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liver fibrosis, cirrhosis, and even hepatocellular 
carcinoma.[2]

The prevalence of NAFLD is rising parallel to other 
metabolic morbidities such as obesity, insulin resistance, 
metabolic syndrome, and dyslipidemia.[3] Various risk 
factors and pathophysiologies have been suggested for 

INTRODUCTION

Nonalcoholic fatty liver disease (NAFLD) has been 
recently recognized as the most prevalent liver disease 
worldwide affecting over 25% of the population.[1] This 
disease is characterized by fat deposition in the liver cells 
and can progress to nonalcoholic steatohepatitis (NASH), 
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NAFLD, such as environmental, nutritional, genetic and 
immunological factors.[4,5]

The role of intestinal dysbiosis in NAFLD/NASH has also 
been debated by researchers.[6,7] The human intestinal 
tract houses over 1014 bacteria involved in food digestion 
and interactions with the immune system, and many 
studies have highlighted their role in the pathogenesis 
of NAFLD.[8,9] There are several mechanisms, which 
propose that microbiota dysregulation may affect NAFLD. 
Impaired intestinal permeability allows an increased flow 
of microbiota derivatives such as lipopolysaccharides (LPS) 
into the blood stream. Blood from the intestines is received 
by the liver through the portal vein, exposing it to the 
maximum concentration of these metabolites.[10] While liver 
Kupffer cells destroy most of these intruders,[11] the liver is 
still exposed to higher than normal levels of toxins, microbes 
and fatty compounds such as LPS, subsequently causing 
inflammation and damage to liver cells.[12,13]

Another mechanism by which intestinal microbiota can 
cause NAFLD is through ethanol‑producing bacteria which 
produce ethanol by fermenting ingested sugar. Ethanol 
metabolism induces fatty acid synthesis which is deposited 
in the liver causing inflammation and damage.[14]

Some studies have shown dysbiosis to cause NAFLD by 
over‑activation of de novo lipogenesis (DNL), a regular 
metabolic process in which excess carbohydrates consumed 
are converted to fatty acids and stored in adipose 
tissue as triglycerides to be used for energy production 
through beta‑oxidation when needed. Greater fatty acid 
production caused by the over‑activation of DNL leads 
to fat accumulation in the liver, causing inflammation 
through oxidative stress and ultimately the development 
of NAFLD.[15‑17]

Finding the main variations in gut microbiota of patients 
with NAFLD, NASH, and healthy people may lead to novel 
strategies in the management of the disease.[6,7] Thus, we 
aimed to compare the profile of gut microbiota in NAFLD 
and presumed NASH patients as well as healthy controls 
in this case–control study.

MATERIALS AND METHODS

Characteristics
Fifty men 18–60 years of age referring to the Tehran 
Gastroenterology and Hepatology Clinic, were enrolled in the 
study. Given that previous studies have shown sex‑related 
differences in gut microbiome, only men were included.[18] 
In this study, we had 25 NAFLD, 13 presumed NASH, and 
12 healthy participants as control. NAFLD was diagnosed by 
transient elastography (FibroScan, Echosence, France) and 

defined as having a controlled attenuation parameter (CAP) 
score above 260 dB/m.[19] Presumed NASH was defined as 
having a CAP score above 260 dB/m along with a serum 
alanine transaminase (ALT) level >45 IU/L. Men with a CAP 
score below 260 dB/m who had normal ALT levels were 
chosen as controls.[20,21]

Exclusion criteria included having any of the following 
conditions: Hepatitis, autoimmune disorders, advanced liver 
disease, cancers, irritable bowel syndrome, inflammatory 
bowel disease, chronic diarrhea, liver enzymes 10 times 
above the normal values, any gastrointestinal surgeries, 
alcohol use >40 g per week, use of corticosteroids, probiotics, 
Vitamin E and fish oil supplements within 6 months, use 
of antibiotics within 6 weeks and dieting within 1 month.

The study protocol was approved by the Tehran University 
of Medical Sciences ethical committee and written consent 
was obtained from all participants.

Data collection
An interviewer‑administered questionnaire was completed 
for each participant obtaining information on demographics, 
past medical and surgical history, medication history, 
alcohol use, and smoking. To assess dietary intake, a 
90‑item, nonquantitative food frequency questionnaire 
was completed. Physical activity was assessed using the 
7‑question, International Physical Activity Questionnaire,[22] 
through which the type, duration and difficulty level of 
different activities performed are questioned yielding a 
metabolic equivalent of task score for each individual. The 
Pittsburgh Sleep Quality Index was also measured using 
the standard validated questionnaire.[23] Height, weight 
and waist and hip circumferences were measured using 
the National Institute of Health protocols.

Sample collection
Fasting blood was collected and serum levels of blood 
sugar, aspartate and ALT, cholesterol, triglycerides, 
very low‑density lipoprotein (VLDL) were measured by 
BT 3000 Auto Analyzer. Antinuclear antibody, insulin, 
C‑reactive protein, and hemoglobin A1C were performed 
by Immunoturbidimetric.

Stool collection kits were given to all participants and 
participants were instructed to return their specimen within 
the 24 h. The stool was collected directly into a sterile 20 ml 
polypropylene fecal container with a spoon attached to the 
snap‑on lid and stored in‑80°C.

DNA was extracted from stool samples using FavorPrep 
TM Stool DNA Isolation Mini Kits (FAVORGEN, Taiwan). 
DNA concentration was evaluated by Nanodrop 
(IMPLEN, Germany). Genomic DNA was polymerase 
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chain  react ion  (PCR)  ampl i f ied  with  pr imers 
(modified from the primer set employed by the Earth 
Microbiome Project (GTGYCAGCMGCCGCGGTAA 
and GGACTACNVGGGTWTCTAAT) targeting the 
V4 regions of microbial small subunit ribosomal 
Ribonucleic acid (RNA) genes. Amplicons were generated 
using a two‑stage “targeted amplicon sequencing” 
protocol.[24] The primers contained 5’ common sequence 
tags (CS1 and CS2).[25] First and second stages PCR 
amplifications were performed using MyTaq HS 2X 
mastermix (Bioline). PCR conditions for first PCR 
amplification was 95°C for 5 min, followed by 28 cycles 
of 95°C for 30”, 55°C for 45” and 72°C for 60”.

In second PCR amplification, each well received a separate 
primer pair with a unique 10‑base barcode, obtained from 
the Access Array Barcode Library for Illumina (Fluidigm, 
South San Francisco, CA; Item# 100‑4876). These primers 
contained the CS1 and CS2 linkers at the 3’ ends. Cycling 
conditions were: 95°C for 5 min, followed by 8 cycles of 
95°C for 30”, 60°C for 30” and 72°C for 30”.

Samples were then pooled in equal volume using an 
EpMotion5075 liquid handling robot (Eppendorf, Hamburg, 
Germany). The pooled library was purified using an 
AMPure XP cleanup protocol (0.6X, vol/vol; Agencourt, 
Beckmann‑Coulter) to remove fragments smaller than 
300 bp. The pooled libraries, with a 20% phiX spike‑in, 
were loaded onto an Illumina MiniSeq mid‑output flow 
cell. Based on the distribution of reads per barcode, the 
amplicons were re‑pooled to generate a more balanced 
distribution of reads. The re‑pooled library was purified 
using AMPure XP cleanup. The re‑pooled libraries, with a 
20% phiX spike‑in, were loaded onto a Miniseq flow cell and 
sequenced. Fluidigm sequencing primers, targeting the CS1 
and CS2 linker regions, were used to initiate sequencing. 
De‑multiplexing of reads was performed on the instrument. 
Library preparation, pooling, and sequencing were 
performed at the University of Illinois at Chicago Genome 
Research Core within the Research Resources Center.

Forward and reverse reads were merged using 
PEAR.[26] Merged reads were trimmed to remove ambiguous 
nucleotides, primer sequences, and trimmed based on 
the quality threshold of P = 0.01. Reads that lacked either 
primer sequence or any sequences <225 bp were discarded. 
Chimeric sequences were identified and removed using 
the USEARCH algorithm with a comparison to Silva v132 
reference sequence database.[27,28]

The standard QIIME pipeline was modified to generate 
taxonomic summaries using sub‑OTU resolution of the 
sequence dataset.[29,30] Briefly, the resulting sequence files 
were then merged with sample information. All sequences 

were then dereplicated to produce a list of unique 
sequences. All sequences that had an abundance of at least 
10 counts were designated seed sequences. USEARCH was 
then used to find the nearest seed sequence for any non‑seed 
sequence with a minimum identity threshold of 97%. For 
any non‑seed sequence that matched a seed sequence, its 
counts were merged with the seed sequence counts.[27] For 
any non‑seed sequence that did not match a seed sequence, 
it would remain an independent sequence.

Taxonomic annotations for seed and unmatched non‑seed 
sequences were assigned using the USEARCH and Silva 
v132 reference with a minimum similarity threshold of 
90%.[27,28] In order to improve depth of annotation, the 
standard QIIME assignment algorithm was modified to only 
consider hits at each taxonomic level that had an assigned 
name. Furthermore, any hits in the reference database must 
have a minimum identity of 97% or 99% to be considered for 
genus or species level assignment, respectively. Taxonomic 
annotations and sequence abundance data were then 
merged into a single sequence table.

Statistical analysis
Analyses method for base‑line characteristics
Quantile–quantile plot was used to assess normality of 
data. Mean ± standard deviation and median (range) were 
calculated for normal and skewed variables, respectively.

One‑way analysis of variance (ANOVA) and Kruskal–Wallis 
tests were performed for normal and nonnormal variables, 
respectively. A P < 0.05 was considered to be statistically 
significant. Statistical analysis was performed using Stata 
version 12(StataCorp, Texas, USA).

Differential analysis of amplicon sequence data
Differential analyses of taxa as compared with experimental 
covariates were performed using the software package edge 
R on raw sequence counts. Prior to analysis, the data were 
filtered to remove any sequences that were annotated as 
chloroplast or mitochondria in origin as well as removing 
taxa that accounted for <0.1% of the total sequence counts. 
Data were normalized as counts per million. Normalized 
data were then fit using a negative binomial generalized 
linear model (GLM) using experimental covariates, and 
statistical tests were performed using a likelihood ratio test. 
Adjusted P values were calculated using the Benjamini–
Hochberg false discovery rate (FDR) correction. Significant 
taxa were determined based on an FDR threshold of 
5% (0.05).

Alpha and beta diversity analysis of amplicon sequence 
data
Shannon indices were calculated with default parameters 
in R using the vegan library. Prior to analysis, the data 
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were rarefied to a depth of 6500 counts per sample. The 
resulting Shannon indices were then modeled with the 
sample covariates using a GLM assuming a Gaussian 
distribution. Significance of the model ANOVA was tested 
using the F test. Post hoc, pair wise tests were performed 
using Mann–Whitney test. Plots were generated in R using 
the ggplot2 library.

Bray‑Curtis indices were calculated with default parameters 
in R using the vegan library. Prior to analysis the 
normalized data were square root transformed. The 
resulting dissimilarity indices were modeled and tested for 
significance with the sample covariates using the ADONIS 
test. Additional comparisons of the individual covariates 
were also performed using ANOSIM. Plots were generated 
in R using the ggplot2 library.

RESULTS

Clinical characteristics
Overall, 50 men (41.3 ± 8.9 years) entered this study, 12, 
25, and 13 of whom were in the control, NAFLD, and 
presumed NASH groups, respectively [Table 1]. The 
number of individuals overweight or obese (body mass 
index [BMI] >25) was significantly greater in the presumed 
NASH group compared to NAFLD and in the presumed 
NASH and NAFLD groups, compared to controls. Serum 
triglycerides, VLDL and aspartate transaminase were also 
significantly greater in the presumed NASH and NAFLD 
groups (P < 0.05).

Alpha and beta diversity
Beta diversity was not significantly different at the 
genus level using ADONIS (P = 0.466, R2 = 0.041) and 
ANOSIM (P = 0.573, R = −0.0121) methods [Figure 1]. Alpha 

diversity assessed at the genus level via the Simpson (A), 
Evenness (B) and Richness (C) methods did not yield 
significant differences either, P = 0.482, P = 0.573 and 
P = 0.464, respectively [Figure 2].

Microbiome comparison
The relative average phyla distribution of gut microbiomes 
in the NAFLD, presumed NASH, and control groups 
are reported in Figure 3. Firmicutes, Actinobacteria, 
and Bacteroidetes were dominant in all study groups; 
differences in these phyla were insignificant. At the 
phyla level, there were no significant differences. At the 
Genus level, only Veillonella were found to be significantly 
different among the study groups [Figure 4]. Veillonella 
was more abundant in the presumed NASH group 
than the NAFLD group (P = 2.76 × 10−6, q = 2.07 × 10−4, 
logFC = 5.52).

DISCUSSION

Intestinal microbial composition affects host metabolism. 
Accumulating evidence suggests a relationship between 
microbial composition and fatty liver pathogenesis.[6,7] 
In this study, we compared gut microbiota in presumed 
NASH, NAFLD and healthy individuals at phyla, class, 
order, family and genus levels, and accounted for factors 
(diet, sleep quality and physical activity) that were shown to 
be associated with microbial composition as well as NAFLD 
in the prior studies.

Overall, our results indicate no significant difference in alpha 
and beta diversity, among the study groups. Firmicutes, 
Bacteroidetes, Actinobacteria, and Proteobacteria have 
been recognized as the four dominant bacterial phyla.[31] 
Some studies have reported Firmicutes and Bacteroidetes 
to be the dominant phyla,[32‑34] while our study, found 
Firmicutes, followed by Actinobacteria and Bacteroidetes to 
be dominant. These variations can be explained by ethnicity, 
genetics, diet, and lifestyles.[35]

Recent systematic reviews in NAFLD/NASH patients 
have also shown heterogeneity in biodiversity at both 
phyla and genus levels.[6,7] While some have reported 
significant differences at the phyla level between NASH 
patients and controls,[32‑34] others observed no significant 
differences.[35,36] Among those reporting significant 
differences, the composition in the cases and controls did 
not follow a similar pattern, consistent with our findings; 
in some studies, Bacteroidetes increased in NASH patients 
and Firmicutes decreased,[32‑34] while in others it was the 
opposite.[37] In this study, while Firmicutes increased in 
presumed NASH patients compared to the NAFLD and 
controls, no significant differences were observed at the 
phyla level.

Figure 1: Nonmetric multidimensional scaling plot of Bray‑Curtis dissimilarity 
indices computed using the taxonomic summary data at the genus level. Points 
are colored based on sample group
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Table 1: Demographic and paraclinic characteristics of study participants
Variables Control (n=12) NAFLD (n=25) presumed NASH (n=13) Total (n=50) P
Age (years), mean±SD 41.8±9.7 41.8±10.0 39.8±6.1 41.3±8.9 0.8
BMI (kg/m2), mean±SD 25.0±1.9 28.9±8.0 28.7±4.6 27.9±6.4 0.098
BMI>25 (kg/m2), n (%) 7 (58.3) 15 (60.0) 11 (84.6) 33 (66.0) 0.026

Tobacco, n (%) 6 (50.0) 12 (48.0) 9 (69.2) 27 (54.0) 0.437
Quality of sleep, mean±SD 11.6±1.2 12.1±2.1 13.1±2.1 12.2±2.0 0.138
FBS (mg/dl), median 
(minimum-maximum)

92.0 (89-93.8) 92.0 (88-98) 91.0 (88-103.5) 91.5 (72.0-224.0) 0.8

Cholesterol (mg/dl), median 
(minimum-maximum)

162.5 (144.3-171.0) 168.0 (153.5-189.5) 162.0 (155.5-199) 165.0 (104.0-246.0) 0.7

TG (mg/dl), median 
(minimum-maximum)

86.5 (62.0-115.0) 115.0 (97.0-160.0) 141.0 (99.5-214.0) 114.0 (45.0-386.0) 0.03

HDL (mg/dl), median 
(minimum-maximum)

35.0 (32.3-37.8) 32.0 (30.0-38.5) 33.0 (28.5-36.5) 33.0 (24.0-59.0) 0.4

Cho/HDL (ratio), median 
(minimum-maximum)

4.7 (3.8-5.7) 5.1 (4.3-5.9) 5.4 (4.4-6.5) 5.0 (3.0-7.0) 0.4

VLDL (IU/L), median 
(minimum-maximum)

17.3 (12.4-23.0) 23.0 (19.4-32) 32.0 (19.9-47.1) 22.5 (9-244) 0.02

LDL-Cho (mg/dl), median 
(minimum-maximum)

105.5 (86.8-122.5) 99.0 (91.5-125.5) 97.0 (85.0-150.0) 100.0 (11.0-197.0) 0.9

ALT (U/L), median 
(minimum-maximum)

19.5 (10.0-44.0) 28.0 (13.0-43.0) 58.0 (46.0-132.0) 29.5 (10.0-132.0) 0.0001

AST (U/L), median 
(minimum-maximum)

20.5 (17.3-24.3) 19.0 (16.5-21.0) 30.0 (29.0-39.5) 21.0 (11-44.0) 0.0001

CRP (mg/L), median 
(minimum-maximum)

4.5 (2.5-5.8) 3.0 (1.5-6.0) 3.0 (1.0-6.0) 4.0 (1.0-25.0) 0.6

HbA1C (%), median 
(minimum-maximum)

5.2 (5.0-5.5) 5.3 (5.0-5.6) 5.6 (5.0-5.9) 5.3 (4.5-9.7) 0.5

ANA (U/ml), median 
(minimum-maximum)

2.8 (2.0-3.4) 2.3 (1.7-3.7) 2.7 (2.0-4.1) 2.0 (0.0-9.0) 0.7

MET, median (minimum-
maximum)

2086.5 (1073.3-4807.0) 1278.0 (495.0-2206.5) 1173.0 (367.5-4410.0) 1279.5 (66.0-15588.0) 0.1

Calorie intake, median 
(minimum-maximum)

1628.7 (1259.0-2369.9) 2196.6 (1955.0-3009.0) 2427.3 (1861.7-3089.1) 2186.5 (1048.7-3969.1) 0.09

Systolic blood pressure, 
median (minimum-
maximum)

110.0 (100.0-120.0) 110.0 (105.0-125.0) 120.0 (100.0-130.0) 110.0 (100.0-160.0) 0.7

Diastolic blood pressure, 
median (minimum-
maximum)

80.0 (70.0-80.0) 80.0 (70.0-80.0) 80.0 (75.0-85.0) 80.0 (50.0-110.0) 0.5

ANOVA was used for normal variables and Kruskal–Wallis was used for nonnormal variables. NAFLD=NonAlcoholic fatty liver disease; presumed; NASH=Presumed 
nonalcoholic steatohepatitis; BMI=Body mass index; FBS=Fasting blood sugar; TG=Triglycerides; HDL=High‑density lipoprotein; VLDL=Very low density lipoprotein; 
ALT=Alanine transaminase; AST=Aspartate transaminase; CRP=C‑reactive protein; HbA1c=Hemoglobin A1C; ANA=Antinuclear antibody; MET=Metabolic equivalent of task; 
ANOVA=Analysis of variance

Inconsistent results may be explained by technical heterogeneity 
such as stool sampling and storage, as well as DNA extraction 
methods. Ethnicity and genetics have also been proposed 
to influence gut microbial composition. We used 16s rRNA 
analysis as the standard method to study taxonomic and 
phylogenetic composition of microbiota.[38,39] This study is 
the first evaluation of gut microbiota in NAFLD/presumed 
NASH patients in Middle East Region; hence, different 
results compared to studies in other countries were expected. 
Interestingly, some studies have shown that even within 
a single nation with similar lifestyles and dietary habits, 
microbial composition can vary significantly.[40]

BMI >25 was found to be significantly different among 
NAFLD/presumed NASH patients and controls. Prior to 

adjusting, microbial composition varied significantly, so 
the association of BMI with NAFLD/NASH may not be 
independent from microbial composition.

Veillonella was the only genus exhibiting a significant 
difference between the NAFLD and presumed NASH 
groups, with greater abundance among those with 
presumed NASH. Given that some studies have shown 
Veillonella to be greater in cirrhotic patients,[41,42] it is 
possible that this genus increases as liver disease progresses.

Veillonella, highly recognized for its involvement in 
lactate fermentation, causing the release of acetate and 
propionate.[43] Buildup of high amounts of these compounds 
has been previously shown to trigger gluconeogenesis and 
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lipogenesis, increasing lipid storage in the liver and body 
tissues.[44] Veillonella has been shown to play a role in small 

intestinal bacterial overgrowth (SIBO),[45] which occurs more 
frequently in overweight/obese individuals.[46] In addition, 
SIBO is correlated with increased TLR4 expression and 
Interleukin 8 secretions, both of which affect inflammatory 
pathways involved in NAFLD pathogenesis.[47]

In this study, many factors, known to affect microbial 
composition in NAFLD/NASH patients were measured and 
controlled. For example, given that even small alterations in 
diet can affect the microbial composition, only individuals 

Figure 3: Relative sequence abundance of main bacterial phyla as compared 
with sample group

Figure 2: Dot and box plots of (a) Shannon, (b) Pielou’s eveness and (c) richness 
diversity indices as compared with sample group

c

b

a
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who had stable, routine diets in the month prior to study 
recruitment were eligible to enter the study and dietary 
information was obtained for all individuals to control 
for variations. As expected, individuals with NAFLD and 
NASH consumed higher overall calories as well as calories 
from fat compared to healthy controls.

CONCLUSION

The dominant phyla in this study population were different 
from those of many other populations; however, these 
results were not significantly different among the healthy 
individuals and those with fatty liver. Larger, longitudinal 
cohort studies are needed to better control for all factors 
affecting NAFLD/presumed NASH development and 
capture long‑term changes in microbial composition of this 
patient population.
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