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Abstract

Objective—The interleukin-6 (IL-6) family of cytokines and their signal transducer glycoprotein 

(gp130) are implicated in inflammatory and cell survival functions in glaucoma. There are several 

avenues for interdependent modulation of IL-6 family members and gp130 signaling. Here we 

investigated whether IL-6 modulates gp130 and related neuroinflammatory, cell survival and 

regulatory signaling in both healthy and glaucomatous retina.

Methods—In naïve and glaucomatous (Microbead Occlusion Model), wildtype (WT) and IL-6 

knockout (IL-6−/−) mice, we examined gp130 protein expression and localization, using western 

blot and immunohistochemistry. Gene targets related to IL-6 and gp130 signaling and pertinent to 

neuroinflammation (TNFα, IL-1β), cell health (Bax, Bcl-xl) and STAT3 regulation (Socs3) were 

quantified using qRTPCR.

Results—In the naïve retina, IL-6−/− retina contained significantly less gp130 compared to WT 

retina. This IL-6-related decrease in gp130 was accompanied by a reduction in mRNA expression 

of TNFα, Socs3 and Bax. After 4 weeks of microbead-induced ocular hypertension, both 

microbead- and saline-injected (control) eyes of IL-6−/− mice exhibited higher expression of 

TNFα, compared to WT mice. IL-1β expression was also reduced specifically in IL-6−/− retina 

with microbead-induced glaucoma. While saline and microbead injection increased Bcl-xl and 

Socs3 mRNA in both WT and IL-6−/− mice, IL-6−/− deficiency led to smaller increases for both 

Bcl-xl and Socs3.

Conclusions—Our findings support a role for IL-6 in setting baseline parameters for 

neuroinflammatory, cell health and gp130 regulatory signaling that can impact the nature and 

magnitude of retinal responses to glaucoma-related stressors.
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Introduction

IL-6 mediates diverse cellular functions that are not limited to pathological inflammation 

[1]. IL-6 is part of a larger group of cytokines called the “IL-6” or “gp130” family of 

cytokines that includes ciliary neurotrophic factor (CNTF), interleukin-11 (IL-11), 

oncostatin M (OSM), leukemia inhibitory factor (LIF), cardiotrophin-like cytokine factor-1 

(CLCF1), cardiotrophin-1 (CTF-1) and cardiotropin-2 (CTF-2). Members of the IL-6 

cytokine family are defined by a common signal transduction pathway, which is initiated by 

gp130. To signal, each family member binds a respective alpha receptor (e.g. IL-6 binds to 

IL-6Rα), which then recruits and activates gp130 (Figure 1). Activation of gp130 leads to a 

myriad of signal transduction cascades, including JAK/STAT, that drives transcription of 

genes associated with cell health and survival, neuroinflammation and regulation of gp130-

mediated signaling (Figure 1) [1,2].

The shared mechanism of signal transduction produces functional redundancy among IL-6 

family members [1]. For example, IL-6 protects retinal ganglion cells (RGCs) from 

apoptosis and promotes axon regeneration following optic nerve crush [3,4]. Other IL-6 

family members, including CNTF, IL-11, OSM and CLCF1, are also associated with optic 

nerve regeneration [5–7]. Recent literature indicates that gp130-mediated activation of JAK/

STAT pathways, which can be accomplished with all IL-6 family members, is a modulator 

of axon regeneration in the optic nerve [7,8]. Across several studies, we determined that the 

IL-6 family of cytokines is also relevant for RGC degeneration in glaucoma. Glaucoma is a 

chronic form of RGC degeneration that is associated with both age and sensitivity to 

intraocular pressure (IOP). In our studies, we determined that elevated IOP alters the 

expression of nearly all members of the IL-6 family of cytokines as well as gp130 [9,10]. 

We also demonstrated that pressure-induced production of IL-6 is dependent upon NFκB 

activation and promotes survival of RGCs through induction of immediate early genes 

[11,12]. Other groups have reported similar findings, including pro-survival functions for 

other IL-6 family members, i.e. CNTF, in glaucoma [13,14].

Functional redundancy relates not only to outcomes of neuroinflammation and cell survival, 

but also to feedback pathways that positively and negatively regulate gp130 signaling. For 

example, SOCS3 is a downstream target of gp130 signaling that inhibits JAK/STAT activity 

to establish a negative feedback loop [15,16]. This type of regulatory signaling provides an 

avenue for IL-6-related cytokines to impact future gp130-mediated responses to any or all 

members of the cytokine family. When considering the role of the IL-6 family in 

neuroinflammation and cell survival, regulatory outcomes have the potential to broadly 

impact the initiation and propagation of stress responses. Of particular interest is that IL-6 

and several of the other IL-6 family members are constitutively expressed at high levels in 

retina [9,10]. In this context, regulatory signaling that mediates gp130 activity may be 
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relevant for establishing baseline parameters for inflammation and cell health and the 

subsequent capacity for stress response.

Using IL-6−/− mice and our inducible, microbead occlusion model of ocular hypertension, 

we aim to determine whether IL-6 signaling plays a role in: 1) establishing baseline 

parameters for gp130-mediated signaling, neuroinflammation and cell health and 2) defining 

the nature and magnitude of IOP-induced neuroinflammatory, cell health and gp130-related 

regulatory signaling.

Methods

Animals

Adult IL-6−/− mice (B6.129S2-IL6tm1kopf/J) and respective wildtype (WT; B6129SF2/J) 

controls were used for all experiments. Breeder pairs were originally obtained from Jackson 

Laboratories (Bar Harbor, ME) and experimental mice were bred and genotyped in-house, 

using primers provided by Jackson Labs. Mice were housed in accordance with NIH 

guidelines and maintained on a 12 hr light/dark cycle with free access to food and water. All 

experiments complied with the ARVO statement for the use of animals in ophthalmic and 

vision research and were approved by the IACUC of Vanderbilt University Medical Center.

Microbead occlusion of trabecular meshwork and IOP measurements

IOP elevation for 4 weeks was induced in adult male WT and IL-6−/− mice using the 

microbead occlusion model, as previously described [17]. Briefly, anesthetized mice 

received a unilateral injection of 1.5 ul (1 × 106 microbeads/mL) of 15 μm polystyrene beads 

(Cat# F8844; Life Tech) in one eye. The contralateral eye served as a surgical control and 

was injected with an equal volume of saline. IOP was measured in awake, behaving mice, 

using a Tonolab tonometer (TonoLab; Reichert, Depew, NY) [16,18,19]. Prior to initial 

injections, mean baseline IOP was calculated from approximately 60 readings taken over a 

period of 10–14 days. Following microbead and saline injections, IOP was determined as the 

mean of 20–30 measurements, taken every 2–3 days throughout the 4 week study.

Tissue preparation

For histological experiments, mice were sacrificed by transcardial perfusion as previously 

described [9,20]. Eyes were stored in 4% PFA at 4°C until use. Retinas were cryopreserved 

in 30% sucrose and 10 μm cryostat sections were obtained following embedding in OCT 

medium. For western blot and PCR experiments, mice were sacrificed by cervical 

dislocation followed by decapitation. Eyes were enucleated, retinas dissected, snap frozen on 

dry ice and stored at −80°C until use.

Immunohistochemistry and imaging

Labeling of whole-mount retina and retinal cryo-sections were done as previously described 

[11,16]. Primary antibodies used were gp130 (1:200; Cat# MAB4681, R&D Systems) and 

β-Tubulin III (TUJ1, 1:500; Cat#845501; BioLegend). Secondary antibodies were used at a 

concentration of 1:200 and consisted of donkey α-rat 488 (cat# 712-545-150; Jackson 

Immuno) or donkey α-rabbit 647 (cat# 711-606-152; Jackson Immuno). Z-stack images (0.5 
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μm/stack) were obtained on an inverted confocal microscope (Olympus) at the Vanderbilt 

University Cell Imaging Services Core and were analyzed with FV-10 ASW image analysis 

software (Olympus).

Immunoblotting

Retina was homogenized in lysis buffer containing: 50 mM Tris HCl, 150 mM NaCl, 1% 

NP-40, 0.25% Sodiμm Deoxycholate, 100 μm PMSF, protease inhibitor cocktail tablet (Cat# 

04693159001; Roche) and Phosphatase Inhibitor Cocktail Tablet (Cat# 04906845001; 

Roche). Protein concentration was determined with BCA Assay (Cat# 23225; Thermo 

Fisher Scientific). 20 μg of sample protein was mixed with Laemmli Sample Buffer (Cat# 

161-0747; BioRad) containing 10% βME (Cat# M3148; Sigma), separated by SDS-Page in 

a 4–20% gradient Tris-glycine pre-cast gel (Cat# 345-0032; BioRad) and transferred to a 

nitrocellulose membrane (Cat# 45004004; GE Healthcare). Membrane was incubated in 

Odyssey Blocking buffer (Cat# 927-50000; Licor) overnight at 4°C followed by overnight 

incubation at 4°C in blocking buffer containing 0.2% Tween-20, anti-rabbit gp130 (1:50; 

cat# sc-655; Santa Cruz) and anti-mouse β-actin (1:1000; cat# AM4302; Ambion). 

Following washes in 1XTBS with 0.2% Tween-20, membranes were incubated at RT for 1 

hour in blocking solution containing: 0.2% Tween-20, 10% SDS, donkey anti-mouse IRDye 

680RD (1:1000; Cat# 925-68072; Li-Cor) and donkey anti-rabbit IRDye 800CW (1:1000; 

Cat# 925-32213; Li-Cor). Immuno-reactive bands were detected using the Odyssey infared 

imaging system (Li-Cor; Lincoln, NE). Gp130 bands (130 kD) were quantified by 

densitometry analysis (Odyssey Application Software V3.0; Li-Cor) and normalized to β-

actin bands (42 kD). To ensure accurate comparisons between WT and IL-6−/−, samples 

from both genotypes were run on the same gel and transferred to the same membrane.

RNA isolation and DNase treatment

RNA was isolated using TRIzol (Cat# 15596026; Life Tech) followed by chloroform 

purification, as per manufacturer’s recommendations. RNA concentration was measured 

using a nanodrop 2000 spectrophotometer (Ambion). To remove any contaminating DNA, 1 

μg of RNA was subjected to DNase treatment according to manufacturer’s instructions (Cat# 

18068-015; Invitrogen). Purified RNA was stored at −80°C or directly used for cDNA 

synthesis.

cDNA synthesis and qRTPCR

cDNA synthesis and qRTPCR was performed as previously described [9]. Briefly, 1 μg of 

RNA was converted to cDNA using the Superscript VILO cDNA Synthesis kit (Cat# 

11754-050; Invitrogen) according to manufacturer’s instructions. cDNA samples were 

placed at −20°C or used directly for qRTPCR. To measure gene expression, 50 ng cDNA 

was added to a solution containing: Taqman Gene Expression master mix (Cat# 4369016; 

ThermoFischer), Taqman Gene Expression Probe and ddH2O. Each sample was run in 

triplicate. Taqman probes used were gp130 (Mm00439665_m1), IL-1β (Mm00434228_m1), 

TNFα (Mm00446190_m1), BCL-XL (Mm00437783_m1), BAX (Mm00432051_m1), 

SOCS3 (Mm00545913_s1) and Gapdh (Mm99999915_g1). qRTPCR was run in a 7300 

Real Time PCR System. To further confirm suitability of samples, a 1 μl of RNA from each 

sample was reserved to serve as a – RT negative control for gene-specific qPCR. The 
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threshold of cycle (Ct) values for each gene was analyzed using SDS software (Applied 

Biosystems) and subtracted by the Ct value for GAPDH in each. To determine gene 

expression differences between WT and IL-6−/− in naïve samples, IL-6−/− samples were 

normalized to WT using the ΔΔCt method, as indicated by probe efficiencies. For microbead 

samples, saline and microbead retinas from WT and IL-6−/− were normalized to respective 

genotype naïve samples.

Statistical analysis

Data is represented either as mean ± STDEV or mean ± SEM. Statistical analysis was 

performed using SigmaPlot (Systat Software Inc., San Jose, CA). Depending on the 

comparison, statistical significance was determined using student’s t-test, Wilcoxon Signed 

Rank test, paired t-test, One-sample t-test or a one-way ANOVA with Bonferroni pairwise 

comparisons. Normality (Shapiro-Wilk) and equal variance was also assessed for each 

comparison. For all experiments, p<0.05 was considered statistically significant.

Results

IL-6 mediates constitutive expression of gp130

IL-6 and its signal transducer gp130 are constitutively expressed in murine retina [9,10]. 

Previous studies indicate that IL-6 can modulate gp130 expression in a negative feedback 

loop [15]. To determine whether IL-6 constitutively modulates gp130 expression in retina, 

we examined gene and protein expression of gp130 in retina from IL-6- deficient mice 

(IL-6−/−). Using quantitative RT-PCR, we did not detect a change in the expression level of 

gp130 mRNA in whole retina from IL-6−/− mice, as compared to WT mice (p>0.05; Figure 

2A). However, western blot analysis revealed that gp130 protein decreases by 36% in whole 

retina lysates from IL-6−/− mice compared to WT mice (p<0.05; Figure 2B). Decreased 

protein expression of gp130 in IL-6−/− mice was also apparent in sagittal sections and 

wholemounted retina co-immunolabeled with antibodies against gp130 and the RGC marker 

β–tubulin (Figures 2C–2D). Consistent with our previous findings [9], gp130 

immunolabeling was robust in the ganglion cell layer of WT retina and co-localized with β–

tubulin-positive RGCs (Figures 2C–2D). In IL-6−/− retina, the localization pattern of gp130 

immunolabeling was unaltered, but the intensity of labeling was greatly diminished (Figures 

2C–2D). Together, these data suggest that IL-6 constitutively mediates expression of gp130 

in murine retina.

IL-6 deficiency alters baseline parameters for inflammatory, cell health and gp130 
regulatory pathways

To determine whether constitutive IL-6 deficiency and subsequent decreased expression of 

gp130 impact baseline parameters for neuroinflammation and cell health in retina, we 

examined mRNA expression of general neuroinflammatory factors as well as cell survival 

and regulatory factors associated specifically with gp130. For neuroinflammation outcomes 

we focused on two inflammatory factors associated with the initiation of inflammatory 

responses, tumor necrosis factor alpha (TNFα) and interleukin-1 beta (IL-1β). For cell 

health outcomes, we focused on two cell survival factors associated with promoting survival 

and initiating apoptosis, B-cell lymphoma-extra-large (Bcl-xl) and b-cell lymphoma-2 
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Associated X Protein (Bax). For regulatory signaling, we focused on suppressor of cytokine 

signaling -3(Socs3), which serves as a negative feedback mechanism for gp130 signaling. 

Using quantitative RT-PCR, we found that IL-6 deficiency reduced Tnfα mRNA expression 

by ~40%, as compared to WT expression levels (p<0.05; Figure 3A). In contrast, Il-1β 
mRNA expression was similar in retina from IL-6−/− and WT mice (p>0.05; Figure 3A). 

Like cytokine expression, IL-6 deficiency differentially altered gene expression associated 

with cell survival. In IL-6−/− retina, expression of Bax mRNA was 25% lower than in WT 

retina (p<0.05; Figure 3B). In contrast, we noted no significant difference in expression of 

Bcl-xl mRNA between IL-6−/− and WT retina (p>0.05; Figure 3B). Similarly, Socs3 
expression was also reduced by ~25% in IL-6−/− mice compared to WT mice (p<0.05; 

Figure 3C). These data indicate that constitutive IL-6 deficiency not only decreases gp130 

expression levels, but also shifts baseline expression of neuroinflammatory, cell health and 

gp130 regulatory factors.

IL-6 deficiency alters neuroinflammatory, cell health and gp130 regulatory responses to 
glaucoma stressors

IL-6-mediated changes in the constitutive expression of gp130 as well as the aforementioned 

downstream targets have the potential to significantly impact both the nature and magnitude 

of stress responses. Our previous work identified IL-6 signaling through gp130 as a relevant 

inflammatory pathway in glaucoma, a neurodegenerative disease affecting RGCs [9,10]. To 

determine whether IL-6-mediated changes in gp130 signaling impact the inflammatory, cell 

survival and gp130-related regulatory response of the retina to glaucomatous stressors, we 

examined gene expression of Tnfα, lL-1β,Bcl-xl, Bax and Socs3 in the Microbead 

Occlusion Model of murine glaucoma [17,20]. As previously described, IOP was elevated in 

one eye for 4 weeks with a single intracameral injection of 15μm polystyrene beads The 

fellow eye received an equivalent volume of saline and served as the internal control [17].

Microbead injection increased IOP by ~25% in both WT and IL-6−/− mice, as compared to 

the contralateral saline-injected eye (p<0.05; Figure 4). For Tnfα, neither saline nor 

microbead injection altered Tnfα mRNA compared to naïve controls in WT mice (Figure 

5B). In contrast, both saline- and microbead-injected eyes from IL-6−/− mice exhibit a 4-

fold increase in Tnfα mRNA, compared to naïve IL-6−/− retinas and WT retinas exposed to 

either saline or microbead injection (p<0.05; Figure 5B). For Il-1β, elevated IOP did not 

alter mRNA levels in WT mice, as compared to saline-injected controls (p>0.05; Figure 5A). 

Similarly, neither saline-injection nor microbead-injection altered Il-1β mRNA in WT from 

naïve levels (p>0.05; Figure 5A). In contrast, elevated IOP reduced Il-1β mRNA by almost 

40% in IL-6−/− mice, as compared to saline-injected IL-6−/− mice (p<0.05; Figure 5A). 

Il-1β mRNA expression in saline-injected IL-6−/− mice did not differ from that in naïve 

IL-6−/− mice or naïve, saline-injected and microbead-injected WT mice (p>0.05 for all; 

Figure 5A).

For pro-apoptotic gene Bax, both saline and microbead injections decreased mRNA levels 

by ~65% in WT mice, when compared to un-injected controls (p<0.05; Figure 5C). 

However, Bax mRNA expression did not differ between saline- and microbead-injected eyes 

in WT mice (p>0.05; Figure 5C). Similar decreases in Bax mRNA expression were noted for 
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saline- (~40%) and microbead-injected (~60%; p < 0.05) IL-6−/− mice (Figure 5C). 

However, reductions in Bax mRNA associated with microbead-injection in IL-6−/− did not 

quite reach statistical significance (p=0.07; Figure 5C). For all conditions, Bax mRNA 

expression did not differ between WT and IL-6−/− mice (p>0.05 for all, Figure 5C). In 

contrast to Bax, expression of the anti-apoptotic gene Bcl-xl increased significantly with 

both saline and microbead injections in WT mice. In saline-injected eyes from WT mice, 

Bcl-xl mRNA increased approximately 1.5 fold, as compared to un-injected controls 

(p<0.05; Figure 5D). Elevated IOP increased Bcl-xl expression even further than saline-

injection to levels 2.5-fold higher than un-injected controls (p<0.05; Figure 5D). Similarly, 

both saline and microbead injection increased Bcl-xl expression in IL-6−/− mice (p<0.05; 

Figure 5D). However, this increase was significantly lower in IL-6−/− mice than in WT mice 

(p<0.05; Figure 5D). No significant difference in Bcl-xl expression was noted between 

saline and microbead injected IL-6−/− mice (p>0.05; Figure 5D).

For Socs3, all conditions and genotypes exhibited an increase in mRNA expression, as 

compared to un-injected controls (p>0.05 for all; Figure 5E). The largest change was noted 

in saline-injected eyes from WT mice, which exhibited a 4.5-fold increase in Socs3 
expression compared to naïve WT mice (p>0.05; Figure 5E). Saline-injected IL-6−/− eyes 

and microbead-injected eyes from both WT and IL-6−/− exhibited Socs3 expression that 

was ~ 2-fold higher than un-injected controls, but ~2.5-fold lower than saline-injected eyes 

from WT mice (p<0.05 for all; Figure 5E). Together, these data suggest that IL-6 signaling 

impacts specific components of stress-induced neuroinflammatory, cell health and gp130 

regulatory signaling that alters not only the nature, but also the magnitude, of these stress 

responses.

Discussion

The shared mechanism of signal transduction produces functional redundancy among IL-6 

family members [1]. This functional redundancy impacts neuroinflammatory and cell health 

outcomes as well as regulatory signaling that mediates gp130 activity. Here we determined 

whether IL-6 may be relevant for establishing baseline parameters for neuroinflammatory, 

cell health and gp130-related regulatory signaling as well as the subsequent capacity for 

stress responses in these areas.

Using IL-6−/− mice, we determined whether constitutive IL-6 signaling plays a role in 

setting the baseline parameters for neuroinflammatory, cell health and gp130 regulatory 

signaling. Using q-RTPCR, we found that IL-6 deficiency decreased protein, but not mRNA 

levels, of its signal transducer gp130. This disparity between gp130 mRNA and protein 

levels could be due to deficits in translation or stability, which is documented in the 

regulation of gp130 protein levels [21–23]. Thus, IL-6 appears to mediate constitutive 

expression of gp130, which has the potential to impact signaling by other members of the 

IL-6 cytokine family. We also observed decreased expression of Socs3 in IL-6−/− mice, 

which is consistent with studies in other tissues [24] and suggests that while gp130 

availability is reduced, restraint on downstream signaling via JAK/STAT is lessened. These 

changes in gp130 regulation are accompanied by a reduction in mRNA levels for both TNFα 
and Bax, but not IL-1β or Bcl-xl. It is worth noting that previous work in heart tissue from 
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IL-6−/− mice demonstrated similar decreases in Bax expression [25]. In contrast, previous 

work in brain did not detect any obvious differences in Tnfα or Il-1β expression in IL-6−/− 
mice [26,27]. It is likely that IL-6-dependent changes in TNFα noted here are tissue-

specific, which would not be surprising given the high level of constitutive IL-6 expression 

in retina. Given that TNFα is associated with the initiation of inflammatory responses and 

Bax is a pro-apoptotic factor, our data suggests that IL-6 deficiency actually promotes an 

anti-inflammatory, pro-survival environment in which there is the potential for diminished 

gp130 signaling. However, this decrease in gp130 availability may be offset by lessened 

inhibition of STAT-mediated signaling.

A modified baseline of neuroinflammation, cell health and gp130 signaling has the potential 

to influence both the nature and magnitude of the stress response. In this context, we 

examined the same neuroinflammatory, cell health and gp130 regulatory factors in IL-6−/− 
and WT mice 4 weeks after induction of microbead-induced glaucoma. Regardless of 

genotype, we found that model induction (intracameral injection) resulted in the induction of 

several neuroinflammatory, cell health and gp130 regulatory factors. In most cases, the 

nature and the magnitude of the effects were similar between saline-injected and microbead-

injected eyes. It is important to note that recent work in another inducible model of 

glaucoma reported the phenomenon of contralateral inflammation, in which the naïve fellow 

eye exhibited signs of neuroinflammation [28,29]. Since we performed saline and microbead 

injections (one in each eye) in the same animal, our results may be confounded by this 

phenomenon as well. To account for this issue, we analyzed our results with respect to un-

injected, naïve controls and thus, treated saline injection as a separate experimental 

condition.

Our data indicate that while TNFα expression remained unaltered in WT mice, IL-6−/− 
mice exhibited a dramatic increase in TNFα expression following both saline and microbead 

injection. IL-6−/− specific increases in TNFα are reported in other models of stress/injury 

[30,31] and suggests that IL-6 may serve to diminish the TNFα response in glaucomatous 

retina, which is consistent with studies detailing the inhibitory effects of IL-6 signaling on 

TNFα [14]. Although IL-6 can also inhibit IL-1β [14], we found that IL-6−/− mice 

exhibited a decrease in IL-1β expression that was specific to microbead-injection (elevated 

IOP) and absent in WT mice and saline-injected IL-6−/− mice. This data suggests that other 

signaling pathways are likely more important for regulation of IL-1β in glaucoma. With 

respect to cell health, both WT and IL-6−/− exhibited decreased expression of Bax and 

increased expression of Bcl-xl. However, the Bcl-xl response was diminished in IL-6−/− 
mice versus WT mice, suggesting that the pro-survival response was blunted by IL-6 

deficiency. Finally, Socs3 expression was dramatically elevated in all experimental 

conditions for both WT and IL-6−/− mice. This suggests that a robust suppression of STAT 

signaling is part of the stress response to microbead-induced glaucoma. Interestingly, the 

most robust response was noted in saline-injected eyes from WT animals. Given that saline 

injection does not elevate IOP or induce RGC degeneration, this suggests that SOCS3 

elevation may be particularly relevant for pre-emptive responses to sub-pathological insults.

Of particular importance for the interpretation of our findings in the Microbead Occlusion 

Model is the 4 week time point of analysis. In this model, RGC loss at 4 weeks is rather 
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minimal (less than 25%) and most of the pathological changes are consistent with early 

stages of degeneration [17,20,32]. As such, our results indicate that, among the factors 

tested, the overall nature of the inflammatory and cell health response is geared towards the 

promotion of cell survival and inhibition of inflammatory signaling. With respect to IL-6, 

our results indicate that, while constitutive IL-6 deficiency appears to promote an anti-

inflammatory environment and pro-survival, this deficiency permits an exaggerated TNFα 
response with exposure to stressors and diminishes expression of anti-apoptotic factors. 

Overall, our findings support a role for IL-6 in setting baseline parameters for 

neuroinflammatory, cell health and gp130 regulatory signaling that can impact the nature 

and magnitude of retinal responses to glaucoma-related stressors.
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Figure 1. 
Review of IL-6 signaling. Under naïve and pathological conditions, IL-6 binds to IL-6Rα, 

followed by recruitment of signal transducer gp130 (purple arrows). Upon formation of the 

IL-6/IL-6Rα/gp130 complex, gp130 phosphorylates Jak2, followed by subsequent 

activation/phosphorylation of STAT3. Phosphorylated STAT3 dimerizes and translocates to 

the nucleus to drive transcription of genes associated with cell survival (Bxl-XL, BCL-2) 

and gp130 inhibitory feedback (Socs3). Socs3 can also act to inhibit NFκB, which regulates 

the expression of inflammatory cytokines (i.e. IL-6, IL-1β, TNFα).
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Figure 2. 
IL-6 deficiency leads to decreased gp130 protein in the retina. (A) Fold difference of Gp130 
mRNA in the IL-6−/− retina normalized to WT Gp130 mRNA (dotted line) via the ΔΔCt 

method. (B) Densitometry analysis (right) of gp130 and β-actin immunoblotting (left) in WT 

(white) and IL-6−/− (gray) retina.; student’s t-test. Error bars indicates STDEV. (C–D) 

Whole mount (C) and sagittal cross sections (D) of WT (left) and IL-6−/− (right) retina 

reveal co-localization (arrowheads; C and arrows; D) of gp130 immunolabeling (green) with 

β-Tubulin+ RGCs. Error bars represent standard deviation and asterisks indicate p<0.05 

(A,B). Scale bars = 20 μm (C,D).
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Figure 3. 
IL-6 deficiency alters baseline gene expression for neuroinflammation, cell health and gp130 

regulatory signaling. Percent gene expression of (A) Tnfα, Il-β (B) Bcl-xl, Bax and (C) 

Socs3 mRNA in the IL-6−/− retina normalized to WT expression levels (dotted line) via the 

ΔΔCt method. Asterisks indicate p<0.05.
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Figure 4. 
IL-6 deficiency does not impact microbead-induced IOP elevation. Average IOP of eyes 

injected with either saline (white) or microbeads (gray) over 4 weeks. Error bars represent 

standard error of the mean and asterisks indicate p<0.05.
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Figure 5. 
IL-6 deficiency influences glaucoma-related changes in gene expression of 

neuroinflammory, cell health and gp130 modulators. (A–E) Percent gene expression of (A) 

Tnfα, Il-β (B) Bcl-xl (C), Bax and (D) Socs3 (E) mRNA in either WT or IL-6−/− eyes 

injected with saline (white) or microbeads (gray). mRNA levels were normalized to 

respective naive expression levels (dotted line) via the ΔΔCt method. Statistical significance 

(p<0.05) is indicated as follows: * naïve versus experimental, ** between genotype 

comparison, # within genotype comparison.
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