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Vision in foveate animals is an active process that requires rapid and constant
decision-making. For example, when a new object appears in the visual field, we can
quickly decide to inspect it by directing our eyes to the object’s location. We studied
the contribution of primate area V4 to these types of rapid foveation decisions. Animals
performed a reaction time task that required them to report when any shape appeared
within a peripherally-located noisy stimulus by making a saccade to the stimulus location.
We found that about half of the randomly sampled V4 neurons not only rapidly and
precisely represented the appearance of this shape, but they were also predictive of the
animal’s saccades. A neuron’s ability to predict the animal’s saccades was not related
to the specificity with which the cell represented a single type of shape but rather to
its ability to signal whether any shape was present. This relationship between sensory
sensitivity and behavioral predictiveness was not due to global effects such as alertness,
as it was equally likely to be observed for cells with increases and decreases in firing rate.
Careful analysis of the timescales of reliability in these neurons implies that they reflect
both feedforward and feedback shape detecting processes. In approximately 7% of our
recorded sample, individual neurons were able to predict both the delay and precision of
the animal’s shape detection performance. This suggests that a subset of V4 neurons may
have been directly and causally contributing to task performance and that area V4 likely
plays a critical role in guiding rapid, form-based foveation decisions.

Keywords: reaction time, visual decision making, ventral visual stream, rapid shape detection, foveation, saccades,
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1. INTRODUCTION
Humans and other primates explore their visual world through
rapid, serial fixations lasting only several hundred milliseconds
(Einhäuser et al., 2006). In these brief fixations, extrafoveal visual
representations must be used to select the next saccadic target
location based on salience or behavioral importance. However,
the neural basis of these foveation decisions is unclear. A par-
ticular challenge is that neurons contributing to these decisions
must not only be able to signal the appearance of salient objects
or shapes within hundreds of milliseconds, but that signal must be
read-out by oculomotor neurons with similar temporal precision
in order to direct the upcoming saccade.

We hypothesized that neurons in area V4 may provide the
precise and reliable signals necessary for such foveation deci-
sions. Neurons in area V4 representing extrafoveal visual space
are known to respond to contour features and shapes defined
by cues including luminance contrast (Pasupathy and Connor,
1999), chromatic contrast (Bushnell et al., 2011), and motion
(Mysore et al., 2008; Handa et al., 2010). Additionally, recent stud-
ies of the representation of figure/ground (Poort et al., 2012),
illusory contours (Pan et al., 2012; Cox et al., 2013), and the inte-
gration of contour elements (Chen et al., 2014) suggest that area
V4 may play a vital role in object detection by using visual cues to
group elements of objects together and segment them from their
surroundings. These stimulus driven responses can be very rapid

(60–120 ms), and therefore are potentially well suited for rapid
foveation decisions.

Neurons in area V4 also project to areas involved in the gen-
eration of attentional and saccadic signals, such as prefrontal
and parietal cortex (FEF and LIP, respectively; Ungerleider et al.,
2008) and the superior colliculus (Gattass et al., 2013), suggest-
ing that object detection in area V4 could result in the direction
of attention or saccades to the object location. There is also elec-
trophysiological evidence to suggest that area V4 is an important
contributor to visually-based behavior. These neurons strongly
modulate their sensory responses according to behavioral rele-
vance (Chelazzi et al., 2001; Ogawa and Komatsu, 2006; Mirabella
et al., 2007; Ipata et al., 2012) and may contribute to visual
working memory (Liebe et al., 2012; Hayden and Gallant, 2013).
Moreover, several studies have attempted to link trial-to-trial vari-
ations in stimulus response with performance of various tasks:
feature-specific responses to color or orientation (Mirabella et al.,
2007), coarse noisy orientation discrimination (Zivari Adab and
Vogels, 2011), and disparity discrimination (Shiozaki et al., 2012).

While these studies suggest that V4 neurons may carry both
stimulus- and choice-related signals that could play a central role
in foveation decisions, they have not examined the moment-to-
moment reliability of both of these types of signals simultane-
ously in the context of a rapid decision. To address whether V4
responses reliably reflect the presence of shapes and predicted
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subsequent saccades over timescales necessitated by the frequency
of saccades in natural vision, we recorded from populations of V4
neurons while monkeys performed a rapid shape detection task
in which they were required to foveate upon a briefly presented
shape embedded in noise. We found that many V4 neurons were
able to significantly signal when a shape appeared and/or pre-
dict the animal’s behavior on a moment-by-moment basis within
the timeframe of the animals’ reaction times. The majority of
these cells were unlikely to contribute to detection decisions in a
causal, feedforward manner because activity related to the stimu-
lus and animal’s behavior either did not overlap in space and time
(Choe et al., 2014) or was not precise enough to explain behavior
(Parker and Newsome, 1998). However, the activity from a frac-
tion of neurons was consistent with both behavioral precision and
delay. These results suggest that area V4 is intimately involved in
decisions to saccade to visual stimuli, with many neurons mod-
ulated by saccadic preparation or behavioral relevance and a few
neurons potentially contributing directly to rapid shape detection
decisions.

2. MATERIALS AND METHODS
2.1. ETHICS STATEMENT AND SURGICAL PROCEDURES
All procedures involving animals conformed to guidelines estab-
lished by the National Institutes of Health and were approved
by the Institutional Animal Care and Use Committee of the
University of Minnesota. Animals were initially anesthetized
with ketamine and anesthesia was maintained with isoflurane
throughout all surgical procedures. Analgesics and antibiotics
were administered during and following all surgeries to minimize
discomfort and prevent infection. To stabilize head position dur-
ing training and recording sessions, headposts (titanium or PEEK
polymer) were chronically implanted under sterile surgical con-
ditions. Animals were fully acclimated to their primate chair and
training room before headposts were used for stabilization. Once
each animal was trained on the shape detection task, a microelec-
trode array (Blackrock Microsystems) was chronically implanted,
again under sterile conditions.

2.2. TASK
We trained two experimentally naïve male monkeys (Macaca
mulatta, ≈7 and 13 kg) in a challenging shape detection task.
While the animals were performing the task, head position
was stabilized by a chronically implanted headpost and eye
position was monitored by an infrared eye tracker (Arrington
Research). Each trial began with the appearance of a fixation dot.
After ≈500 ms of fixation, a noise stimulus appeared at a periph-
eral location. The animals were required to maintain fixation until
an enclosed shape was briefly presented in a background of noise.
Both shape identity and timing of presentation were randomly
determined for each trial. Presentation times were drawn from
an exponential distribution, with means set 500 ms for Monkey
Z and 1000 ms for Monkey J. Because false alarms were frequent,
the mean of this distribution ended up slightly shifted toward ear-
lier times (actual mean time to shape appearance was Monkey Z:
460 ms and Monkey J: 970 ms).

The distribution of shape appearance, and the fact that shapes
were only briefly presented (Monkey Z: 83 ms and Monkey J:

120 ms), encouraged the animals to maintain a high level of
vigilance throughout the trials (Ghose, 2006). Animals were
required to signal their awareness of shape appearance by mak-
ing an eye movement to the shape within a reaction time window
(150–550 ms) to receive a juice reward. If the animals failed to
make a saccade within this window, the trial ended without
reward. Trials also ended without reward if the animal broke fixa-
tion before a shape appeared. In ≈5% of trials, no shape appeared,
and the animals were rewarded for maintaing fixation through-
out the length of the trial. During initial training of the animals,
the noisy background in which the shape was embedded was at
low contrast, but as training progressed, the contrast of a sur-
rounding noise stimulus was gradually increased. At the end of
training, and during all recording sessions, elements of the noise
and shape stimuli appeared at the same contrast. This ensured
that no low-level cues were associated with shape appearance.

2.3. VISUAL STIMULATION
Visual stimuli were delivered on an LCD monitor (120 Hz). A
photodiode affixed to the screen confirmed the timing of stim-
ulus presentation. The stimulus consisted of a 7 × 7 array of
achromatic Gabors. The stimulus array was positioned to over-
lap with the receptive fields of recorded cells; it was centered at an
eccentricity of 3.75◦ (azimuth: 3.75◦, elevation: 0.2◦) for Monkey
Z and an eccentricity of 5.5◦ (azimuth: −2.5◦, elevation: -4◦) for
monkey J. In both animals, the radius of each Gabor element was
0.38◦, resulting in receptive fields containing ~16–25 elements
(Gattass et al., 1988; Motter, 2009). The spatial frequency was
2◦/cycle.

The orientation of each Gabor in the array was randomly
and independently set to one of eight different values to create
noise. To eliminate motion cues as a potential confound for con-
tour detection, the noise stimulus was constructed by interleaving
two types of these noise frames among frame updates: static and
redrawn. A single static noise frame was generated at the begin-
ning of each trial, but was not varied within a trial, such that
the pattern was consistent between successive presentations. In
contrast, a new random pattern was generated for each redrawn
noise frame, such that pattern varied between successive presen-
tations. Our framerate of 120 Hz meant that each static/redrawn
frame was present for ≈8 ms. During shape presentation, the
Gabors defining the shape replaced the corresponding Gabors
within the static noise frame, but this combined static-shape
frame continued to be interleaved with redrawn noise frames.

The shapes to be detected were defined by fixing the orienta-
tions of 16–19 adjoining Gabor patches so as to form a contiguous
contour. During recording sessions, the Gabor elements of both
shapes and noise appeared at the same contrast (45–50%). Three
different shape stimuli were used. Monkey Z was taught to report
the presence of any of these shapes at four different orientations
(for a total of 12 shape stimuli). Because he tended to work for
fewer trials, only one orientation of each shape was presented to
Monkey J.

2.4. ELECTROPHYSIOLOGY
Once the animals were trained to perform the task in the absence
of any contrast differences between shape and background noise,
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a 10 × 10 microelectrode array (1 mm length, injected with a
1 mm pneumatic inserter; Blackrock Microsystems) was chroni-
cally implanted in visual area V4 on the prelunate gyrus (Monkey
Z: left hemisphere, Monkey J: right hemisphere), slightly above
the tip of the inferior occipital sulcus. Spike times and waveforms
were recorded as the animals performed the task and then sorted
offline using the Waveclus toolbox (Quiroga et al., 2004). Data
from 9 sessions in Monkey Z and 11 in Monkey J were initially
considered. Each of these sessions had at least 375 trials in which
the monkey maintained fixation until a saccade was made to the
stimulus location or the trial ended. Over these 20 sessions, 683
single- and multi-units were identified through spike sorting and
met the minimum signal to noise ratio criterion of 2.2. No differ-
ences between single- and multi-units were ever observed, so they
are presented together in the analyses. We further required cells
to be visually responsive, with increased firing rates in response
to the appearance of the noise stimulus. Specifically, the units
were required to have a statistically (Wilcoxon signed-rank test,
p < 0.05) larger response in the first 50–250 ms following noise
stimulus onset than the preceding 200 ms. This left us with 464
units. Because the same unit often appeared to be present on a
particular electrode across multiple recording sessions, analyz-
ing all available data would have resulted in these stable cells
being over-represented in our sample. To avoid this, we chose
to use units from each electrode only once. For each electrode
with cells in multiple recording sessions, we used only the data
from the session with the greatest number of trials. The results
presented here therefore include data from 8 recording sessions
with Monkey Z and 10 sessions with Monkey J, with a total of 178
units.

2.5. AVERAGE EVENT-ALIGNED RESPONSES
To examine potential differences between trials in which a shape
appeared and was detected, vs. trials when a shape appeared and
was not detected, we analyzed firing rates of individual units
during the first 225 ms following shape appearance. Trials with
a saccade during this period of time were excluded so that all
included trials had reaction times of at least 225 ms. To examine
potential differences between trials in which the animals cor-
rectly reported the presence of a shape and those in which the
animal made a saccade when a shape had not yet appeared, we
analyzed firing rates of individual units in the last 225 ms preced-
ing the saccade, excluding trials with reaction times shorter than
225 ms. In both the post-shape and pre-saccade analyses, spikes
were counted within a 50 ms bin moving in 10 ms steps and then
averaged across trials.

2.6. MUTUAL INFORMATION CONVEYED BY SINGLE CELLS
Each trial contained three types of simultaneously observed vari-
ables: the noise/shape history (stimulus), neuronal discharge of
the multiple units sampled by the microelectrode array (neuronal
activity), and eye position (behavior). We used a mutual infor-
mation analysis to quantify the reduction in uncertainty about
one task variable given knowledge of another task variable, on
a moment-by-moment basis. This method has been described
in detail in previous publications Ghose and Harrison (2009);
Harrison et al. (2013).

Briefly, visual stimulus and behavioral response variables were
treated as binary point processes (shape/noise, saccade/fixation),
with “shape” occurring at shape onset and “saccade” at fixa-
tion window exit, respectively. The neuronal activity variable was
quantified as the number of a unit’s spikes. The uncertainty of
each of these variables is quantified by entropy H

Hx = −
∑

x

px log (px) (1)

where px is the probability of observing the the variable at value x.
The reliability of the relationship between pairs of variables

was quantified in units of bits, using the direct method of mutual
information calculation. Behavioral reliability was quantified as
the mutual information between stimulus and subsequent behav-
ior (Ibehav). Sensory reliability was quantified as the mutual infor-
mation between stimulus and subsequent spike count (Isensory),
and choice reliability was quantified as the mutual information
between spike count and subsequent behavior (Ichoice).

Ibehav = Hstim + Heye − Hstim,eye (2)

Isensory = Hstim + Hactivity − Hstim,activity (3)

Ichoice = Heye + Hactivity − Heye,activity (4)

where Hx,y is the joint entropy between the variables.
To avoid assumptions regarding timing and homogeneity of

neuronal responses, mutual information was calculated at a range
of binwidths (multiples of 25 from 25–250 ms) and delays (multi-
ples of 5 from 0–500 ms for behavioral information and 0–250 ms
for sensory and choice information). Plotting the mutual infor-
mation at each combination of delay and binwidth results in an
information surface that depicts how reliability varies as different
temporal parameters are considered. Because the average reac-
tion time of both animals was less than 250 ms and we did not
include data occurring after a saccade, larger binwidths became
very poorly sampled. For behavior we included delays up to
500 ms, so that the information “peak” could be seen to fall off
in all directions. We limited sensory and choice delays to 250 ms,
because, given the short reaction times, longer days would not
have been behaviorally relevant.

All trials in which the animals acquired fixation and the stimu-
lus appeared were included in this analysis. In the case of sensory
and choice reliability, this resulted in the same data contributing
to each surface, including neuronal responses. Differences in sen-
sory and choice reliability therefore directly reflect differences in
the strength of the relationship of these responses with either the
stimulus or animal’s behavior, respectively. Additionally, includ-
ing all available data allowed for the best estimate possible of each
cell’s response properties and therefore more accurate informa-
tion estimates. Trial events and spiking activity were included
from 60 ms after noise stimulus onset until either a saccade was
made or the trial ended. Including activity prior to this would
potentially have resulted in artificially decreasing the firing rates
observed in response to the noise condition; however, if the initial
60 ms of stimulus onset were included, the results changed very
little.
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For a given combination of delay and resolution, each trial
was divided into bins of the appropriate width, aligned to shape
onset for behavioral and sensory information, or to saccade onset
for choice information. This alignment was different than pre-
viously used in Ghose and Harrison (2009) and Harrison et al.
(2013) but ensured that a delay at a given binwidth always rep-
resented a consistent period of time relative to shape onset or
fixation offset. Results were largely unchanged if different align-
ments were used. For each type of information, a contingency
table was updated according to the states of the two variables
of interest. Once all trials had been parceled in this manner, the
contingency table represented the relationship between the two
variables at the given binwidth and separation and was used to
calculate the entropies required by Equations 2–4. Dividing the
mutual information (bits) by the binwidth converted this value
into mutual information rate (bits/s).

Because mutual information has an inherent positive bias
(Treves and Panzeri, 1995), we corrected for the information rate
that would be expected by chance if there was no relationship
between the variables. To calculate expected chance information
rates, the contingency tables used to calculate mutual informa-
tion at each delay and binwidth were all resampled 100 times.
Preliminary analyses showed that bias estimates were extremely
similar if tables were resampled 1000 times. For sensory and
choice tables, the number of observations for each stimulus or
behavioral condition was held constant, and spike counts were
sampled based on the probability of occurrence across condi-
tions of the variable. This tends to maintain the probability of
observations in any one variable, but destroys the relationship
between variables. Values that were not deemed to be “signifi-
cant” (above the 95th-highest bootstrap value) were set to zero.
The average bootstrap value was subtracted from significant
values.

The contingency tables can also be used to address covariances
among the three variables (Ghose and Harrison, 2009; Harrison
et al., 2013). Correcting for these covariances ensures that our
sensory information computations were not simply the result of
covariance between choice-related neuronal activity and an ani-
mal’s behavior, or conversely, that choice information was not the
result of covariance between stimulus-related activity and behav-
ior. The covariance correction consists of using the probabilities
described in two contingency tables (for example, sensory and
behavior), to generate a third chance contingency table (in this
case, choice).

If pshape(n) = p[activity = n|stim = shape](d1) describes the
probability of observing n spikes at a delay d1 after the appear-
ance of a shape, and pshape(saccade) = p[eye = saccade|stim =
shape](d2) is the probability of observing a saccade at a delay d2

after the appearance of shape, then the probability of observing
n spikes at delay d = d2 − d1 prior to the saccade, solely due to
these relationships with the shape, is the product of pshape(n) and
pshape(saccade). The total probability of observing n spikes at delay
d prior to the saccade is found by summing the probability given a
shape (as described) with the probability given the noise stimulus.
This total probability can then be used to update the appropriate
location (corresponding to saccade, n) in the chance contingency
table.

At a given binwidth, a chance choice delay (80 ms for example)
could result from many different combinations of sensory and
behavior delays at that binwidth (sensory delay: 120 ms, behavior
delay: 200 ms; sensory 125 ms, behavior 205 ms; sensory 130 ms,
behavior 210 ms; etc.). A predicted choice contingency table is
therefore created for each of these possible combinations and
used to compute mutual information. The maximum predicted
mutual information is then subtracted from the observed choice
information at that delay and binwidth to correct for covariance.

Because the mutual information is computed over a range
of binwidths and delays, a single surface has a large number
of points. For example, with 500 points on a surface (10 bin-
widths × 50 delays), we would expect approximately 25 points
on this surface to fall above the 95th percentile of the resam-
pled values by chance. When representing the reliability of a unit
by the peak, or maximum, value on its information surface, we
therefore imposed a false alarm criterion to correct for multiple
comparisons. If the number of observed significant points did
not exceed the number of significant points expected by chance,
a unit’s surface was considered to be flat with a non-significant
peak. This likely resulted in an underestimation of the number
of units that were informative about either the sensory stimulus
or the animal’s choice; however, because the same criteria were
applied to both types of information in all cells, we could make
relative comparisons. By examining peak magnitudes resulting
from different sized subsets of data, we determined that record-
ing sessions needed to include at least 375 usable trials (where
the animal maintained fixation until either the trial ended or he
saccaded to the stimulus patch) to obtain consistent estimates.

2.7. SPECIFICITY OF SHAPE RESPONSES
Using a two-way analysis of variance, we determined the extent
to which a unit’s response to shape appearance was influenced
by the identity of the shape. Shape responses in the 75–200 ms
following shape appearance and noise responses in the 125 ms
preceding that period were analyzed. All trials in which a shape
appeared and a saccade did not occur within the analysis window
were included. Results were indistinguishable if only correct tri-
als were analyzed. The factors considered in the two-way analysis
of variance were stimulus and shape identity. The stimulus fac-
tor had levels of noise and shape. The shape identity factor had
three levels for Monkey J and 12 levels for Monkey Z (3 shapes
at 4 orientations each). The interaction term thus tests whether
stimulus responses are the same across the different shape iden-
tities. The percent of explainable variance due to this interaction
was determined for each unit by dividing the Mean Squares of the
interaction by the sum of the Mean Squares from the interaction,
the shape/noise factor, and the shape IDs. Partial correlations
among this measure of shape specificity, sensory information, and
choice information, were computed across units with non-zero
sensory and choice information (94 out of 171 units).

2.8. PREDICTIONS OF BEHAVIOR
We used each unit’s sensory and choice surfaces to generate
surface-based predicted behavior. This is the behavior that would
arise, given the statistical relationship of a neuron to stimulus
and behavior, if behavior was completely derived from that a
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neuron. This is a simple feedforward model in which a stimu-
lus evoked response drives behavior. In such a model, there are
many sensory and choice delays, at a given binwidth, that can
sum to result in the same behavior delay. Thus, for each behavior
delay, we computed the product of sensory and choice informa-
tion (in bits) for every possible delay combination. The maximum
product was taken as the behavior prediction for the delay and
binwidth of interest and converted to information rate (in bits/s).
This process is similar, but somewhat simpler than, the contin-
gency table-based behavior predictions previously produced by
Ghose and Harrison (2009) and Harrison et al. (2013). The con-
tingency table-based method locks the response categories such
that a sensory response of 5 spikes can only be combined with a
choice response of 5 spikes. With the current data set, the con-
tingency table-based method gave very similar results to those
of the surface-based predictions presented here, but the table-
based method requires more data to generate a smoothly shaped
surface.

Overlap between predicted and observed behavior surfaces
was calculated in the binwidth (125 ms) associated with the peak
information rate in the observed average behavior surface. The
average behavior surface was used as a reference because there was
very little variation in this surface between animals or across days.
To calculate overlap between a predicted surface and observed
surface, information at all delays for a binwidth of 125 ms was
normalized to the peak information rate of that binwidth. The
crossproduct of these two normalized delay plots was considered
to be the overlap.

2.9. HARDWARE AND SOFTWARE
Behavioral control and visual stimulation were computer con-
trolled using customized software (http://www.ghoselab.cmrr.
umn.edu/software.html). Electrophysiological data were acquired
via a Blackrock Microsystems Neural Signal Processor, using a
combination of their Central software and customized software.
All data were converted to MATLAB format using the Neural
Processing MATLAB Kit (NPMK, Blackrock Microsystems).
Analysis was mainly performed with custom MATLAB software.
Hartigan’s dip test was performed with HartigansDipSignifTest.m
by F. Melcher.

3. RESULTS
To study the potential contribution of area V4 to rapid shape
detection, we first trained two monkeys to detect a shape which
was briefly presented (Monkey Z: 83 ms, Monkey J: 125 ms) at a
random time within a background of dynamic noise (Figure 1).
At each moment in the trial, the monkeys had to decide whether a
shape was present. This task design, as well as the brevity of shape
presentation, encouraged consistent vigilance from the animals.

When consistently working, the monkeys correctly reported
the presence of a shape in ~40% of the trials, with average reac-
tion times of 248 ms for Monkey Z and 237 ms for Monkey J
(Figure 2). For each animal we used the total length of trials, the
size of the reaction time window (400 ms), and the number of
total number of shape appearances to calculate the percent of
correct detections that would result from blind guessing (total
time in which responses would be considered correct/total time

FIGURE 1 | Rapid shape detection task. Each monkey was trained to
detect the appearance of any of three shapes (A). For Monkey Z, each
of the three shapes could appear at any one of four orientations, for a
total of 12 potential shape frames. In (A), shapes are shown at a higher
contrast than background for the purpose of illustration; noise and shape
elements were at equal contrasts during recording. The task was to
remain fixated on a centrally located point (B1) during noise stimulus
presentation (B2). When a shape briefly appeared, embedded in the
noise stimulus (B3, same shape as A middle), the animals were required
to make a saccade to the location of the stimulus within 150–550 ms
(B4) to receive a juice reward. Our analyses rely on three simultaneously
recorded variables: the presented stimulus, neuronal activity, and eye
position (C). To prevent the animals from using motion cues for shape
detection, static noise frames (light blue, C, Stimulus), in which the
random noise pattern did not vary on successive presentations, were
interleaved with redrawn noise frames (gray, C, Stimulus). When a shape
appeared (dark blue, C, Stimulus), it was embedded in the static noise
frames. Green vertical lines indicate spikes recorded during the trial from
an example unit. The eye position in light pink prior to fixation, pink
during fixation, and dark pink subsequent to the saccade.

a stimulus was present). In Monkey Z this chance level was
32% and in Monkey J it was 16% correct. The chance level is
lower in Monkey J because the length of his trials were inten-
tionally longer; however, both monkeys perform above chance.
Additionally, if the monkeys were blindly guessing, as opposed
to actually detecting the appearance of the shape, we would
expect the reaction times to be evenly distributed, and this is
obviously not the case (Figure 2B). When the animals made
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FIGURE 2 | Trial outcomes across days and reaction times for each

animal. Both animals correctly detected the presence of a shape ~40–50%
of the time (A, solid blue lines). Dashed blue lines represent the percent
correct that could be achieved by random guessing. False alarm trials, in
which the animal incorrectly reported the presence of a shape before one
appeared, were equally prevalent (red lines). The animals failed to respond
to the presence of a shape ~10–20% of the time (black lines), and in ~5%
of the trials, the animals remained fixated throughout the duration of a
catch trial, when no shape appeared. The reaction time distributions were
similar for both animals (B) and across shapes (represented by circle color).
If the animals were randomly guessing, these distributions would be flat.

correct decisions, they did so with temporal precision: most reac-
tion times occurred within a 100 ms window centered around the
mean. Most incorrect trials resulted from an early response (i.e.,
a false alarm), while the animals failed to detect the appearance of
a shape ~10% of the time.

While the animals performed the task, we recorded neuronal
activity with a microelectrode array chronically implanted in area
V4. The stimulus was positioned to achieve maximal response
from neurons whose activity was recorded by the array, and the
size of the stimulus was chosen so that each neuron’s receptive
field would contain 15–25 elements of the stimulus array (Gattass
et al., 1988; Motter, 2009). The data presented here comes from
8 recording sessions in Monkey Z and 10 sessions in Monkey J
and includes 178 units (see Materials and Methods for inclusion
criteria).

3.1. AVERAGE EVENT-ALIGNED RESPONSES
Neurons playing a pivotal role in shape detections should both
signal the appearance of a shape and predict the animal’s choices.
As a first step to determine whether individual V4 neurons
carry such signals, we plotted average event-aligned responses

FIGURE 3 | Event-aligned firing rates of some units suggest task

relevance. Example units from Monkey Z (A) and Monkey J (B,C) are
shown. The left plots depict the average saccade-aligned firing rates for
correct (shape + saccade; blue) and false alarm (no shape + saccade trials;
red) trials, demonstrating changes in firing rate due to the stimulus, when
behavior is constant. The right plots depict shape-aligned firing rates for
correct (shape + saccade; blue) and failure (shape + no saccade; black)
trials, demonstrating changes in firing rate reflective of subsequent
behavior when the stimulus is constant. The units in (A,B) appeared to
reflect both the presence of a shape and the animal’s detection of shapes,
although firing rates were modulated in opposite directions and the effect
in (B) between correct and failed trials was less clear. The neuron
represented in (C) showed no clear task-relevant modulations. Firing rates
were calculated in 50 ms bins, with the x-axis representing the bin edge
closest to the relevant event (shape or saccade). Arrows on the y-axis
indicate average baseline firing rate, from 150 ms before noise stimulus
onset until 50 ms after. Shaded regions represent SEM, and asterisks
indicate bins in which the firing rates of the two types of trials were
significantly different (p < 0.05).

for individual units, separated by trial outcome. In both correct
(shape + saccade; blue) and false alarm (no shape + saccade; red)
trials, the animal reported the appearance of a shape (Figure 3,
left column). Because the behavioral outcome was consistent
between these trials, changes in saccade-aligned average firing rate
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could be at least partially attributed to differential responses to the
sensory stimulus. Conversely, to examine the average change in
firing rate attributable to the animal’s behavior, we compared tri-
als in which the stimulus was consistent (Figure 3, right column;
correct: shape + saccade; blue, fail: shape + no saccade; black)
and aligned these trials to shape onset.

In accordance with a role in shape detection, we did find
neurons whose stimulus-aligned discharge was modulated by
detection and whose saccade-aligned discharge was modulated by
the stimulus. Interestingly, both types of modulation could occur
in either the positive or negative direction (Figures 3A,B). We also
found neurons with very little average modulation (Figure 3C).
Although these results are suggestive that sub-populations of
V4 neurons might participate in rapid shape detections, these
analyses describe changes in the average firing rate of neurons
over multiple trials within a recording session. By contrast, the
animals’ behavior during task performance must be based on
changes in firing rate occurring on a moment-by-moment basis
within a single trial. Additionally, much of our data were recorded
in the presence of the noise stimulus, when the animals were
fixating and thus indicating that they had not detected the pres-
ence of a shape. Traditional average firing rate analyses like those
in Figure 3 ignore this period of decision-making (correct rejec-
tions), and our ability to discriminate choice modulations (for
example in Figure 3B, between correct and failed trials) using
only shape presentations is limited by the small number of failed
trials. Finally, while the average firing rates suggested at least some
of our neurons were modulated by stimulus and/or behavioral
parameters, it is difficult to quantify and compare the strength
of the relationship between the neuron’s firing rates and these
variables.

3.2. TASK-RELEVANT RELIABILITY OF V4 NEURONS
To overcome many of the limitations of an average event-aligned
analysis, we employed a mutual information analysis based on
parceled trial data (Figure 4). This analysis enables us to quan-
tify the reliability and temporal precision of the relationship
between neuronal activity and task-relevant events on a moment-
by-moment basis. Because the animals had to decide throughout
the course of the trial whether or not a shape was present, and
whether or not they should make a saccade, we wished to ask the
same thing of our neurons. Essentially, how well would observ-
ing the activity of a neuron, at any point in the trial, improve
one’s chance of determining whether a stimulus had previously
appeared, or if the animal was about to make a saccade? Our
analysis therefore includes all data recorded in the presence of
the noise or shape stimulus. Finally, because MI quantifies only
the strength of the relationship between two variables, consistent
increases or decreases in firing rate are quantified in the same
manner, and the reliability of their relationship with task events
can be directly compared.

Mutual information (MI) measures the reduction in uncer-
tainty about one variable, given knowledge of another variable.
The MI between a neuron’s firing rate and the sensory stimulus
quantifies how reliably a neuron’s firing rate indicates whether
or not a shape was present. Likewise, to quantify how reliably
each neuron predicted the decision to either maintain fixation or

saccade, we calculated the MI between the animal’s behavior (sac-
cade/no saccade) and each neuron’s firing rate. We also quantify
behavior reliability as the MI between the sensory stimulus and
the animal’s choice.

To avoid making assumptions or generalizations about the
time periods over which task-related relationships are most reli-
able, we computed MI using different delays (multiples of 5 from
0 to 250 for sensory/choice and 0 to 500 ms for behavior) and
binwidths (multiples of 25 from 25 to 250 ms) to define an MI
surface (Figure 5). All trials in which the animal acquired fixa-
tion and a noise stimulus appeared were analyzed, regardless of
whether he made a saccade or not or whether a shape appeared
or not. On the average surfaces, as well as many surfaces of
individual neurons, there existed a single “peak,” or a combina-
tion of delay and binwidth over which information transmission
was maximized. To ease comparisons of reliability between cells
with MI peaks at different binwidths, all MI values (bits) were
converted to Mutual Information Rate (bits/s, MIR). For behav-
ior surfaces, the delay of the peak indicates the time at which
there is the strongest relationship between the stimulus and the
animal’s response (similar to reaction time). The width of the
bin containing the peak indicates the precision of his behav-
ior (analogous to the width of the reaction time distribution).
Similarly, for sensory surfaces, the delay of the peak indicates the
time at which there is the strongest relationship between neu-
ronal discharge and the preceding stimulus. On choice surfaces,
the delay of the peak indicates the time at which there is the
strongest relationship between neuronal discharge and the ani-
mal’s subsequent response. For both sensory and choice surfaces,
the bin width represents the neuron’s precision: the length of
time over which the neuron’s firing rates must be considered to
maximize MIR.

Correct performance of the animals’ task required covari-
ances between the animals’ behavior and the stimulus. If they
were behaving perfectly, they would always remain fixated during
the noise stimulus and would only make saccades when a shape
appeared. Such covariance can limit the ability to distinguish sen-
sory and choice reliability. For example, if a neuron’s firing rate
always increased 150 ms before a saccade, and the animal’s sac-
cades precisely followed the appearance of shapes by 400 ms, there
would be an increase in sensory information 250 ms following the
appearance of a shape, even in a neuron whose firing rate was only
modulated by the animal’s behavior. Because of the relatively high
false alarm rate, such covariances were not strong but nevertheless
required consideration.

We accounted for the covariances by predicting the sensory
surface based on the neuron’s choice dependencies and the ani-
mal’s behavior and by predicting the choice surface based on
combining a neuron’s sensory dependencies with the animal’s
behavior (Figure 5C, see Materials and Methods for detailed
explanation). These covariance-predicted surfaces were then sub-
tracted from the actual surfaces. Finally, because MI has an
inherent positive bias (Treves and Panzeri, 1995), we corrected for
that expected by chance, if there was no relationship between the
variables (Figure 5D). Figure 5E shows the sensory and choice
surfaces that result from this process, averaged across all recorded
neurons.
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FIGURE 4 | Creation of contingency tables for behavior, sensory, and

choice MI at a single delay (shown: 150 ms) and resolution (shown:

100 ms). For each type of MI, the same two example trials (Trial 1: correct,
Trial 833: false alarm) are parsed differently, according to the two appropriate
variables of interest (the third irrelevant variable has been dimmed in each
subfigure). For behavior MI (A), the two variables of interest are the stimulus
(noise, light blue; shape, dark blue) and eye position (fixate, light pink;
saccade, dark pink). Gray bins indicate how the eye position has been
parceled according to the delay from the stimulus and the binwidth. The
darkness of the bin (light or dark gray) indicates whether the stimulus at this
delay was a shape or noise and therefore indicates which row of the
contingency table (right) should be updated. Whether the animal was fixating
or made a saccade within each bin determines which column is updated. The

same conventions are used to show the parcellation for sensory MI (B), in
which the updated row is determined by the sensory stimulus at the given
delay (indicated by darkness of gray bins) and the updated column is
determined by the spike count (number of vertical green lines). For choice MI
(C), the contingency table is updated according to eye position and spike
count. Bin edges were first aligned to either shape onset (A,B) or saccade
onset (C) and then the appropriate delay was established. If the relevant
alignment event did not occur, bins were aligned to fixation onset. Thicker bin
edges indicate this point of alignment. When the contingency tables for each
pair of variables are summed across all trials, they described the
independent, conditional, and joint probabilities for each pair of variables.
These probabilities were used to calculate MI and correct for covariance
between the three variables.

As with the event-aligned average firing rates, information
surfaces varied across individual neurons. Figure 6 shows the
information surfaces corresponding to the example histograms
in Figure 3. These surfaces indicated how the reliability (quanti-
fied as MIR) of each unit’s relationship with the sensory stimulus

and behavioral choice varied with the temporal parameters of the
analysis window.

The cell in Figure 6A showed information peaks of similar
magnitude on both the sensory and choice surfaces, while the cell
in Figure 6B reflected the stimulus more strongly than the choice.
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FIGURE 5 | Generation of sensory and choice surfaces. For each
combination of delay and binwidth, the relationship between the two
variables of interest was tabulated across all trials (as in Figure 4). Each of
these contingency tables was used to calculate the MIR, and a single
corresponding point on the surface was colored accordingly (A,B). The
sensory information surface predicted solely by the covariance of choice
information with the animal’s behavior, and the choice surface predicted
based solely by the covariance of sensory information with the animal’s
behavior were computed so that covariance could be accounted for (C).
Because each point on the surface was potentially based on a different
number of observations, an estimate of bias was also obtained for each
delay and binwidth through a bootstrapping procedure (D). Due to the
limited length of stimulus presentation and short reaction times, sampling
decreased as binwidth and delay increased; this decrease in sampling
increased the bias. The final surfaces (E) represent the information
remaining after the covariance and bias for each point had been subtracted.
All surfaces shown here represent the average across all 178 units.

However, for both of these neurons, moment-to-moment varia-
tions in firing rate over fine time scales (binwidths of 50–125 ms)
significantly reflected the appearance of a shape and predicted
the behavioral choice to either maintain fixation or make a

FIGURE 6 | Covariance- and bias-corrected sensory (left columns) and

choice (right columns) surfaces corresponding to the example cells in

Figure 3. Color represents the magnitude of corrected MIR. The cells in
(A,B) were some of the more reliable units about both the stimulus and the
animal’s behavior when specific bin separations and widths were used. The
cell in (C) is representative of neurons lacking a well-defined peak on either
surface. The diagonal appearance of the peak was to be expected if the
neuronal response occurs with a consistent delay. As binwidth increased in
steps of 25 ms, the neuronal response was considered 25 ms further into
the trial.

saccade. Thus, at any point during the trial, observing the fir-
ing rate of one of these units over an ≈100 ms period would
significantly improve one’s chances at correctly determining if a
shape had appeared ≈100 ms earlier (as reflected by the post-
stimulus delay). Similarly, observing the firing rate of one of
these units over an ≈100 ms period would improve one’s chances,
although to a slightly lesser extent, at correctly determining
whether the animal would make a saccade in the next ≈125
or ≈50 ms (Figure 6A), as reflected by the pre-behavior delay.
There were also units whose peak information rates were low
and less well-defined (Figure 6C), indicating a lack of variations
in firing rate that could be used to infer the stimulus or predict
behavior on a moment-by-moment basis.

To summarize the reliability of all our sampled units, we relied
on the peak, or maximum MIR, of the units’ surfaces (Figure 7).
We will refer to the maximum MIR of sensory and choice surfaces
as a unit’s sensory information and choice information, respec-
tively. As evidenced by our example neurons, both positive and
negative responses can reliably represent the stimulus state and
be used to predict choices. While the quantity of MI can math-
ematically only be positive, at times it was helpful to compare
the reliability of neurons with different directions of modulation.
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FIGURE 7 | Sensory and choice information for individual units. Plots
depict signed sensory information (A,B), peak delay and resolutions (C,D),
and the relationship between reliability and shape specificity (E,F). Points
are colored by animal (Z: purple, J: orange), and filled circles indicate two of
the example cells from Figures 3, 6. The third example cell lies at the origin
in (A) and is absent from (B–F) because the number of significant points
did not exceed the false alarm criteria on either surface. Many neurons in
area V4 reflected both which stimulus was present, as well as the animal’s
subsequent behavior. Cells in quadrant 1 of (A) had significant sensory and
choice modulation resulting from increased activity, while cells in quadrant
3 of (A) had significant sensory and choice information resulting from
decreases in activity. The thin dotted line in (A) represents unity. In (B–F),
only units with significant sensory and choice information are shown (N =
99). Distributions from (A) were plotted cumulatively in (B, sensory: solid
line, choice: dotted line). In (C,D), circle size represents the quartile
containing the unit’s information, with the largest circles being the most
informative units.

In these cases we plotted “signed information,” with the sign
indicating whether the peak of a neuron’s information surface was
due to an increase or decrease in activity (Figure 7A). For exam-
ple, negative-signed sensory information indicates that a cell’s
firing rate reliably decreased in the presence of the shape. To avoid
issues of multiple comparisons within units, when representing
an entire surface as a single point, we required that the num-
ber of significant points exceeded the false discovery rate based
on the number of points considered. We also required the peak
to be located between delays of 0–250 ms because larger delays

would be non-causal to the animals’ rapid detections. If these
criteria were not met (as with the third example cell), the peak
was considered to be zero.

Despite the fact that our stimulus was noisy and not opti-
mized for the recorded units (other than receptive field location),
a high percentage (133 out of 178, 75%) had significant sensory
information with latencies shorter than the average reaction time.
Thus, they would be potentially useful to the animal determin-
ing whether a shape was present. Of these, 74% (99 out of 133)
also had significant choice information. The magnitudes of sen-
sory and choice information are also comparable. If area V4 was
reflecting only the stimulus, and was not related to the decision,
the points in Figure 7A would all lie along the origin of the choice
information axis; however, many points lie near the unity line.
This suggests that in the context of the current task, area V4 may
not only be representing the sensory stimulus, but its activity may
directly influence decisions based on this representation.

Choice information could reflect a direct contribution of these
units to the animal’s behavior, or in a detection task such as ours,
the choice information may reflect fluctuations in global factors
(Nienborg et al., 2012). For example, if the animal is likely to
detect the presence of a shape when he is closely attending the
stimulus location, and this attention to this location causes an
increase in firing rate of all units with receptive fields at that loca-
tion, choice information may be more reflective of attentional
locus than a contribution of individual neurons to the decision
process.

The distribution of “signed” information can be used to put
an upper bound on the contribution of global factors that modu-
late all units in the same way. In our data, if a given factor caused
an increase in firing rate across a population, it would presumably
increase the choice information of positively-modulated units but
would decrease the information of negatively-modulated units.
Differences in the predictive ability of units with negative choice
modulations vs. positive choice modulations can thus be used
to place an upper bound on the contribution of some global
factors to choice information. For example, a previous study
of motion detection and MT neurons found a subtle differ-
ence in choice propabilities between neurons that increased firing
with the stimulus and neurons that decreased firing (Bosking
and Maunsell, 2011). By contrast, using the choice informa-
tion metric in our sample, the median choice reliability between
positively and negatively modulated units is not statistically dif-
ferent (Mann–Whitney U-test, p = 0.83). Moreover, truly global
modulations would create choice effects even in neurons with
no sensory information, which, on average, we did not observe.
Thus, the reliable relationships between the recorded activity and
shape detection cannot be explained by global factors (but see
Discussion regarding the potential of more selective effects).

The tendency of units with high sensory information to also
have high choice information suggests that behavior might have
been based on a selective weighting of more reliable V4 neurons. If
these sensory responses were actually being used to guide behav-
ior in a excitatory feedforward manner, we would expect choice
modulation to occur in the same direction as sensory modulation.
For example, if a cell is contributing to the animal’s behavior and
its activity decreases in the presence of a shape, the animal should
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also be more likely to report detection of a shape, regardless of the
actual stimulus state, when this neuron is firing less. The majority
of our observations are consistent with this relationship; in units
with both significant sensory and choice information, 70% (69
out of 99) exhibit the same sign (quadrants 1 and 3, Figure 7A).

An important aspect of our task is that the fast and precise
reaction times place temporal constraints on neuronal process-
ing potentially underlying shape detection. If V4 units contribute
in a causal feedforward manner to shape detection, the pre-
cision of the neuronal responses should be similar to that of
behavior. Additionally, if stimulus evoked modulations caused
behavior, the sum of sensory and choice peak delays should
approximately sum to the peak behavior delay. Behavior was
most reliable in binwidths of 100–150 ms with a delay of 200–
275 ms (Figure 5B). Similarly, we found that individual units
tended to be most reliable about the stimulus when binwidths
of 50–150 ms were considered. The delay of these sensory peaks
most often corresponded with bins whose front edge was sep-
arated from the stimulus by a delay of 75–150 ms with a bin-
width of 50–125 ms (Figure 7C). The location of choice peaks
was more diffuse (Figure 7D). Units with precision similar to
that of behavior (peaks in smaller binwidths) tended to have
peaks in bins whose latest edge was separate from the saccade
by 0–100 ms. Choice peaks resulting from less precise responses
were more likely to occur well before the behavior they were
predicting.

3.3. SHAPE SPECIFICITY AND WAVEFORM DURATION
Our findings indicate that a relatively small proportion of neurons
in V4 (Figure 7B) were highly informative about the appear-
ance of shape and predictive of the animals’ saccades. Given the
known selectivity to contours in area V4, we wondered if these
were particularly informative by virtue of their shape specificity.
For example, a neuron with high sensory information might
have either very strong responses to the appearance of a sin-
gle type of shape or consistent responses across several or all
shapes. Likewise, a neuron with high choice information might
reflect shape-specific top-down influences, such as feature atten-
tion, which create a covariance between responses and behavior.
If both sensory and choice reliability were strongly dependent on
shape selectivity, the tendency for these two measures to be cor-
related might simply reflect differences in shape selectivity within
our sample.

We used a two-factor analysis of variance to determine how
strongly a cell’s response to the appearance of a shape (Factor A)
depended on the identity of that shape (Factor B). Shape speci-
ficity was quantified as the percent of explainable variance due
to this interaction and was examined with respect to sensory and
choice information (Figures 7E,F). We also calculated Spearman’s
partial correlation between shape specificity, sensory informa-
tion, and choice information to quantify the strength of the
pairwise relationships between these variables when accounting
for correlation with the third variable. Neither the partial correla-
tion between sensory information and shape specificity (r = 0.02,
p = 0.82) nor between choice information and shape specificity
(r = −0.12, p = 0.22) was significant. Thus, selectivity does not
seem to be a determinant in either the magnitude of sensory or

choice information seen in individual units. However, the partial
correlation between sensory information and choice information
was significant and clearly dominant (r = 0.76, p < 0.001), indi-
cating that the units that most reliably signaled the presence of
the shape were also those with the strongest relationship to the
animal’s behavior, regardless of their shape specificity.

A previous study by Mitchell et al. (2007) used the duration
of spike waveforms to separate V4 neurons into putative local
interneuron and pyramidal classes and found that the effects of
attention in V4 were greater in putative interneurons. Because
relationships between neuronal responses and behavioral choice
can reflect top-down effects (Nienborg and Cumming, 2009),
we investigated whether putative interneurons in our sample
displayed the highest choice information. We examined only sin-
gle units (55 out of 178) and used the methods described in
Mitchell et al. (2007). While our distribution appeared bimodal,
it was not significantly so (Hartigan’s dip test, p = 0.5), pos-
sibly because of the low number of single units. However, we
found that 29% of our single units had spike durations less than
200 ms, extremely similar to the proportions found previously by
Mitchell et al. (2007) (they found 43 out of 152 putative interneu-
rons with durations less than 200 µs). We also applied a multi-
dimensional waveform discrimination algorithm (Quiroga et al.,
2004) to classify our cells into two classes, which produced simi-
lar numbers of putative interneurons. Neither of these methods
suggested any significant relationship between putative neuron
class and choice information. Similarly, there was no obvious
relationship between putative neuron class and sensory informa-
tion, the direction of sensory and choice modulation, or shape
specificity.

3.4. SINGLE UNIT PREDICTIONS OF BEHAVIORAL DYNAMICS
Because individual same-signed units carry both sensory and
choice information over narrow epochs of time within the reac-
tion time window, it is possible that the same brief changes in
activity actually contributed to behavior. Sensory and choice sur-
faces essentially describe the probability relationships between
neuronal discharge, sensory events, and choice events, respec-
tively. This allows them to be combined multiplicatively to pro-
vide an estimate of the behavioral performance that could result
solely from the unit under consideration. To predict behavior
based on sensory and choice surfaces, we considered all possi-
ble sensory and choice delays that would sum to each behavioral
delay and plotted the maximum MI product on the predicted
behavioral surface before converting to MIR.

This method allows us to consider how the temporal proper-
ties of a neuron’s responses constrain the contribution it might
make toward shape detection. In particular, it allows us to exclude
neurons with high sensory and choice information as contribut-
ing to the decision process if either the temporal dependence of
their sensory or choice information was very inconsistent with
behavior. For example, if behavioral information is maximal at a
precision of 75 ms, and a particular neuron either carries no sen-
sory or no choice information at that binwidth, then it cannot
be significantly contributing to the decision process. Similarly,
if behavioral information is maximal at a delay of 250 ms, and
a particular neuron carries no sensory or choice information
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at consistent delays (sensory delay + choice delay = 250 ms),
then it cannot be significantly contributing to the decision
process.

We found that the precision of the average predicted behav-
ior surface very closely matched that of the observed behavior,
with both peaks resulting from binwidths of 125 ms. However,
predicted behavior MIR magnitudes were much lower than the
animals’ observed behavior, with the highest predicted behavioral
reliability for any unit being approximately 100 times smaller than
the observed reliability. Additionally, while delays corresponding
to observed behavior were non-zero, the peak of the average pre-
dicted behavior surface occurred over delays that were too short
(Figures 8A,B).

To determine how well the temporal parameters predicted by
individual cells overlapped with those of the observed behavior
we focused on how the MIR prediction changed with delay,
using the most reliable binwidth for observed behavior (125 ms).
We quantified the overlap as the normalized cross-product of
the MIR prediction across delays at this binwidth. The median
overlap was 0.58 (on a scale of 0–1), and there were 13 cells
(7 positive signed information, 6 negative signed information)
with overlap greater than 0.75. In this small population of
cells, the periods over which the cells were informative about
the stimulus, and informative about the animal’s subsequent
decisions, overlapped such that they could predict the timing of
observed behavior reliability. The relationship between delay and
MIR for these 13 units’ behavior predictions, and for observed
behavior, are all plotted in Figure 8. These results suggest that
both increases and decreases in responses among a small number

FIGURE 8 | Behavior predictions of same-sign units. We combined
sensory and choice surfaces of same-sign units (N = 69) to generate an
average predicted behavior surface (A) which can be compared to the
average of the real behavior surfaces (B, same as Figure 5B). A histogram
of the overlap of the delay profiles of significant predicted (N = 58) and real
behavior information at a binwidth of 125 ms is shown in (C). The delay
profiles of units with overlap >0.75 (N = 13, orange and purple, colored by
animal) and the average of real behavior (black) are shown in (D).

of the sampled V4 units are temporally consistent with a direct
contribution to shape detection.

4. DISCUSSION
We have shown that the activity of many V4 neurons is modulated
by the brief presentation of contour shapes in a noisy back-
ground. This modulation often signals the presence of a shape,
over timescales relevant to performance of the task, with signifi-
cant reliability. Additionally, the responses of some of these same
V4 neurons are also tightly linked to the behavioral report; prior
to the report of a shape, regardless of whether a shape was actually
present, the response of these neurons was altered. The direction
and timing of task-relevant modulation in a few of these neu-
rons suggests that a small percentage of neurons in area V4 may
directly contribute to the rapid detection of shapes.

4.1. SENSORY REPRESENTATION IN V4 DURING RAPID SHAPE
DETECTION

We found that over short timescales, often tens of milliseconds,
neurons in area V4 could signal, with significant reliability, the
appearance of a shape through increases or decreases in activ-
ity, relative to the response of noise stimuli. Despite the fact that
positioning the stimulus over the neurons’ receptive fields was
the only effort made at stimulus optimization, a large number of
units (75%) conveyed some level of information about whether
a shape was present. It is important to remember that our mea-
sure of sensory information is based on the task the animals were
performing: the ability to indicate the appearance of any noise-
embedded shape. Appropriately, the shape responses of some of
the most reliable sampled units were only moderately selective for
specific shapes, suggesting some degree of task-related invariance.
These observations are consistent with the results of Chen et al.
(2014). They showed that while the magnitude of responses to a
collinear stimulus in area V4 depends on the orientation of the
collinear elements, on average, individual cells were still able to
signal the presence of the collinearity when it was rotated up to
60◦ away from the neurons’ preferred orientations.

The observed sensory information could result from straight-
forward filtering of the shape and noise stimuli through V4
receptive field properties, resulting in both positive and nega-
tive response modulation (David et al., 2006). Feedback from
areas in more anterior ventral visual, prefrontal, or parietal cor-
tex or recurrent signaling with striate cortex could also all serve
to enhance the activity of units representing a fragment of a
shape, while suppressing the activity of units representing back-
ground/noise elements, provided such feedback were sufficiently
fast and precise to be consistent with our observations of shape
information precision. Functional MRI studies using very sim-
ilar stimuli show increased responses to contours embedded in
noise vs. noise only stimuli throughout early visual areas and the
LOC (Altmann et al., 2003). While areas throughout the ventral
visual stream are also likely to exhibit shape-appearance responses
in the current study, recent work by Chen et al. (2014) showed
that collinear stimuli embedded in noise modulated responses of
single V4 neurons at the same latency as visual stimulus onset.
This study also showed that contour-modulated responses in
V4 actually preceded those of V1. Taken together, both of these
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observations suggest that purely feedforward processes maybe
sufficient to create shape responses in V4 based on collinearity.
Whether or not the shape representation originates in area V4,
or is unique to the area, it is clear that within the window of
the animal’s reaction times, V4 neurons represent the appearance
of shape embedded in noise with a precision similar to that of
behavior.

4.2. CHOICE REPRESENTATION IN V4 DURING RAPID SHAPE
DETECTION

The goal of this study was not only to establish whether V4
neurons were able to signal the sudden appearance of a shape
within a noise stimulus, but also to determine if this informa-
tion could directly contribute to behavior. Area V4 is reciprocally
connected to prefrontal and parietal areas (Ungerleider et al.,
2008; Ninomiya et al., 2012) that have been shown to accu-
mulate evidence for decisions in sensory-based tasks (Shadlen
and Newsome, 2001; Ding and Gold, 2012). In the context of
extremely rapid visual decisions, it has also been suggested that
V4 may directly initiate saccadic decisions (Kirchner and Thorpe,
2006). Area V4 is thus well-suited which to directly impact the
visual-based decisions required by our task. We found that many
of the V4 neurons with shape information were also statistically
associated with the animal’s moment-to-moment judgements of
whether a shape was present, as indicated by significant choice
information. In a subset of these units (N = 69), the firing rate
modulations resulting in the highest sensory and choice informa-
tion occurred in the same direction relative to the noise stimulus
response. Most importantly, in a fraction of the same-direction
units (N = 13), the sensory and choice modulations overlap in
time so that they predict the behavioral delay between shape and
response, as well as precision.

In discrimination tasks, correlations among and between neu-
ronal pools tuned to the stimulus aspects to be discriminated may
lead to non-causal relationships between a cell’s response and the
animal’s behavior. In detection tasks such as ours, the main con-
cern for non-causality is often that some global factor is correlated
both with the animal’s behavior and altered neuronal responses
(Nienborg et al., 2012). One such factor is microsaccades, which
have been shown to both affect the responses of V4 neurons
(Leopold and Logothetis, 1998) and to explain at least some of
the relationship between neuronal firing and behavior in other
visual areas (Herrington et al., 2009). However, our results were
very similar if analyses only included trials without microsaccades
(data not shown).

Variations in top-down factors such as attention or arousal
can serve as sources of covariance between neural activity and
behavior (Cohen and Maunsell, 2011) and therefore contribute
to choice correlations. However, such global factors are unlikely
to be the sole source of our choice information observations.
Because we only included units whose response increased signif-
icantly at the onset of the noise stimulus, at the time of shape
appearance every unit included in this study was already respond-
ing to the noise stimulus with an increase in firing rate. This
is true of cells both with zero sensory and/or choice informa-
tion and with negative-signed information. A truly global factor
would therefore induce choice information which varies little

across the population. However, we observe a large variation in
choice information across our sample. Moreover, if strong corre-
lations were responsible for choice information, one should find
positive choice informations even for neurons with no sensory
information. By contrast, we do not observe such cells: simi-
lar to observations of putative motion detection signals in MT
(Ghose and Harrison, 2009), significant choice information is
almost exclusively found among cells with significant sensory
information. Finally, in a study of motion signals within area
MT, a deliberate modulation of attention did not create a univer-
sal effect on choice information across the population (Harrison
et al., 2013).

Non-global attention effects, directed to specific populations,
could potentially create choice information among certain neu-
rons that was not reflective bottom-up contributions to detection.
For example, David et al. (2008) showed that feature-based atten-
tion can alter the tuning of V4 neurons which could result in
responses to particular stimuli being either enhanced or sup-
pressed. However, in our study, there was no way for the animals
to anticipate the particular shape that was going to be presented
and there is no behavioral evidence of the animals having any
shape biases. Thus, shape-specific attention seems unlikely to
have contributed to choice information. However, it is also pos-
sible that feature attention was not directed to specific shapes
but rather some attribute such as collinearity shared across the
shapes. In this case, the neurons with the least shape specificity
should have the strongest choice information, since feature atten-
tion variations would affect them across all shapes. However,
we found no relationship between shape specificity and choice
information (Figure 7). Thus, neither shape-specific nor shape-
general feature attention is likely to have substantially contributed
to our finding of significant choice information among select
neurons.

Even though top-down motivational factors are unlikely to
contribute to our measures of choice information, it is still pos-
sible that choice-related firing reflects a post-decision feedback
signal of the impending saccade rather than a bottom-up contri-
bution to the saccadic decision (Moore et al., 1998; Steinmetz and
Moore, 2010). The distribution of delays at which choice peaks
occurred did not allow for obvious division of peaks into dis-
tinct pre- and post-decision categories. Moreover, the duration of
choice information in some individual cells suggests that a given
period of choice-related activity may actually reflect the super-
position of different processes. For example, our sample contains
cells whose choice information and behavior prediction (e.g., the
bimodal purple trace in Figure 8D) are consistent, by virtue of
latency, with both a feedforward role in decision-making and a
feedback role from the impending saccade. Thus, a single volley
of activity might start out reflecting purely sensory events, tran-
sition to feedforward sensorimotor decision-making and in the
end purely reflect the impending saccade (Platt, 2002). In this
sense the distribution of choice information time courses may
reflect proportionally different contributions of these processes
to the responses of individual units. Units with peak choice reli-
ability at very short delays likely have responses dominated by
saccadic preparation. In these cells, there was likely a temporal gap
between the activity resulting in sensory and choice information,
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leading to feedforward prediction of detection delays that were
too short or a detection precision that was too coarse (Figure 8).
This is similar to the finding of Ogawa and Komatsu (2006) that
during a multidimensional search task, sensory representations
and behaviorally relevant representations are segregated in time,
with the former potentially reflecting feedforward inputs while
the latter result from delayed feedback.

In other cells sampled in the present study, however, choice
information became significant 100–200 ms before the behav-
ioral event, and 13 cells were able to predict both the delay and
precision of animal’s detection decisions (with >0.75 temporal
overlap). Given the ability of these cells to predict both the latency
and precision of behavior, such cells may contribute directly to
the formation of the foveation decisions. While the cell with the
highest sensory reliability was about a fourth as good as the ani-
mals at detecting the appearance of shapes, the combination of
sensory and choice surfaces predicted behavior orders of magni-
tude lower than the observed behavioral reliability. This suggests
that many such cells may be required for the types of foveation
decisions investigated here.

In such foveation decisions, sensory evidence regarding the
presence of a shape must be propagated to oculomotor circuits.
We have shown that the activity of area V4 neurons reflects this
evidence and could be conveyed through well-established con-
nections to oculomotor pathways. Furthermore, the activity of a
few of these cells is both linked to the animals’ choices and pre-
dicts temporal parameters of observed behavior. Therefore, we
believe that the most parsimonious explanation for our data is
that a small percentage of reliable V4 neurons contributed in a
direct manner to rapid shape detection. It is also possible that
shape detection decisions are based on a larger percentage of V4
neurons than indicated by studies of our sampled single cells. For
example, some cells may contribute by coordinating their firing
with other neurons, without changing their firing rate, or activ-
ity may be pooled over very large numbers of cells, such that
neurons without measurable choice information in this data set
actually do contribute to the decision. Such correlations could
significantly impact the ability of a neuronal pool to explain
detection reliability and precision in our task. Thus, an important
avenue for further research is to investigate how pair-wise or even
higher order correlations over small timescales affects the abil-
ity of neuronal populations to signal stimulus events and predict
actions.
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