive, contaminated data). The position of the sites in a solenoidal coordinate of period P (lower left panel) reveals some
alignment properties along the solenoid axis. A projection upon the face view of the solenoid converts the alignments into clustered points
(rightmost panel). The SCM scoring function aims at rewarding both dense regions (indicated in blue) and poor regions (indicated in yellow).
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Figure 2 Building elements for the scoring function (Eq. 3). Left upper panel: The sites modulo the period are numerated clockwise. Their
relative positions depend on the value P of the period. The normalized (with respect to the period P) distance between the jth nearest

neighbors on each side of i is called xi j
P
, . Right upper panel: The jth nearest neighbors on each side of any site i are separated by 2j - 1 sites.

Hence, in order to compute the p-value p xj
N

i j
P( ), associated to any distance xi j

P
, , one needs the density distribution, respectively the

repartition function, for the distances between sites that are separated by 2j - 1 sites, that is 2 1j
N

− and F j
N

2 1− respectively. For any x Î 0[1],

p j
N x( ) corresponds to the area of the tails of 2 1j

N
− (indicated in brown for N = 11, j = 2 and x x P= 2 2, ). For questions of computational

readiness, p j
N x( ) is approximated by min ( ), ( )F Fj

N
j

Nx x2 1 2 11− −−( ) - see Eq. (4) - which is represented by the cuspate red curve. Left

lower panel: The contribution of both x P
10 1, and x P

6 1, is evaluated from the same density function 1
11( )x since both distances correspond

to sites that are separated by one single site. Right lower panel: x P
10 1, corresponds to a dense region whereas x P

6 1, reflects a poor region (see

left upper panel).
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P-solenoid face view. The principle consists in rewarding
the sites that are located in the dense regions of the
solenoid face view. To this end, we use, again, a quantity
akin to the information content related to the distances
of the nearest neighbors. Each pair of sites on each side
of i is allocated with a probability p<for the sites to be
separated by a distance that is inferior to their current
distance, supposing the sites to be randomly drawn
according to a uniform distribution. This leads to the
information content [- log(p <)]. Next, a scoring func-
tion ′ ( , )i P associated to i at the period P is defined. It
is equal to the maximum information content obtained
from the nearest neighbors, i.e. from the pair of nearest
neighbors that has the lowest p <.
The higher ′ ( , )i P , the better the site is positioned

according to the periodicity, or equivalently the denser
the cluster to which it belongs on the solenoid face view
(Fig. 1). The results are quantified by computing the
p-value of ′ , hereafter referred to as pv( ′ ). In parti-
cular, the positional score of i at the period P is defined
by:

 pos vp i P= − ′log ( ( ( , ))).10 (2)

Implementation
Periodic pattern detection: generating the solenoidal
spectra
The next paragraph provides some details about the
scoring function that is at the core of the SCM. The sec-
ond paragraph provides further details about the com-
putation of the p-values that are involved in the scoring
function.
Scoring function
Let us consider the positions modulo P of a given set of
N sites. Let us numerate the sites modulo P by sorting
them clockwise (Fig. 2). For such a given site i, the nor-
malized (with respect to the period P) distance between
the two j-th nearest neighbors on each side of i, and
hence separated by 2j - 1 sites, is noted xi j

P
, . We also

call p xj
N

i j
P( ), the corresponding p-value for these sites

to be separated by a distance xi j
P
, - see next paragraph

for the computation of the p-value, the information con-
tent associated to the measurement xi j

P
, therefore reads

−⎡
⎣

⎤
⎦log( ( )),p xj

N
i j
P . The scoring function scs P( ) at the

core of the SoS consists in summing up the information
contents over the J first nearest neighbors around each
of the N sites:

scs i
N

i j
P

j

J

i

N

P
JN

p x( ) log( ( )).,= −
==

−

∑∑1
2

10

1

(3)

J represents the maximum number of nearest neigh-
bors to be considered. Hence, the computation is all the
faster that J is small. However, J must increase with N
in order to efficiently detect dense regions. In this
regard, all the reported results in this article have been
obtained by choosing J = max(E[N/16], 1) where the
function E[x] gives the integer part of x. We have
observed that the precise dependence of J on N does
actually not affect the detection.
p-values p xj

N
i j
P( ),

For all i and j, p xj
N

i j
P( ), is the probability for generating

a distance as extreme as xi j
P
, when the sites are inde-

pendently drawn according to a uniform law. In the
case of dense regions, respectively poor regions, this
corresponds to generate distances that are smaller, lar-
ger respectively, than xi j

P
, . This can be explicitly written

in terms of the probability density 2 1j
N x− ( ) of the ran-

dom variable associated to the distance between any
pair of sites that are separated by 2j -1 sites, which can
be readily computed ∀j Î {1,...,N/2} as explained now.
First, the probability  i

N x dx( ) corresponds to finding
one site at a distance x of a given site, and i sites at a
distance lower than x. Next, there are N - 1 possibilities
for placing one site at a distance x and N

i
−2 for placing

i of the remaining N - 2 sites, k
l l

k l k= −
!

!( )! standing for the
binomial factor. As a result,  i

N x( ) reads

 i
N

N
i i N ix N x x( ) ( ) ( ) .= − −−

− −1 12
2

For computational readiness, we use an approximation
of the p-value that is valid for both short and large dis-
tances, which does not affect the issue of the SCM - see
Fig. 2 for an illustrative explanation:

p x F x F xj
N

i j
P

j
N

i j
P

j
N

i j
P( ) min( ( ), ( )),, , , 2 1 2 11− −− (4)

where F j
N

2 1− stands for the repartition function asso-

ciated to 2 1j
N

− , that is F x dy yj
N

j
Nx

2 1 2 10− −= ∫( ) ( ) . Dense

regions correspond to small values of F xj
N

i j
P

2 1− ( ), so that

Eq. 4 leads to the right value of p xj
N

i j
P( ), in the limit of

small distances, that is p x F xj
N

i j
P

j
N

i j
P( ) ( ), ,= −2 1 . On the other

hand, poor regions correspond to values of F xj
N

i j
P

2 1− ( ), close
to 1 so that we also recover p x F xj

N
i j
P

j
N

i j
P( ) ( ( )), ,= − −1 2 1 in the limit of

large distances. Intermediate values of xi j
P
, , i.e. close to

the maximum of 2 1j
N

− , do not play any crucial role for

highlighting clusters, and hence, they are not crucial for
the periodic detection method.
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Positional score
The positional score is calculated by analyzing the posi-
tion of the nearest neighbors modulo P, i.e. the nearest
neighbors on the P-solenoid face view. This means to
compute the p-value p<for two sites to be separated by
a distance that is inferior to their current distance sup-
posing that the sites have been randomly drawn accord-
ing to a uniform distribution.

Let us call yi j
P
, the distance between any two sites

modulo P i and j. The p <’s are then given by:

p y F y i j Ni j
P

j i N N
N

i j
P< = ∀ ∈− +( ) ( ) , { , , }, ( )% , 1

where % stands for the modulo operator. This leads to

′ = − <{ } ( , ) min log( ( ))
,

,i P p y
j k

j k
P

J

where 〈j, k〉J stands for the set of pairs composed of
two sites that lie on the J first nearest neighbors on
each side of i.

Results and discussion
Periodic pattern detection
Two methods are often used to highlight the presence
of periodic patterns. The first one is mostly used in the
case of sparse boolean sequences, which is the case trea-
ted here. It consists in computing the histogram of the
distances that separate each pair of points. The histo-
gram is then analyzed thanks to a (discrete) Fourier
transform. The second one is a standard procedure for
analyzing continuous signals. It consists in computing
an autocorrelation function, which is then analyzed
thanks to a Fourier transform, too.
To illustrate the efficiency of the SCM, the pSoS is

first compared to the pair-distance histogram technique
for different kinds of small sets of positions (Fig. 3).
Next, it is compared to the autocorrelation technique
for site positions coming from both artificial and real
datasets.
SCM versus pair-distance histograms - Fig. 3
Each row of Fig. 3 corresponds to the analysis of a spe-
cific set of positions, which is indicated at the top of the
row. The first column gives the pair-distance histograms
by reporting the number of occurrence No of the dis-
tances (bin = 50). The second column gives the discrete
Fourier transform F of the pair-distance histogram.
Finally, the third column gives the p-value Solenoidal
Spectrum (pSoS) using a semi-log scale. The first row
shows the equivalence between F and pSoS for a Dirac
comb with period P = 10000, i.e. a set of sites that are
regularly spaced by a distance P = 10000. In both spec-
tra, the peaks are harmonics of a main peak (period P =
10000). The second row shows the results for a set of

positions that consists of a periodic succession (8 times
here) of a complex pattern (red points). The period is
still 10000. In F, the main peak is obtained at P ~
10000/6 whereas the pSoS still provides the main peak
at P = 10000 (the other main peaks are harmonics of
this period). In the third row, noise is added by drawing
the positions according to a uniform distribution of
amplitude A, which is centered around the sites of the
second row (i.e., the second row corresponds to A = 0).
For A/P = 10%, unlike the Fourier transform, most of
the pSoS’s still provide a main peak at P = 10000. The
fourth row shows the results for the same set of posi-
tions as in the third row, except that 10 points (of the
40 initial ones) have been deleted (false negatives) and
replaced by 10 points at random locations (false posi-
tives). One can see that the SCM is still able to detect
the presence of the periodic pattern, which demon-
strates the robustness of the method with respect to
data contamination.
The last two rows show the results for positions

resulting from the combination of two periodic patterns
having different periods (blue and red points). In the
fifth row, positions correspond to a succession of the
periodic motifs up to the position 80000, resulting in 56
points. The Fourier spectrum of the pair-distance histo-
gram is flat around one of the main period (P = 10000)
whereas all the peaks in the pSoS are harmonics of the
two main periods P = 7270 and P = 10000, which are
respectively indicated by the green and blue dashed ver-
tical lines. The last row gives the curves that result from
an average over 100 sets of positions drawn by adding
noise to the previous case. In contrast to the Fourier
spectrum of the pair-distance histogram, the two main
periods are revealed by two sharp peaks in the pSoS,
plus one main harmonic peak for each of them.
To summarize, the pair-distance histogram method is

poorly efficient to highlight the periodic presence of a
complex motif. More strikingly, the mixing of two
motifs having two different periods lead to flat Fourier
spectra of the pair-distance histograms around the
expected periods. On the contrary, even in the presence
of noise, the pSoS leads to well-defined peaks that
clearly reveal the two different periods.
SCM versus autocorrelation function - Fig. 4
The autocorrelation function C(x) of an infinitely long

sequence X is defined by C x X i X i x
L i

L

L( ) lim ( ) ( )= ⋅ +
→∞ =

∑

0

where the normalization factor  is such that C(0) =
1. For small and sparse sequences, one needs first to
smooth the sequence to avoid the product X(i) ·X(i + x)
to be mostly equal to 0. We call ~X this smoothed
sequence and further suppose ~X to represent the best
smoothing procedure for highlighting the periodic trend.
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Figure 3 Periodicity detection: Pair-distance histogram vs. Solenoidal Coordinate Method. Each row corresponds to the analysis of a
specific set of positions, which is indicated at the top of the row. The first column gives the pair-distance histogram, i.e. the number of
occurrence No of the distances (bin = 50). The second column gives the discrete Fourier transform F of the pair-distance histogram. Finally, the
third column gives the p-value Solenoidal Spectrum (pSoS). See text for a detailed explanation of the results.
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In this case, the autocorrelation function is defined by

C x X i X i xL x
i

L x
( ) ( ) ( )= ⋅ +−

=

−

∑  
0

. The SCM is compared to the

autocorrelation method in Fig. 4. The first (second) row
corresponds to the case treated in the fourth (sixth) row
of Fig. 3. The last row reports the analysis of positions
coming from genomic studies.

Just as in the case of the pair-distance histogram tech-
nique, the two first rows demonstrate that autocorrela-
tion functions are poorly efficient to highlight the
periodic presence of complex motifs or the periodic pre-
sence of motifs having different periods. The results
reported here have been obtained by smoothing the
sequence using a 1000 long square window. Different
smoothing procedures (Gaussian, different window

Figure 4 Periodicity detection: Autocorrelation function vs. Solenoidal Coordinate Method. Each row corresponds to the analysis of a
specific set of positions. The first (second) row corresponds to the case treated in the fourth (sixth) row of Fig. 3. The last row corresponds to
the analysis of genomic data (see text). The first column gives the autocorrelation function C, the second column gives the discrete Fourier
transform F of C and the third column gives the p-value Solenoidal Spectrum (pSoS) using a semi-log scale. See text for a detailed explanation of
the results.
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sizes,...) can be checked to have little, if any, positive
impact on the results.
In the last row, 90 genes of the 4639675 base-pair

long Escherichia coli genome were analyzed. The posi-
tions were taken from the Regulon DataBase [18]. They
correspond to the genes that present experimental evi-
dence for being transcriptionally regulated by the tran-
scription factor CRP, which is the transcription factor
that regulates the most genes in E. coli. The Fourier
transform of the autocorrelation function leads to two
significant high peaks at periods 9508 and 27782 (green
circles) whereas the pSoS leads to four significant high
peaks at periods 6581, 9507, 19015 and 27782 (blue cir-
cles). In particular, the highest peak in the pSoS, i.e. the
peak at the period 19015, has no counterpart in the
autocorrelation function. These different results would
lead to different interpretations of the genomic organi-
zation, and hence, to different predictions of the spatial
organization of DNA [11].

Positional scores
To illustrate the possibility to identify the periodic sites,
we present in Fig. 5 two case studies in the situation of
two periodic patterns having two different periods.
These correspond to the case studies of the last rows of
Fig. 3. Fig. 5a reports the positional score given by Eq. 2
as a function of the site position for noise-free periodic
patterns (fifth row of Fig. 3). The blue (red) points give
the positional scores of the points at the period 7270
(10000). High scores are obtained at period 7270,
respectively 10000, for the points that form the 7270-
periodic, 10000-periodic respectively, pattern.
A useful way for distinguishing the points that belong

to different periodic trends then consists in plotting the
quantity 10–Spos(P), i.e. pv(S′(P)) in Eq. 2, computed at the
period P = 10000 versus the same quantity computed at
the period P = 7270, which is done in Fig. 5b. In this
plot, one can clearly distinguish the points that belong
to the 10000-periodicity (points along the x-axis) from

Figure 5 Positional scores: detecting periodic sites. (a): Positional score as a function of the position of the sites. The analyzed sequence is
that of the fifth row of Fig. 3. (b): The x-axis, respectively the y-axis, is given by 10–Spos(P)=pv(S′(P)) (see Eq. 2) computed at P = 7270, P = 10000
respectively. The analyzed sequence is that of (a). (c): Same plot as in (b) with some additional noise in the position of the sites (the parameters
correspond to the last row of Fig. 3). (d): Same plot as in (c) but the x-axis is computed at P = 5300 and the y-axis at P = 8700. (b), (c), (d): the
red lines give the bisector f(x) = x. See text for a detailed explanation of the results.
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those that belong to the 7270-periodicity (points along
the y-axis). Interestingly, this representation also allows
to distinguish the different points for a sequence that is
distorted. In Fig. 5c, the distortion consisted in adding
noise to the sequence used in Fig. 5a and 5b. This was
done by drawing the positions according to a uniform
distribution of amplitude 727 (i.e. 10% of 7270), which
is centered around the original sites. This hence corre-
sponds to the situation of the last row of Fig. 3. In con-
trast, in Fig. 5d, we report the quantity 10-Spos(P)

computed at P = 8700 versus the same quantity com-
puted at P = 5300, i.e. at periods where no regularities
are expected. In this situation, the points are no more
separated.

Conclusion
Pair-distance histograms and auto-correlation functions,
either analyzed by discrete or continuous Fourier trans-
forms, may be poorly appropriate for highlighting the
presence of periodic patterns in sparse and noisy
sequences. More importantly, both methods do not suc-
ceed in disentangling multiple patterns having different
periods so that the corresponding Fourier spectra are
flat at the periods supposedly characterizing the
sequence (Fig. 3 and 4). In contrast, the solenoid coordi-
nate method (SCM) has been built in order to be parti-
cularly sensitive to any periodic patterns, even in the
case of overlapping patterns with different periods. Its
robustness to signal distortion, which can be due to the
presence of noise, false positives or/and false negatives,
stems from the remarkable alignment properties of peri-
odic sites when they are represented in a solenoidal
coordinate system with the right period (Fig. 1). It must
also be noted that the SCM does not need any smooth-
ing of the original sequence as in the case of the auto-
correlation function. Finally, thanks to the definition of
a positional score, we have shown that the SCM frame-
work further allows to identify the sites that participate
most in a periodic tendency. This should be particularly
useful for identifying periodic genes, and hence, for
investigating their functional properties.
The present method is suited to sparse (boolean)

sequences that contain a rather small number of sites
(1’s). More precisely, the computational time for run-
ning a spectrum of a sequence containing N sites scales
as JN ~ N2 (see Eq. 3). The method is therefore poorly
scalable in its present form. Different improvements
along this direction can be contemplated. A possible
one would consist in computing the Kullback-Leibler
divergence (with respect to a uniform distribution) of
the density distribution of the sites modulo the periods,
i.e. the Kullback-Leibler divergence of the density distri-
bution along the solenoid face views. This cannot be

done when the number of sites is too small, which was
the case treated here.

Availability and requirements
The software is available for public use at http://www.
issb.genopole.fr/MEGA/Softwares/iSSB_SolenoidalAppli-
cation.zip.
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SCM: solenoidal coordinate method; SoS: solenoidal spectrum; pSoS: p-valued
Solenoidal Spectrum
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