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Background
To describe the population of the Australian sheep-blowfly and to agree with the experi-
mental data obtained in Nicholson (1954), Gurney et al. (1980) proposed the following 
delay differential Equation model:

where p is the maximum per capita daily egg production rate, 1 / a is the size at which 
the blowfly population reproduces at its maximum rate, δ is the per capita daily adult 
death rate, and τ is the generation time. Since Eq. (1) explains Nicholson’s data of blowfly 
more accurately, the model and its modifications have been now refereed to as Nichol-
son’s Blowflies model. The theory of the Nicholson’s blowflies equation has made a 
remarkable progress in the past 40 years with main results scattered in many research 
papers. Many important results on the qualitative properties of the model such as the 
existence of positive solutions, positive periodic solutions, positive almost periodic solu-
tions and positive pseudo almost periodic solutions, the persistence, the permanence, 
the oscillation and the stability for the classical Nicholson’s model and its generalizations 
have been established in the literature (Chen 2003; Li and Du 2008; Liu 2010, 2014a; 

(1)x′(t) = −δx(t)+ px(t − τ )e−ax(t−τ),
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Saker and Agarwal 2002; Zhou 2013; Yi and Zou 2008; Liu and Gong 2011; Hien 2014; 
Chérif 2015; Duan and Huang 2015; Yao 2015a; Shao 2012). For example, to describe the 
models of marine protected areas and B-cell chronic lymphocytic leukemia dynamics 
that are examples of Nicholson-type delay differential systems, Berezansky et al. (2011) 
and Wang et al. (2011) studied the following Nicholson-type delay system:

where αi,βi, cij , γij , τij ∈ C(R, (0,+∞)), i = 1, 2, j = 1, 2, . . . ,m; in Faria (2011), the 
authors discussed some aspects of the global dynamics for a Nicholson’s blowflies model 
with patch structure given by

In the real world phenomena, since the almost periodic variation of the environment 
plays a crucial role in many biological and ecological dynamical systems and is more 
frequent and general than the periodic variation of the environment. Hence, the effects 
of almost periodic environment on evolutionary theory have been the object of inten-
sive analysis by numerous authors and some of these results for the Nicholson’s blowflies 
model can be found in Alzabut (2010), Chen and Liu (2011), Long (2012), Wang (2013), 
Liu and Meng (2012), Xu (2014), Liu (2014b), Ding and Alzabut (2015).

Besides, although most models are described by differential equations, the discrete-
time models governed by difference equations are more appropriate than the continuous 
ones when the size of the population is rarely small, or the population has non-overlap-
ping generations. Hence, it is also important to study the dynamics of the discrete-time 
Nicholson’s blowflies model. Recently, authors of Yao (2014), Alzabut (2013) studied 
the existence and exponential convergence of almost periodic solutions for the discrete 
Nicholson’s blowflies model, respectively. In fact, it is troublesome to study the dynam-
ics for continuous systems and their corresponding discrete ones respectively, therefore, 
it is significant to study that on time scales, which was initiated by Stefan Hilger (see 
Hilger 1990) in order to unify continuous and discrete cases. However, to the best of 
our knowledge, very few results are available on the existence and stability of positive 
almost periodic solutions for the Nicholson’s blowflies model on time scales except (Li 
and Yang 2012). But Li and Yang (2012) only considered the asymptotical stability of the 
model and the exponential stability is stronger than asymptotical stability among differ-
ent stabilities.

On the other hand, in order to study the almost periodic dynamic equations on time 
scales, a concept of almost periodic time scales was proposed in Li and Wang (2011a). 
Based on this concept, almost periodic functions Li and Wang (2011a), pseudo almost 
periodic functions (Li and Wang 2012), almost automorphic functions (Lizama and 
Mesquita 2013a), weighted pseudo almost automorphic functions (Wang and Li 2013), 
weighted piecewise pseudo almost automorphic functions (Wang and Agarwal 2014a) 





N ′
1(t) = −α1(t)N1(t)+ β1(t)N2(t)+

m�
j=1

c1j(t)N1(t − τ1j(t))e
−γij(t)N1(t−τ1j(t)),

N ′
2(t) = −α2(t)N2(t)+ β2(t)N1(t)+

m�
j=1

c2j(t)N2(t − τ1j(t))e
−γij(t)N2(t−τ1j(t)),

x′i(t) = −dixi(t)+
n∑

j=1

aijxj(t)+
m∑

j=1

βijxi(t − τij)e
−xi(t−τij), i = 1, 2, . . . , n.
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and almost periodic set-valued functions (Hong and Peng 2016) on on time scales were 
defined successively. Also, some works have been done under the concept of almost 
periodic time scales (see Lizama and Mesquita 2013b; Lizama et al. 2014; Li and Yang 
2014; Liang et al. 2014; Gao et al. 2014; Yao 2015b; Mophou et al. 2014; Zhou et al. 2015). 
Although the concept of almost periodic time scales in Li and Wang (2011a) can unify 
the continuous and discrete situations effectively, it is very restrictive. This excludes 
many interesting time scales. Therefore, it is a challenging and important problem in 
theories and applications to find new concepts of almost periodic time scales (Li and 
Wang 2011b; Wang and Agarwal 2014b; Li and Li 2015; Li et al. 2015a, b).

Motivated by the above discussion, our main purpose of this paper is firstly to propose 
a new definition of almost periodic time scales, two new definitions of almost periodic 
functions on time scales and study some basic properties of them. Then, as an applica-
tion, we study the existence and global exponential stability of positive almost periodic 
solutions for the following Nicholson’s blowflies model with patch structure and multi-
ple time-varying delays on time scales:

where t ∈ T, T is an almost periodic time scale, xi(t) denotes the density of the species 
in patch i, bik(k �= i) is the migration coefficient from patch k to patch i and the natural 
growth in each patch is of Nicholson-type.

For convenience, for a positive almost periodic function f : T → R, we denote 
f + = supt∈T f (t), f

− = inf t∈T f (t). Due to the biological meaning of (2), we just con-
sider the following initial condition:

where θ = max(i,j) supt∈T{τij(t)}, [t0 − θ , t0]T = [t0 − θ , t0] ∩ T.
This paper is organized as follows: In “Preliminaries”, we introduce some notations 

and definitions which are needed in later sections. In “Almost periodic time scales and 
almost periodic functions on time scales” section, we give a new definition of almost 
periodic time scales and two new definitions of almost periodic functions on time scales, 
and we state and prove some basic properties of them. In “Positive almost periodic solu-
tions for the Nicholson’s blowflies model” section, we establish some sufficient condi-
tions for the existence and exponential stability of positive almost periodic solutions of 
(2). In “An example” section, we give an example to illustrate the feasibility of our results 
obtained in previous sections. We draw a conclusion in “Conclusion” section.

Preliminaries
In this section, we shall first recall some definitions and state some results which are 
used in what follows.

Let T be a nonempty closed subset (time scale) of R. The forward and backward jump 
operators σ , ρ : T → T and the graininess µ : T → R+ are defined, respectively, by

(2)

x�i (t) = −ci(t)xi(t)+
n∑

k=1,k �=i

bik(t)xk(t)

+
n∑

j=1

βij(t)xi(t − τij(t))e
−αij(t)xi(t−τij(t)), i = 1, 2, . . . , n,

(3)ϕi(s) > 0, s ∈ [t0 − θ , t0]T, t0 ∈ T, i = 1, 2, . . . , n,
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A point t ∈ T is called left-dense if t > inf T and ρ(t) = t, left-scattered if ρ(t) < t, 
right-dense if t < supT and σ(t) = t, and right-scattered if σ(t) > t. If T has a left-scat-
tered maximum m, then Tk = T\{m}; otherwise Tk = T. If T has a right-scattered mini-
mum m, then Tk = T\{m}; otherwise Tk = T.

A function f : T → R is right-dense continuous provided it is continuous at right-
dense point in T and its left-side limits exist at left-dense points in T. If f is continuous at 
each right-dense point and each left-dense point, then f is said to be continuous function 
on T.

For y : T → R and t ∈ Tk, we define the delta derivative of y(t), y�(t), to be the num-
ber (if it exists) with the property that for a given ε > 0, there exists a neighborhood U of 
t such that

for all s ∈ U .
If y is continuous, then y is right-dense continuous, and if y is delta differentiable at t, 

then y is continuous at t.
Let y be right-dense continuous. If Y�(t) = y(t), then we define the delta integral by ∫ t

a y(s)�s = Y (t)− Y (a).

A function r : T → R is called regressive if 1+ µ(t)r(t) �= 0 for all t ∈ Tk.  
The set of all regressive and rd-continuous functions r : T → R will be denoted by  
R = R(T) = R(T,R). We define the set R+ = R

+(T,R) = {r ∈ R : 1+ µ(t)r(t) > 0,

∀t ∈ T}.

Lemma 1  (Bohner and Peterson 2001) Suppose that p ∈ R
+, then

(i)	� ep(t, s) > 0, for all t, s ∈ T;
(ii)	� if p(t) ≤ q(t) for all t ≥ s, t, s ∈ T, then ep(t, s) ≤ eq(t, s) for all t ≥ s.

Definition 1  (Fink 1974) A subset S of R is called relatively dense if there exists a 
positive number L such that [a, a+ L] ∩ S �= φ for all a ∈ R. The number L is called the 
inclusion length.

Definition 2  (Li and Wang 2011a) A time scale T is called an almost periodic time 
scale if

The following definition is a slightly modified version of Definition 3.10 in Li and 
Wang (2011a).

Definition 3  Let T be an almost periodic time scale. A function f ∈ C(T× D,En) is 
called an almost periodic function in t ∈ T uniformly for x ∈ D if the ε-translation set of f

σ(t) = inf{s ∈ T : s > t}, ρ(t) = sup{s ∈ T : s < t} and µ(t) = σ(t)− t.

|[y(σ (t))− y(s)] − y�(t)[σ(t)− s]| < ε|σ(t)− s|

� =
{
τ ∈ R : t ± τ ∈ T,∀t ∈ T

}
�= {0}.

E{ε, f , S} = {τ ∈ � : |f (t + τ , x)− f (t, x)| < ε, ∀(t, x) ∈ T× S}
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is relatively dense for all ε > 0 and for each compact subset S of D; that is, for any given 
ε > 0 and each compact subset S of D, there exists a constant l(ε, S) > 0 such that each 
interval of length l(ε, S) contains a τ(ε, S) ∈ E{ε, f , S} such that

τ is called the ε-translation number of f.

Almost periodic time scales and almost periodic functions on time scales
In this section, we will give a new definition of almost periodic time scales and two new 
definitions of almost periodic functions on time scales, and we will investigate some 
basic properties of them. Our new definition of almost periodic time scales is as follows:

Definition 4  A time scale T is called an almost periodic time scale if the set

where Tτ = T ∩ {T− τ } = T ∩ {t − τ : t ∈ T}, and there exists a set Π1 satisfies 

(i)	� 0 ∈ �1 ⊆ �0,
(ii)	�  �(�1) \ {0} �= ∅ ,
(iii)	� T := T(�) =

⋂
τ∈� Tτ �= ∅,  

where � := �(�1) = {τ ∈ �1 ⊆ �0 : σ ± τ ∈ �1,∀σ ∈ �1

}
.

Clearly, if t ∈ Tτ, then t + τ ∈ T. If t ∈ T̃, then t + τ ∈ T for τ ∈ �.

Remark 1  Obviously, if T is an almost periodic time scale under Definition  4, then 
inf T = −∞ and supT = +∞. If T is an almost periodic time scale under Definition 2, 
then T is also an almost periodic time scale under Definition 4 and in this case, T̃ = T.

Example 1  Let T = Z ∪ { 14 }.  Take �1 =
{
τ ∈ T : Tτ �= ∅, Tτ �= {0}

}
⊆ �0, then

for every τ ∈ Z, we have Tτ = Z and T 1
4
= {0}. Hence � = Z and ̃T =

⋂
τ∈� Tτ = Z �= ∅.  

So, T is an almost periodic time scale under Definition 4 but it is not an almost periodic 
time scale under Definition 2.

Lemma 2  If T is an almost periodic time scales under Definition 4, then T̃ is an almost 
periodic time scale under Definition 2.

Proof  By contradiction, suppose that there exists a t0 ∈ T̃ such that for every τ ∈ �\{0} , 
t0 + τ /∈ T̃ or t0 − τ /∈ T̃.

Case (i) If t0 + τ /∈ T̃, then there exists a τt0 ∈ � such that t0 + τ /∈ Tτt0
. On one hand, 

since t0 + τ ∈ T, t0 + τ + τt0 /∈ T. On the other hand, since t0 ∈ T̃ and τ + τt0 ∈ �, 
t0 + τ + τt0 ∈ T. This is a contradiction.

Case (ii) If t0 − τ /∈ T̃, then there exists a τ̃t0 ∈ � such that t0 − τ /∈ Tτ̃t0
. On one hand, 

since t0 − τ ∈ T, t0 − τ + τ̃t0 /∈ T. On the other hand, since t0 ∈ T̃ and −τ + τ̃t0 ∈ �, 
t0 − τ + τ̃t0 ∈ T. This is a contradiction.

|f (t + τ , x)− f (t, x)| < ε, ∀(t, x) ∈ T× S.

�0 := {τ ∈ R : T±τ �= ∅} �= {0},
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Therefore, for every t ∈ T̃, there exists a τ ∈ �\{0} such that t ± τ ∈ T̃. Hence, T is an 
almost periodic time scale under Definition 2. The proof is complete. � �

Throughout this section, En denotes Rn or Cn, D denotes an open set in En or D = En, 
S denotes an arbitrary compact subset of D.

From Li and Wang (2011a), under Definitions 2 and 3, we know that if we denote by 
BUC(T× D,Rn) the collection of all bounded uniformly continuous functions from 
T× S to Rn, then

where AP(T× D,Rn) are the collection of all almost periodic functions in t ∈ T uni-
formly for x ∈ D. It is well known that if we let T = R or Z, (4) is valid. So, for simplicity, 
we give the following definition:

Definition 5  Let T be an almost periodic time scale under sense of Definition  4. A 
function f ∈ BUC(T× D,En) is called an almost periodic function in t ∈ T uniformly 
for x ∈ D if the ε-translation set of f

is relatively dense for all ε > 0 and for each compact subset S of D; that is, for any given 
ε > 0 and each compact subset S of D, there exists a constant l(ε, S) > 0 such that each 
interval of length l(ε, S) contains a τ(ε, S) ∈ E{ε, f , S} such that

This τ is called the ε-translation number of f.

Remark 2  If T = R, then T̃ = R, in this case, if we take � = R, then Definition 5 is 
actually equivalent to the definition of the uniformly almost periodic functions in Ref. 
Fink (1974). If T = Z, then T̃ = Z, in this case, if we take � = Z, then Definition  5 is 
actually equivalent to the definition of the uniformly almost periodic sequences in Fink 
and Seifert (1969), David and Cristina (2004).

Example 2  Let T = Z ∪ { 14 }, according to Example 3.1, T is an almost periodic time 
scale under Definition 4. Take f (t, x) = 2x2 + sin 2t + cos

√
3t for (t, x) ∈ T× R. Then f 

is an almost periodic function in t ∈ T uniformly for x ∈ R under Definition 5.

For convenience, we denote by AP(T× D,En) the set of all functions that are 
almost periodic in t uniformly for x ∈ D and denote by AP(T) the set of all func-
tions that are almost periodic in t ∈ T, and introduce some notations: Let α = {αn} 
and β = {βn} be two sequences. Then β ⊂ α means that β is a subsequence of α ; 
α + β = {αn + βn};−α = {−αn}; and α and β are common subsequences of α

′ 
and β ′, respectively, means that αn = α

′
n(k) and βn = β

′
n(k) for some given func-

tion n(k). We introduce the translation operator T, Tα f (t, x) = g(t, x) means that 
g(t, x) = lim

n→+∞
f (t + αn, x) and is written only when the limit exists. The mode of con-

vergence, e.g. pointwise, uniform, etc., will be specified at each use of the symbol.

(4)AP(T× D,Rn) ⊂ BUC(T× D,Rn),

E{ε, f , S} = {τ ∈ � : |f (t + τ , x)− f (t, x)| < ε, ∀(t, x) ∈ T̃× S}

|f (t + τ , x)− f (t, x)| < ε, ∀(t, x) ∈ T̃× S.
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Similar to the proofs of Theorem  3.14, Theorem  3.21 and Theorem  3.22 in Li and 
Wang (2011a), respectively, one can prove the following three theorems.

Theorem  1  Let f ∈ UBC(T× D,En), if for any sequence α′ ⊂ �, there exists α ⊂ α
′ 

such that Tα f  exists uniformly on T̃× S, then f ∈ AP(T× D,En).

Theorem  2  If f ∈ AP(T× D,En), then for any ε > 0, there exists a positive con-
stant L = L(ε, S), for any a ∈ R, there exist a constant η > 0 and α ∈ R such that (
[α,α + η] ∩�

)
⊂ [a, a+ L] and 

(
[α,α + η] ∩�

)
⊂ E(ε, f , S).

Theorem  3  If f , g ∈ AP(T× D,En), then for any ε > 0, E(f , ε, S) ∩ E(g , ε, S) is non-
empty relatively dense.

According to Definition 5, one can easily prove

Theorem 4  If f ∈ AP(T× D,En), then for any α ∈ R, b ∈ �, functions αf , f (t + b, ·) ∈
AP(T× D,En).

Similar to the proofs of Theorem 3.24, Theorem 3.27, Theorem 3.28 and Theorem 3.29 
in Li and Wang (2011a), respectively, one can prove the following four theorems.

Theorem 5  If f , g ∈ AP(T× D,En), then f + g , fg ∈ AP(T× D,En), if   inf
t∈T

|g(t, x)| > 0 ,  
then f /g ∈ AP(T× D,En).

Theorem  6  If fn ∈ AP(T× D,En)(n = 1, 2, . . .) and the sequence {fn} uniformly con-
verges to f on T× S, then f ∈ AP(T× D,En).

Theorem 7  If f ∈ AP(T× D,En), denote F(t, x) =
∫ t
0 f (s, x)�s, then F ∈ AP(T× D,En)  

if and only if F is bounded on T× S.

Theorem 8  If f ∈ AP(T× D,En), F(·) is uniformly continuous on the value field of f, 
then F ◦ f  is almost periodic in t uniformly for x ∈ D.

By Definition 5, one can easily prove

Theorem  9  Let f : R → R satisfies Lipschitz condition and ϕ(t) ∈ AP(T), then 
f (ϕ(t)) ∈ AP(T).

Definition 6  (Li and Wang 2011b) Let A(t) be an n× n rd-continuous matrix on T, the 
linear system

is said to admit an exponential dichotomy on T if there exist positive constant k, α, pro-
jection P, and the fundamental solution matrix X(t) of (5), satisfying

(5)x�(t) = A(t)x(t), t ∈ T

|X(t)PX−1(σ (s))| ≤ ke⊖α (t, σ(s)), s, t ∈ T, t ≥ σ(s),

|X(t)(I − P)X−1(σ (s))| ≤ ke⊖α (σ (s), t), s, t ∈ T, t ≤ σ(s),
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where | · | is a matrix norm on T, that is, if A = (aij)n×n, then we can take 
|A| =

(∑n
i=1

∑n
j=1 |aij|2

) 1
2.

Similar to the proof of Lemma 2.15 in Li and Wang (2011b), one can easily show that

Lemma 3  Let aii(t) be an uniformly bounded rd -continuous function on T, where 
aii(t) > 0, −aii(t) ∈ R

+ for every t ∈ T and

then the linear system

admits an exponential dichotomy on T.
According to Lemma  2, T̃ is an almost periodic time scales under Definition  2, we 

denote the forward and the backward jump operators of T̃ by σ̃ and ρ̃ , respectively.

Lemma 4  If t is a right-dense point of T̃, then t is also a right-dense point of T.

Proof  Let t be a right-dense point of T̃, then

Since σ(t) ≥ t, t = σ(t). The proof is complete. � �

Similar to the proof of Lemma 4, one can prove the following lemma.

Lemma 5  If t is a left-dense point of T̃, then t is also a left-dense point of T.

For each f ∈ C(T,R), we define f̃ : T̃ → R by f̃ (t) = f (t) for t ∈ T̃. From Lemmas 4 
and  5, we can get that f̃ ∈ C(T̃,R). Therefore, F defined by

is an antiderivative of f on T̃, where �̃ denotes the �-derivative on T̃.
Set �̃ = {τ ∈ � : t ± τ ∈ T̃}. We give our second definition of almost periodic func-

tions on time scales as follows.

Definition 7  Let T be an almost periodic time scale under sense of Definition  4. A 
function f ∈ BUC(T× D,En) is called an almost periodic function in t ∈ T uniformly 
for x ∈ D if the ε-translation set of f

is relatively dense for all ε > 0 and for each compact subset S of D; that is, for any given 
ε > 0 and each compact subset S of D, there exists a constant l(ε, S) > 0 such that each 
interval of length l(ε, S) contains a τ(ε, S) ∈ E{ε, f , S} such that

min
1≤i≤n

{inf
t∈T

aii(t)} > 0,

x�(t) = diag(−a11(t),−a22(t), . . . ,−ann(t))x(t)

t = σ̃ (t) = inf{s ∈ T̃ : s > t} ≥ inf{s ∈ T : s > t} = σ(t).

F(t) :=
∫ t

t0

f̃ (τ )�̃τ , t0, t ∈ T̃

E{ε, f , S} = {τ ∈ �̃ : |f (t + τ , x)− f (t, x)| < ε, ∀(t, x) ∈ T̃× S}
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This τ is called the ε-translation number of f.

Remark 3  It is clear that if a function is an almost periodic function under Definition 5, 
then it is also an almost periodic function under Definition 7.

Remark 4  Since T̃ is an almost periodic time scales under Definition 2, under Defini-
tion 5, all the results obtained in Li and Wang (2011a) remain valid when we restrict our 
discussion to T̃.

In the following, we restrict our discuss under Definition 7.
Consider the following almost periodic system:

where A(t) is a n× n almost periodic matrix function, f(t) is a n-dimensional almost 
periodic vector function.

Similar to Lemma 2.13 in Li and Wang (2011b), one can easily get

Lemma 6  If linear system (5) admits an exponential dichotomy, then system (6) has a 
bounded solution x(t) as follows:

where X(t) is the fundamental solution matrix of (5).
By Theorem 4.19 in Li and Wang (2011a), we have

Lemma 7  Let A(t) be an almost periodic matrix function and f(t) be an almost peri-
odic vector function. If (5) admits an exponential dichotomy, then (6) has a unique almost 
periodic solution:

where X̃(t) is the restriction of the fundamental solution matrix of (5) on T̃.
From Definition 5 and Lemmas 6 and 7, one can easily get the following lemma.

Lemma 8  If linear system (5) admits an exponential dichotomy, then system (6) has an 
almost periodic solution x(t) can be expressed as:

where X(t) is the fundamental solution matrix of (5).

|f (t + τ , x)− f (t, x)| < ε, ∀(t, x) ∈ T̃× S.

(6)x�(t) = A(t)x(t)+ f (t), t ∈ T,

x(t) =
∫ t

−∞
X(t)PX−1(σ (s))f (s)�s −

∫ +∞

t
X(t)(I − P)X−1(σ (s))f (s)�s, t ∈ T,

x(t) =
∫ t

−∞
X̃(t)PX̃−1(σ̃ (s))f̃ (s)�̃s −

∫ +∞

t
X̃(t)(I − P)X̃−1(σ̃ (s))f̃ (s)�̃s, t ∈ T̃,

x(t) =
∫ t

−∞
X(t)PX−1(σ (s))f (s)�s −

∫ +∞

t
X(t)(I − P)X−1(σ (s))f (s)�s, t ∈ T,
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Positive almost periodic solutions for the Nicholson’s blowflies model
In this section, we will state and prove the sufficient conditions for the existence and 
exponential stability of positive almost periodic solutions of (2). Throughout this sec-
tion, we restrict our discussion under Definition 7.

Set B = {ϕ ∈ C(T,Rn) : ϕ = (ϕ1,ϕ2, . . . ,ϕn) is an almost periodic function on T} with the 

norm ||ϕ||B = sup
t∈T

||ϕ(t)||, where ||ϕ(t)|| = max
1≤i≤n

|ϕi(t)| , then B is a Banach space. Denote 

C = C([t0 − θ , t0]T,Rn) and C{A1,A2} = {ϕ = (ϕ1,ϕ2, . . . ,ϕn) ∈ C : A1 ≤ ϕi(s) ≤ A2, s ∈ 

[t0 − θ , t0]T, i = 1, 2, . . . , n}, where 0 < A1 < A2 are constants.
In the proofs of our results of this section, we need the following facts: The function 

xe−x decreases on [1,+∞).

Lemma 9  Assume that the following conditions hold.

(H1)	� ci, bik ,βij ,αij , τij ∈ AP(T,R+) and c−i > 0, b−ik > 0,β−
ij > 0,α−

ij > 0, 

t − τij(t) ∈ T, i, k , j = 1, 2, . . . , n.

(H2)	�
∑n

k=1,k �=i
b+ik
c−i

< 1, i = 1, 2, . . . , n.

(H3)	� There exist positive constants A1,A2 satisfy

and

Then the solution x(t) = (x1(t), x2(t), . . . , xn(t)) of (2) with the initial value 
ϕ ∈ C{A1,A2} satisfies

Proof  Let x(t) = x(t; t0,ϕ), where ϕ ∈ C{A1,A2}. At first, we prove that

where [t0, η(ϕ))T is the maximal right-interval of existence of x(t; t0,ϕ). By way of con-
tradiction, assume that (7) does not hold. Then, there exists i0 ∈ {1, 2, . . . , n} and the first 
time t1 ∈ [t0, η(ϕ))T such that

A2 > max
1≤i≤n






1−

n�

k=1,k �=i

b+ik
c−i



−1

n�

j=1

β+
ij

c−i α
−
ij e





min
1≤i≤n






1−

n�

k=1,k �=i

b−ik
c+i



−1

n�

j=1

A2

β−
ij

c+i
e
−α+ij A2





> A1 ≥
1

min
1≤i,j≤n

{α−
ij }

.

A1 < xi(t) < A2, t ∈ [t0,+∞)T, i = 1, 2, . . . , n.

(7)0 < xi(t) < A2, t ∈ [t0, η(ϕ))T, i = 1, 2, . . . , n,

xi0(t1) ≥ A2, xi0(t) < A2, t ∈ [t0 − θ , t1)T,

xk(t) ≤ A2, for k �= i0, t ∈ [t0 − θ , t1]T, k = 1, 2, . . . , n.
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Therefore, there must be a positive constant a ≥ 1 such that

In view of the fact that sup
u≥0

ue−u = 1
e and a ≥ 1, we can obtain

which is a contradiction and hence (7) holds. Next, we show that

By way of contradiction, assume that (8) does not hold. Then, there exists i1 ∈ {1, 2, . . . , n} 
and the first time t2 ∈ [t0, η(ϕ))T such that

Therefore, there must be a positive constant c ≤ 1 such that

Noticing that c ≤ 1, it follows that

which is a contradiction and hence (8) holds. Similar to the proof of Theorem 2.3.1 in 
Hale and Verduyn Lunel (1993), we easily obtain η(ϕ) = +∞. This completes the proof. 
� �

xi0(t1) = aA2, xi0(t) < aA2, t ∈ [t0 − θ , t1)T,

xk(t) ≤ aA2, for k �= i0, t ∈ [t0 − θ , t1]T, k = 1, 2, . . . , n.

0 ≤ x�i0 (t1) = −ci0(t1)xi0(t1)+
n�

k=1,k �=i0

bi0k(t1)xk(t1)

+
n�

j=1

βi0j(t1)

αi0j(t1)
αi0j(t1)xi0(t1 − τi0j(t1))e

−αi0 j(t0)xi0 (t0−τi0 j(t0))

≤ −c−i0aA2 +
n�

k=1,k �=i0

b+i0kaA2 +
n�

j=1

β+
i0j

α−
i0j

· 1
e

≤ ac−i0


−A2 +

n�

k=1,k �=i0

A2b
+
i0k

c−i0
+

n�

j=1

β+
i0j

c−i0α
−
i0j
e


 < 0,

(8)xi(t) > A1, t ∈ [t0, η(ϕ))T, i = 1, 2, . . . , n.

xi1(t2) ≤ A1, xi1(t) > A1, t ∈ [t0 − θ , t2)T,

xk(t) ≥ A1, for k �= i1, t ∈ [t0 − θ , t2]T, k = 1, 2, . . . , n.

xi1(t2) = cA1, xi1(t) > cA1, t ∈ [t0 − θ , t2)T,

xk(t) ≥ cA1, for k �= i1, t ∈ [t0 − θ , t2]T, k = 1, 2, . . . , n.

0 ≥ x�i1 (t2) = −ci1(t2)xi1(t2)+
n�

k=1,k �=i1

bi1k(t2)xk(t2)

+
n�

j=1

βi1j(t2)xi1(t2 − τi1j(t2))e
−αi1 j(t2)xi1 (t2−τi1 j(t2))

≥ −c+i1 cA1 +
n�

k=1,k �=i1

b−i1kcA1 +
n�

j=1

A2

α+
i1j
β−
i1j

α+
i1j

e
−α+i1 j

A2

= cc+i1


−A1 +

n�

k=1,k �=i1

A1

b−i1k
c+i1

+
n�

j=1

A2

β−
i1j

c+i1
e
−α+i1 j

A2


 > 0,
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Remark 5  If T = R, then µ(t) ≡ 0, so, −ci ∈ R
+. If T = Z, then µ(t) ≡ 1, so, −ci ∈ R

+ 
if and only if ci < 1.

Theorem 10  Assume that (H1) and (H3) hold. Suppose further that

(H4)	� −ci ∈ R
+, where R

+ denotes the set of positive regressive functions, 
i = 1, 2, . . . , n.

(H5)	�
∑n

k=1,k �=i b
+
ik +

∑n
j=1

β+
ij

e2
< c−i , i = 1, 2, . . . , n.

Then system (2) has a positive almost periodic solution in the region 
B∗ = {ϕ| ϕ ∈ B,A1 ≤ ϕi(t) ≤ A2, t ∈ T, i = 1, 2, . . . , n}.

Proof  For any given ϕ ∈ B, we consider the following almost periodic dynamic system:

Since min1≤i≤n{c−i } > 0, t ∈ T, it follows from Lemma 3 that the linear system

admits an exponential dichotomy on T. Thus, by Lemma 8, we obtain that system (9) has 
an almost periodic solution xϕ = (xϕ1 , xϕ2 , . . . , xϕn), where

Define a mapping T : B∗ → B∗ by

Obviously, B∗ = {ϕ| ϕ ∈ B,A1 ≤ ϕi(t) ≤ A2, t ∈ T, i = 1, 2, . . . , n} is a closed subset 
of B. For any ϕ ∈ B∗, by use of (H2), we have

(9)

x�i (t) =− ci(t)xi(t)+
n∑

k=1,k �=i

bik(t)ϕk(t)

+
n∑

j=1

βij(t)ϕi(t − τij(t))e
−αij(t)ϕi(t−τij(t)), i = 1, 2, . . . , n.

x�i (t) = −ci(t)xi(t), i = 1, 2, . . . , n

xϕ i(t) =
� t

−∞
e−ci(t, σ(s))




n�

k=1,k �=i

bik(s)ϕk(s)

+
n�

j=1

βij(s)ϕi(s − τij(s))e
−αij(s)ϕi(s−τij(s))


�s, i = 1, 2, . . . , n.

Tϕ(t) = xϕ(t), ∀ϕ ∈ B
∗.

xϕ i(t) ≤
∫ t

−∞
e−c−i

(t, σ(s))

[ n∑

k=1,k �=i

b+ikA2 +
n∑

j=1

β+
ij

α−
ij

× 1

e

]
�s

≤
1

c−i

[ n∑

k=1,k �=i

b+ikA2 +
n∑

j=1

β+
ij

α−
ij

×
1

e

]

≤ A2, i = 1, 2, . . . , n
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and we also have

Therefore, the mapping T is a self-mapping from B∗ to B∗.
Next, we prove that the mapping T is a contraction mapping on B∗. Since 

sup
u≥1

| 1−u
eu | = 1

e2
, we find that

For any ϕ = (ϕ1,ϕ2, . . . ,ϕn)
T, ψ = (ψ1,ψ2, . . . ,ψn)

T ∈ B∗, we obtain that

It follows that

which implies that T is a contraction. By the fixed point theorem in Banach space, T has 
a unique fixed point ϕ∗ ∈ B∗ such that Tϕ∗ = ϕ∗. In view of (9), we see that ϕ∗ is a solu-
tion of (2). Therefore, (2) has a positive almost periodic solution in the region B∗. This 
completes the proof. � �

Definition 8  Let x∗(t) = (x∗1(t), x
∗
2(t), . . . , x

∗
n(t))

T be an almost periodic solu-
tion of (2) with initial value ϕ∗(s) = (ϕ∗

1 (s),ϕ
∗
2 (s), . . . ,ϕ

∗
n(s))

T ∈ C{A1,A2} . If 

xϕ i(t) ≥
∫ t

−∞
e−c+i

(t, σ(s))

[ n∑

k=1,k �=i

A1b
−
ik +

n∑

j=1

β−
ij ϕi(s − τij(s))e

−α+ij ϕi(s−τij(s))
]
�s

≥
1

c+i

[ n∑

k=1,k �=i

A1b
−
ik +

n∑

j=1

A2β
−
ij e

−α+ij A2

]

≥ A1, i = 1, 2, . . . , n.

|xe−x − ye−y| =
∣∣∣
1− (x + ξ(y− x))

ex+ξ(y−x)

∣∣∣|x − y|

≤
1

e2
|x − y|, x, y ≥ 1, 0 < ξ < 1.

|(Tϕ)i(t)− (Tψ)i(t)|

≤
∣∣∣
∫ t

−∞
e−ci(t, σ(s))

n∑

k=1,k �=i

bik(s)
(
ϕk(s)− ψk(s)

)
�s

∣∣∣

+
∣∣∣∣
∫ t

−∞
e−ci(t, σ(s))

n∑

j=1

βij(s)

(
ϕi(s − τij(s))e

−αij(s)ϕi(s−τij(s))

− ψi(s − τij(s))e
−αij(s)ψi(s−τij(s))

)
�s

∣∣∣∣

≤
1

c−i

n∑

k=1,k �=i

b+ik�ϕ − ψ�B +
∣∣∣∣
∫ t

−∞
e−ci(t, σ(s))

n∑

j=1

βij(s)

αij(s)

(
αij(s)ϕi(s − τij(s))

× e−αij(s)ϕi(s−τij(s)) − αij(s)ψi(s − τij(s))e
−αij(s)ψi(s−τij(s))

)
�s

∣∣∣∣

≤
(

1

c−i

n∑

k=1,k �=i

b+ik +
n∑

j=1

β+
ij

c−i e
2

)
�ϕ − ψ�B, i = 1, 2, . . . , n.

�Tφ − Tψ�B < max
1≤i≤n





1

c−i

n�

k=1,k �=i

b+ik +
n�

j=1

β+
ij

c−i e
2



�ϕ − ψ�B,
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there exist positive constants � with ⊖� ∈ R
+ and M > 1 such that such that 

for an arbitrary solution x(t) = (x1(t), x2(t), . . . , xn(t))
T of (2) with initial value 

ϕ(s) = (ϕ1(s),ϕ2(s), . . . ,ϕn(s))
T ∈ C{A1,A2} satisfies

where ||ϕ − ϕ∗||∞ = max
1≤i≤n

{
sup

t∈[t0−θ ,t0]
|ϕi(t)− ϕ∗

i (t)|
}

 for ϕ,ψ ∈ C{A1,A2}. Then the 

solution x∗(t) is said to be exponentially stable.

Theorem  11  Assume that (H1), (H3)–(H5) hold. Then the positive almost periodic 
solution x∗(t) in the region B∗ of (2) is unique and exponentially stable.

Proof  By Theorem  10, (2) has a positive almost periodic solution x∗i (t) in the region 
B∗. Let x(t) = (x1(t), x2(t), . . . , xn(t))

T be any arbitrary solution of (2) with initial 
value ϕ(s) = (ϕ1(s),ϕ2(s), . . . ,ϕn(s))

T ∈ C{A1,A2}. Then it follows from (2) that for 
t ≥ t0, i = 1, 2, . . . , n,

The initial condition of (10) is

For convenience, we denote ui(t) = xi(t)− x∗i (t), i = 1, 2, . . . , n. Then, by (10), we 
have

For ω ∈ R, let Ŵi(ω) be defined by

In view of (H2), we have that

||x(t)− x∗(t)|| ≤ M||ϕ − ϕ∗||∞e⊖�(t, t0), t0 ∈ [−θ ,∞)T, t ≥ t0,

(10)

(xi(t)− x∗i (t))
� = −ci(t)(xi(t)− x∗i (t))+

n∑

k=1,k �=i

bik (t)(xk (t)− x∗k (t))

+
n∑

j=1

βij(t)
[
xi(t − τij(t))e

−αij(t)xi(t−τij(t)) − x∗i (t − τij(t))e
−αij(t)x

∗
i (t−τij(t))

]
.

ψi(s) = ϕi(s)− x∗i (s), s ∈ [t0 − θ , t0]T, i = 1, 2, . . . , n.

(11)

ui(t) = ui(t0)e−ci(t, t0)+
∫ t

t0

e−ci(t, σ(s))

n∑

k=1,k �=i

bik(s)uk(s)�s

+
∫ t

t0

e−ci(t, σ(s))

n∑

j=1

βij(s)

[
xi(s − τij(s))e

−αij(s)xi(s−τij(s))

− x∗i (s − τij(s))e
−αij(s)x

∗
i (s−τij(s))

]
�s, t ≥ t0, i = 1, 2, . . . , n.

Ŵi(ω) =c−i − ω − exp{ω sup
s∈T

µ(s)}
( n∑

k=1,k �=i

b+ik +
1

e2

n∑

j=1

β+
ij exp{ωτ

+
ij }

)
, i = 1, 2, . . . , n.

Ŵi(0) = c−i −
( n∑

k=1,k �=i

b+ik +
1

e2

n∑

j=1

β+
ij

)
> 0, i = 1, 2, . . . , n.
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Since Ŵi(ω) is continuous on [0,+∞) and Ŵi(ω) → −∞ as ω → +∞, so there exists 
ωi > 0 such that Ŵi(ωi) = 0 and Ŵi(ω) > 0 for ω ∈ (0,ωi), i = 1, 2, . . . , n. By choosing a 
positive constant a = min

{
ω1,ω2, . . . ,ωn

}
, we have Ŵi(a) ≥ 0, i = 1, 2, . . . , n. Hence, 

we can choose a positive constant 0 < α < min
{
a, min

1≤i≤n
{c−i }

}
 such that

which implies that

Take

It follows from (H5) that M > 1. Besides, we can obtain that

In addition, noticing that e⊖α(t, t0) ≥ 1 for t ∈ [t0 − θ , t0]T. Hence, it is obvious that

We claim that

To prove this claim, we show that for any p > 1, the following inequality holds

which implies that, for i = 1, 2, . . . , n, we have

By way of contradiction, assume that (14) is not true. Then there exists t1 ∈ (t0,+∞)T 
and i0 ∈ {1, 2, . . . , n} such that

Therefore, there must be a constant q ≥ 1 such that

Ŵi(α) > 0, i = 1, 2, . . . , n,

exp{α sup
s∈T

µ(s)}

c−i − α




n�

k=1,k �=i

b+ik +
1

e2

n�

j=1

β+
ij exp{ατ

+
ij }


 < 1, i = 1, 2, . . . , n.

M = max
1≤i≤n

{
c−i∑n

k=1,k �=i b
+
ik +

1
e2

∑n
j=1 β

+
ij

}
.

1

M
<

exp{α sup
s∈T

µ(s)}

c−i − α

(∑n

k=1,k �=i
b+ik +

1

e2

∑n

j=1
β+
ij exp{ατ

+
ij

)
.

||u(t)|| ≤ Me⊖α(t, t0)�ψ�∞, ∀ t ∈ [t0 − θ , t0]T.

(12)||u(t)|| ≤ Me⊖α(t, t0)�ψ�∞, ∀ t ∈ (t0,+∞)T.

(13)||u(t)|| < pMe⊖α(t, t0)�ψ�∞, ∀ t ∈ (t0,+∞)T,

(14)|ui(t)| < pMe⊖α(t, t0)�ψ�∞, ∀t ∈ (t0,+∞)T.

|ui0(t1)| ≥ pMe⊖α(t1, t0)�ψ�∞, |ui0(t)| < pMe⊖α(t, t0)�ψ�∞, t ∈ (t0, t1)T,

|uk(t)| ≤ pMe⊖α(t, t0)�ψ�∞, for k �= i0, t ∈ (t0, t1]T, k = 1, 2, . . . , n.

|ui0(t1)| = qpMe⊖α(t1, t0)�ψ�∞, |ui0(t)| < qpMe⊖α(t, t0)�ψ�∞, t ∈ (t0, t1)T,

|uk(t)| < qpMe⊖α(t1, t0)�ψ�∞, for k �= i0, t ∈ (t0, t1]T, k = 1, 2, . . . , n.
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According to (11), we have

|ui0(t1)| =
∣∣∣∣ui0(t0)e−ci0

(t1, t0)+
∫ t1

t0

e−ci0
(t1, σ(s))

n∑

k=1,k �=i0

bi0k(s)uk(s)�s

+
∫ t1

t0

e−ci0
(t1, σ(s))

n∑

j=1

βi0j(s)
[
xi0(s − τi0j(s))e

−αi0 j(s)xi0 (s−τi0 j(s))

− x∗i0(s − τi0j(s))e
−αi0 j(s)x

∗
i0
(s−τi0 j(s))

]
�s

∣∣∣∣
≤e−ci0

(t1, t0)�ψ�∞ + qpMe⊖α(t1, t0)�ψ�∞

×
∫ t1

t0

e−ci0
(t1, σ(s))eα(t1, σ(s))

( n∑

k=1,k �=i0

b+i0keα(σ (s), s)

+
m∑

j=1

β+
i0j

e2
eα(σ (s), s − τi0j(s))

)
�s

≤e−ci0
(t1, t0)�ψ�∞ + qpMe⊖α(t1, t0)�ψ�∞

×
∫ t1

t0

e−ci0⊕α(t1, σ(s))

( n∑

k=1,k �=i

b+i0k exp{α sup
s∈T

µ(s)}

+
m∑

j=1

β+
i0j

e2
exp{α(τ+i0j + sup

s∈T
µ(s))}

)
�s

=e−ci0
(t1, t0)�ψ�∞ + qpMe⊖α(t1, t0)�ψ�∞ exp{α sup

s∈T
µ(s)}

( n∑

k=1,k �=i0

b+i0k

+
m∑

j=1

β+
i0j

e2
exp{ατ+i0j}

)∫ t1

t0

e−ci0⊕α(t1, σ(s))�s

=qpMe⊖α(t1, t0)�ψ�∞
{

1

qpM
e−ci0⊕α(t1, t0)+ exp{α sup

s∈T
µ(s)}

( n∑

k=1,k �=i0

b+i0k

+
m∑

j=1

β+
i0j

e2
exp{ατ+i0j}

)∫ t1

t0

e−ci0⊕α(t1, σ(s))�s

}

<qpMe⊖α(t1, t0)�ψ�∞
{

1

qpM
e−(c−i0

−α)(t1, t0)+ exp{α sup
s∈T

µ(s)}
( n∑

k=1,k �=i0

b+i0k

+
m∑

j=1

β+
i0j

e2
exp{ατ+i0j}

)
1

−(c−i0 − α)

∫ t1

t0

(
− (c−i0 − α)

)
e−(c−i0

−α)(t1, σ(s))�s

}

≤qpMe⊖α(t1, t0)�ψ�∞
{[

1

qpM
−

exp{α sup
s∈T

µ(s)}

c−i0 − α

( n∑

k=1,k �=i0

b+i0k

+
1

e2

n∑

j=1

β+
ij exp{ατ

+
i0j
}
)]

e−(c−i0
−α)(t1, t0)+

exp{α sup
s∈T

µ(s)}

c−i0 − α

( n∑

k=1,k �=i0

b+i0k

+ 1

e2

n∑

j=1

β+
i0j

exp{ατ+i0j}
)}

<qpMe⊖α(t1, t0)�ψ�∞
{[

1

M
−

exp{α sup
s∈T

µ(s)}

c−i0 − α

( n∑

k=1,k �=i0

b+i0k

+
1

e2

n∑

j=1

β+
i0j

exp{ατ+i0j}
)]

e−(c−i0
−α)(t1, t0)+

exp{α sup
s∈T

µ(s)}

c−i0 − α

( n∑

k=1,k �=i0

b+i0k

+
1

e2

n∑

j=1

β+
i0j

exp{ατ+i0j}
)}

<qpMe⊖α(t1, t0)�ψ�∞,
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According to (11), we have

|ui0(t1)| =
∣∣∣∣ui0(t0)e−ci0

(t1, t0)+
∫ t1

t0

e−ci0
(t1, σ(s))

n∑

k=1,k �=i0

bi0k(s)uk(s)�s

+
∫ t1

t0

e−ci0
(t1, σ(s))

n∑

j=1

βi0j(s)
[
xi0(s − τi0j(s))e

−αi0 j(s)xi0 (s−τi0 j(s))

− x∗i0(s − τi0j(s))e
−αi0 j(s)x

∗
i0
(s−τi0 j(s))

]
�s

∣∣∣∣
≤e−ci0

(t1, t0)�ψ�∞ + qpMe⊖α(t1, t0)�ψ�∞

×
∫ t1

t0

e−ci0
(t1, σ(s))eα(t1, σ(s))

( n∑

k=1,k �=i0

b+i0keα(σ (s), s)

+
m∑

j=1

β+
i0j

e2
eα(σ (s), s − τi0j(s))

)
�s

≤e−ci0
(t1, t0)�ψ�∞ + qpMe⊖α(t1, t0)�ψ�∞

×
∫ t1

t0

e−ci0⊕α(t1, σ(s))

( n∑

k=1,k �=i

b+i0k exp{α sup
s∈T

µ(s)}

+
m∑

j=1

β+
i0j

e2
exp{α(τ+i0j + sup

s∈T
µ(s))}

)
�s

=e−ci0
(t1, t0)�ψ�∞ + qpMe⊖α(t1, t0)�ψ�∞ exp{α sup

s∈T
µ(s)}

( n∑

k=1,k �=i0

b+i0k

+
m∑

j=1

β+
i0j

e2
exp{ατ+i0j}

)∫ t1

t0

e−ci0⊕α(t1, σ(s))�s

=qpMe⊖α(t1, t0)�ψ�∞
{

1

qpM
e−ci0⊕α(t1, t0)+ exp{α sup

s∈T
µ(s)}

( n∑

k=1,k �=i0

b+i0k

+
m∑

j=1

β+
i0j

e2
exp{ατ+i0j}

)∫ t1

t0

e−ci0⊕α(t1, σ(s))�s

}

<qpMe⊖α(t1, t0)�ψ�∞
{

1

qpM
e−(c−i0

−α)(t1, t0)+ exp{α sup
s∈T

µ(s)}
( n∑

k=1,k �=i0

b+i0k

+
m∑

j=1

β+
i0j

e2
exp{ατ+i0j}

)
1

−(c−i0 − α)

∫ t1

t0

(
− (c−i0 − α)

)
e−(c−i0

−α)(t1, σ(s))�s

}

≤qpMe⊖α(t1, t0)�ψ�∞
{[

1

qpM
−

exp{α sup
s∈T

µ(s)}

c−i0 − α

( n∑

k=1,k �=i0

b+i0k

+
1

e2

n∑

j=1

β+
ij exp{ατ

+
i0j
}
)]

e−(c−i0
−α)(t1, t0)+

exp{α sup
s∈T

µ(s)}

c−i0 − α

( n∑

k=1,k �=i0

b+i0k

+ 1

e2

n∑

j=1

β+
i0j

exp{ατ+i0j}
)}

<qpMe⊖α(t1, t0)�ψ�∞
{[

1

M
−

exp{α sup
s∈T

µ(s)}

c−i0 − α

( n∑

k=1,k �=i0

b+i0k

+
1

e2

n∑

j=1

β+
i0j

exp{ατ+i0j}
)]

e−(c−i0
−α)(t1, t0)+

exp{α sup
s∈T

µ(s)}

c−i0 − α

( n∑

k=1,k �=i0

b+i0k

+
1

e2

n∑

j=1

β+
i0j

exp{ατ+i0j}
)}

<qpMe⊖α(t1, t0)�ψ�∞,

which is a contradiction. Therefore, (14) and (13) hold. Let p → 1, then (12) holds. 
Hence, we have that

which implies that the positive almost periodic solution x∗(t) of (2) is exponentially sta-
ble. The exponential stability of x∗(t) implies that the uniqueness of the positive almost 
periodic solution. The proof is complete.� �

Remark 6  It is easy to see that under definitions of almost periodic time scales and 
almost periodic functions in Li and Wang (2011a), the conclusions of Theorems  10 
and 11 are true.

Remark 7  From Remark  5, Theorems  10 and 11, we can easily see that if 
ci(t) < 1, i = 1, 2, . . . , n, then the continuous-time Nicholson’s blowflies models and the 
discrete-time analogue have the same dynamical behaviors. This fact provides a theoret-
ical basis for the numerical simulation of continuous-time Nicholson’s blowflies models.

Remark 8  Our results and methods of this paper are different from those in Li and 
Yang (2012).

Remark 9  When T = R or T = Z, our results of this section are also new. If we take 
T = R,A1 = 1,A2 = e, then Lemma 9, Theorems 10 and 11 improve Lemma 2.4, Theo-
rems 2 and 3 in Wang et al. (2011), respectively.

An example
In this section, we present an example to illustrate the feasibility of our results obtained 
in previous sections.

||u(t)|| ≤ M�ψ�∞e⊖α(t, t0), t ∈ [t0,+∞)T,
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0 20 40 60 80 100 120 140 160 180 200
time t

1.2

1.22

1.24

1.26

1.28

1.3

1.32

x 1(t)

Fig. 1  T = R. Numerical solution x1(t) of system (7) for (ϕ1(0),ϕ2(0),ϕ3(0)) = (1.2, 1.25, 1.2)

0 10 20 30 40 50 60 70 80 90 100
time t

1.23

1.235

1.24

1.245

1.25

1.255

x 2(t)

Fig. 2  T = R. Numerical solution x2(t) of system (7) for (ϕ1(0),ϕ2(0),ϕ3(0)) = (1.2, 1.25, 1.2)
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time t
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1.21

1.22

1.23

1.24

1.25

1.26

1.27

1.28
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x 3(t)

Fig. 3  T = R. Numerical solution x3(t) of system (7) for (ϕ1(0),ϕ2(0),ϕ3(0)) = (1.2, 1.25, 1.2)
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1.2
1.26

1.22

1.24

1.35
x 3(t

)
1.25

1.26

x2(t)

1.28

1.3

x1(t)

1.3

1.24 1.25
1.23 1.2

Fig. 4  Continuous situation (T = R) : x1(t), x2(t), x3(t)
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1.35

x 1(t)

Fig. 5  T = Z. Numerical solution x1(n) of system (7) for (ϕ1(0),ϕ2(0),ϕ3(0)) = (0.9, 1.25, 0.92)
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Fig. 6  T = Z. Numerical solution x2(n) of system (7) for (ϕ1(0),ϕ2(0),ϕ3(0)) = (0.9, 1.25, 0.92)
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Example 3  In system (2), let n = 3 and take coefficients as follows:

c1(t) = 0.21+ 0.01 sin
√
3t, c2(t) = 0.24 + 0.008| sin 2t|, c3(t) = 0.41+ 0.01 cos

√
2t,

b12(t) = 0.04 − 0.001| cosπ t|, b13(t) = 0.07− 0.002| cos
√
3t|, b21(t) = 0.06− 0.002| cos

√
3t|,

b23(t) = 0.06− 0.001| sin
√
2t|, b31(t) = 0.17− 0.01| sin

√
3t|, b32(t) = 0.14 − 0.01| cos

√
2t|,

β11(t) = 0.09− 0.01| sin π t|, β12(t) = 0.16− 0.01| cos
√
3t|, β13(t) = 0.16− 0.01| sin t|,

β21(t) = 0.15− 0.001| cosπ t|, β22(t) = 0.19− 0.009| cos
√
3t|, β23(t) = 0.09+ 0.01| cos t|,

β31(t) = 0.16− 0.002| cos t|, β32(t) = 0.13− 0.001| cos
√
2t|, β33(t) = 0.11− 0.008| sin t|,

α11(t) = α12(t) = α13(t) = 0.999+ 0.001| sin
√
3t|,

α21(t) = 0.998+ 0.002 sin
√
2t, α22(t) = 0.998+ 0.002 cos

√
2t, α23(t) = 0.998+ 0.002 sin π t,

α31(t) = 0.998+ 0.002| sin t|, α32(t) = 0.998+ 0.002| sin
√
3t|, α33(t) = 0.998+ 0.002

∣∣ sin
(4
3
t
)∣∣,

τ11(t) = e
0.2| sinπ t|

, τ12(t) = e
0.4| cos(π t+ π

2
)|
, τ13(t) = e

0.5| sin π t|
,

τ21(t) = e
0.2| cos(π t+ π

2
)|
, τ22(t) = e

0.3| sin 3π t|
, τ23(t) = e

0.4| cos 2π t|
,

τ31(t) = e
0.5| sin(π t+ 3π

2
)|
, τ32(t) = e

0.3| cos(π t+ π
2
)|
, τ33(t) = e

0.5| cos 3π t|
.
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time n
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0.95
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1.25

1.3

x 3(n)

Fig. 7  T = Z. Numerical solution x3(n) of system (7) for (ϕ1(0),ϕ2(0),ϕ3(0)) = (0.9, 1.25, 0.92)

0.9
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1.3

1.2 1.1
1

1.15 0.9

Fig. 8  Discrete situation (T = R) : x1(n), x2(n), x3(n)
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By calculating, we have

Hence

We can check that for any A2 = 1.68, we have

and

For 0 ≤ µ(t) ≤ 1, we have 1− µ(t)ci(t) > 0, therefore, whether T = R or T = Z, we 
have −ci ∈ R

+ and condition (H4) is satisfied.
If −ci ∈ R

+, that is, 1− ci(t)µ(t) > 0, i = 1, 2, 3, then it is easy to ver-
ify that all conditions of Theorem  11 are satisfied. Therefore, the system in 
Example 4.1 has a unique positive almost periodic solution in the region 
B∗ = {ϕ| ϕ ∈ B, 1.004 < A1 ≤ ϕi(t) ≤ 1.68, t ∈ T, i = 1, 2, . . . , n}, which is exponen-
tially stable.

c−1 = 0.2, c+1 = 0.22, c−2 = 0.24, c+2 = 0.248, c−3 = 0.4, c+3 = 0.43,

b−12 = 0.039, b+12 = 0.04, b−13 = 0.068, b+13 = 0.07, b−21 = 0.058, b+21 = 0.06,

b−23 = 0.059, b+23 = 0.06, b−31 = 0.16, b+31 = 0.17, b−32 = 0.13, b+32 = 0.14,

β−
11 = 0.08, β+

11 = 0.09, β−
12 = 0.15, β+

12 = 0.16, β−
13 = 0.15, β+

13 = 0.16,

β−
21 = 0.149, β+

21 = 0.15, β−
22 = 0.181, β+

22 = 0.19, β−
23 = 0.09, β+

23 = 0.1,

β−
31 = 0.158, β+

31 = 0.16, β−
32 = 0.129, β+

32 = 0.13, β−
33 = 0.103, β+

33 = 0.11,

α−
11 = α−

12 = α−
13 = 0.999, α+

11 = α+
12 = α+

13 = 1, α−
21 = α−

22 = α−
23 = 0.996,

α+
21 = α+

22 = α+
23 = 1, α−

31 = α−
32 = α−

33 = 0.998, α+
31 = α+

32 = α+
33 = 1.

3∑

k=1,k �=1

b
+
1k

c
−
1

=
b
+
12

c
−
1

+
b
+
13

c
−
1

=
0.04 + 0.07

0.2
=

11

20
< 1,

3∑

k=1,k �=2

b
+
2k

c
−
2

=
b
+
21

c
−
2

+
b
+
23

c
−
2

=
0.06+ 0.06

0.24
=

1

2
< 1,

3∑

k=1,k �=3

b
+
3k

c
−
3

=
b
+
31

c
−
3

+
b
+
32

c
−
3

=
0.17+ 0.14

0.4
=

31

40
< 1,

b
+
12

+ b
+
13

+
β+
11

e2
+

β+
12

e2
+

β+
13

e2
= 0.04 + 0.07+

0.09

e2
+

0.16

e2
+

0.16

e2
≈ 0.165 < c

−
1
= 0.2,

b
+
21

+ b
+
23

+
β+
21

e2
+

β+
22

e2
+

β+
23

e2
= 0.06+ 0.06+

0.15

e2
+

0.19

e2
+

0.1

e2
≈ 0.1795 < c

−
2
= 0.24,

b
+
31

+ b
+
32

+
β+
31

e2
+

β+
32

e2
+

β+
33

e2
= 0.17+ 0.14 +

0.16

e2
+

0.13

e2
+

0.11

e2
≈ 0.364 < c

−
3
= 0.4.

A2 > max
1≤i≤3

{[
1−

3∑

k=1,k �=i

b+ik
c−i

]−1 3∑

j=1

β+
ij

c−i α
−
ij e

}
= max

1≤i≤3
{1.678, 1.354, 1.638} = 1.678.

min
1≤i≤3

{[
1−

3∑

k=1,k �=i

b−ik
c+i

]−1 3∑

j=1

A2

β−
ij

c+i
e
−α+ij A2

}

= min
1≤i≤3

{1.053, 1.025, 1.104}

= 1.025 > A1 >
1

min
1≤i,j≤3

α−
ij

= 1

0.996
≈ 1.004.
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Especially, if we take T = R or T = Z, then 1− ci(t)µ(t) > 0, i = 1, 2, 3. Hence, in this 
case, the continuous-time Nicholson’s blowflies model (2) and its discrete-time analogue 
have the same dynamical behaviors (see Figs. 1,2, 3, 4, 5, 6, 7, 8).

Remark 10  Non of the results obtained in Chérif (2015), Duan and Huang (2015), Yao 
(2015a), Wang et  al. (2011), Alzabut (2010), Chen and Liu (2011), Long (2012), Wang 
(2013), Liu and Meng (2012), Xu (2014), Ding and Alzabut (2015), Yao (2014), Alzabut 
(2013) can be used to obtain the results of Example 3.

Conclusion
In this paper, we proposed a new concept of almost periodic time scales, two new defini-
tions of almost periodic functions on time scales and investigated some basic properties 
of them, which can unify the continuous and the discrete cases effectively. As an appli-
cation, we obtain some sufficient conditions for the existence and exponential stability 
of positive almost periodic solutions for a Nicholson’s blowflies model on time scales. 
Our methods and results of this paper may be used to study almost periodicity of gen-
eral dynamic equations on time scales. Besides, based on our this new concept of almost 
periodic time scales, one can further study the problems of pseudo almost periodic 
functions, pseudo almost automorphic functions and pseudo almost periodic set-valued 
functions on times as well as the problems of pseudo almost periodic, pseudo almost 
automorphic and pseudo almost periodic set-valued dynamic systems on times and so 
on.
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