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Current risk assessment methods for coronary artery disease (CAD), such as the pooled 

cohort equations (PCE) [1], are based on a limited combination of known cardiovascular risk 

factors. Studies have shown that alternative forms of data such as electrocardiogram [2] and 

clinical data in electronic health records [3] can improve CAD prediction beyond that of the 

PCE. These studies suggest that, compared to traditional risk assessment models based on 

traditional risk factors, alternative sources of data can better capture the entire representation 

of disease risk, resulting in greater prediction power.

Metabolomics data yields relevant biological information of an individual’s health status, 

independent of clinical records. This additional source of information can capture novel 

evidence of CAD susceptibility, not considered by current approaches based on a reduced 
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number of traditional risk factors. Hence, a prediction score based on metabolomic features 

carries significant potential to advance CAD risk assessment. In this study, we evaluate 

whether serum metabolomic patterns integrated in a machine learning (ML) framework can 

accurately predict CAD one year ahead of diagnosis in a multiethnic cohort comprised of 

251 CAD cases and 1603 controls. We compared this model to the conventional clinical risk 

score, the PCE.

Blood samples from 2000 unrelated individuals from the BioMe Biobank were processed 

to obtain metabolomic data using the Metabolon assay. A total of 1654 available features 

were considered. Age, gender and self-reported ethnicity were included as covariates. We 

considered data one year prior to CAD diagnosis. Individuals with more than 60 % missing 

values were discarded resulting in 1854 total individuals available for posterior analyses. 

Missing data for the remainder were imputed using a random forest-based approach.

A ML approach was used to develop the metabolomics model for CAD prediction (Fig. 

1A). To minimize overfitting, the workflow was replicated 100 times using different samples 

for training and testing in each iteration. The training set was built by randomly selecting 

80 % of cases and an equal number of controls. All subsequent steps were performed only 

on the train set and then applied to the test set. Feature selection was performed in each 

iteration using a wrapper approach built around a random forest algorithm. This reduces 

the complexity of the model, making the prediction clinically interpretable. Non-selected 

features were then removed from the test set accordingly. Continuous features were scaled 

within the train set and the resulting metrics were used to scale the test set accordingly. The 

model regresses predictions from three algorithms to compute a final score, namely random 

forest, gradient boosted trees and support vector machine with polynomial kernel. For 

each algorithm, hyperparameters were optimised using an internal 10-fold cross-validation 

within the train set. The resulting model was then used to predict CAD in the test set. 

Performance metrices representative of the entire population were obtained by randomly 

selecting samples in each iteration while still avoiding overfitting. The reported metrices 

correspond to the mean and standard deviation across 100 iterations.

Standard performance metrics, namely sensitivity (recall), specificity, accuracy, area under 

receiver operating characteristic (AUROC) curve and standard error (SE) were used to assess 

the performance of each model.

A total of 1654 metabolomic features were obtained for 986 African Americans, 740 

Hispanic Americans, 83 European Americans and 45 individuals from other ancestries. 

Compared to the PCE, the metabolomic model improved CAD discrimination power by 15 

% (AUROC = 0.66, SE = 0.04 for PCE vs. AUROC = 0.81, SE = 0.03 for metabolomic) 

in a blind test set (Fig. 1B). It identifies 75 % of CAD cases one-year prior to diagnosis 

(Sensitivity = 0.75, SE = 0.05) with high confidence (PPV = 0.73, SE = 0.03) (Fig. 1C). 

A predictive model using both metabolomic information and the PCE (metabolomic + 

PCE) carries slightly stronger discriminative power (AUROC = 0.82, SE = 0.03) (Fig. 

1B). Furthermore, a feature importance analysis identifies known metabolites relevant 

to cardiovascular pathophysiology including creatinine, alanine, aspartate and benzoate 
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metabolism [4] (Fig. 1D). Metabolomic features not yet mapped to a biological process 

are labelled “Unnamed”.

These results suggest that metabolomic information can be used to determine one-year risk 

estimations for CAD. Importantly, both the discriminative and case prediction power of 

a metabolomic model is superior to the PCE [5], indicating it has clinical applicability 

and utility. Furthermore, by using out-of-hospital information, it can complement PCE-

based predictions to identify high-risk individuals that are not captured by clinical data in 

electronic health records.

This study has some limitations. First, the study does not include external validation due to 

a lack of available metabolomics data in an external cohort. Therefore, we were not able 

to assess the model performance in a validation cohort. However, to minimize overfitting 

originating from sampling biases, 100 iterations of training and testing on independent 

datasets were performed. Second, a health system-based cohort (BioMe) was used even 

though the metabolomic model has wider utility beyond health system settings. Of note, 

this was a multiethnic cohort with the advantage of having clinically validated CAD 

diagnoses. Finally, the PCE used here to assess short-term prediction of CAD had been 

developed originally for long-term 10-year risk assessment. We show in a previous study 

that the PCE can predict short-term risk for CAD [3]. In conclusion, this study shows that 

metabolomic data carries sufficient predictive power to discriminate CAD cases using a 

simple metabolomics blood assay.
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Fig. 1. 
Study design and evaluation of metabolomic model for CAD prediction. A) Diagram 

describing filtering criteria, sampling, pre-processing, training and evaluation performed 

to generate a CAD prediction model using metabolomic information. RF corresponds to 

random forest; GBT corresponds to gradient boosted trees; SVM corresponds to support 

vector machines with polynomial kernel; AUROC corresponds to area under the receiver 

operator characteristic curve; PPV corresponds to positive predictive value and NPV 

corresponds to negative predictive value. B) Receiver operator characteristic curves. Y and 

X axis correspond to averaged true positive and false negative rates respectively across 100 

iterations. The averaged area under the curve is indicated for every model. PCE corresponds 

to pooled cohort equations and auc corresponds to area under the curve. C) Per-class 

performance metrics. PCE corresponds to pooled cohort equations; PPV corresponds to 

positive predictive value and NPV corresponds to negative predictive value. D) Bar-plot 

showing feature importance on the metabolomic model. Feature importance is calculated as 

the normalized contribution of each of the three models and averaged across 100 iterations. 

Metabolomic signatures not be mapped to a biological process are labelled “Unamed”.
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