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Skeletal descriptions of shape 
provide unique perceptual 
information for object recognition
Vladislav Ayzenberg    & Stella F. Lourenco

With seemingly little effort, humans can both identify an object across large changes in orientation 
and extend category membership to novel exemplars. Although researchers argue that object shape is 
crucial in these cases, there are open questions as to how shape is represented for object recognition. 
Here we tested whether the human visual system incorporates a three-dimensional skeletal descriptor 
of shape to determine an object’s identity. Skeletal models not only provide a compact description 
of an object’s global shape structure, but also provide a quantitative metric by which to compare the 
visual similarity between shapes. Our results showed that a model of skeletal similarity explained the 
greatest amount of variance in participants’ object dissimilarity judgments when compared with other 
computational models of visual similarity (Experiment 1). Moreover, parametric changes to an object’s 
skeleton led to proportional changes in perceived similarity, even when controlling for another model of 
structure (Experiment 2). Importantly, participants preferentially categorized objects by their skeletons 
across changes to local shape contours and non-accidental properties (Experiment 3). Our findings 
highlight the importance of skeletal structure in vision, not only as a shape descriptor, but also as a 
diagnostic cue of object identity.

The same object produces vastly different shapes on the retina across changes in orientation, and objects of the 
same category have vastly different shape contours across exemplars. Yet, with very little experience, humans 
(adults1, infants2) and nonhuman animals (monkeys3, chicks4, rats5) recognize objects rapidly and with ease 
across such variations. Research in the vision sciences suggests that shape is crucial for object recognition6–8. 
Humans readily use shape to recognize objects in the absence of other visual information (e.g., texture and shad-
ing)7,9 and both adults and children preferentially categorize novel objects by their shape across conflicting color 
and texture cues10,11. Moreover, human representations of shape are robust to changes in view1,12, contour per-
turbation13,14 and deformations from bending or stretching (e.g., hand poses)15–17, suggesting a reliance on global 
shape properties over local contour information18,19. However, few studies have offered a formalized account of 
how humans represent and compare global shape properties to recognize objects6. In the current study, we tested 
whether humans incorporate a computational model of global shape structure based on the medial axis, or ‘shape 
skeleton’, to determine an object’s identity.

Shape skeletons are a class of geometric models, based on the medial axis of the shape. These models describe 
shape via the set of symmetry axes that lie equidistant between two or more points along the boundary20,21 (see 
Fig. 1). For most shapes, the axes are organized hierarchically, such that there may be a series of parent axes that 
describe the shape’s coarse global geometry, as well as smaller ‘off-shoot’ axes that describe individual component 
parts. More specifically, skeletons describe an object’s shape structure by specifying the spatial configuration of 
contours and component parts. Modern skeletal algorithms (i.e., pruned medial axis models22,23) are particularly 
good descriptors of an object’s global shape because their structure remains relatively stable across contour vari-
ations typical of natural contexts (e.g., perturbations, bending)24–26. Importantly, research in computer vision has 
formalized many methods by which to compare skeletons (e.g., distance metrics27), thereby providing a quanti-
tative metric by which to compare shapes. These methods have been used successfully to identify objects across 
viewpoints and exemplars28, with classification accuracy matching human performance for superordinate object 
categories29.

Accumulating evidence suggests that the skeletal structure of objects is extracted by the primate visual sys-
tem during shape perception. In particular, behavioral studies have shown that human participants extract the 
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skeletons of different 2D shapes30–34 and those skeletal structures remain relatively stable across border disrup-
tions resulting from perturbations or illusory contours35. Increasingly, studies have shown that skeletal structures 
may be represented in three dimensions (3D) within an object-centered reference frame. Indeed, humans are 
better at discriminating 3D objects by skeletal differences than by differences in component parts (e.g., part orien-
tation)36. Moreover, studies using neural recording (i.e., fMRI and electrophysiology) with humans and monkeys 
have found sensitivity to 3D object skeletons in high-level visual cortical areas (e.g., IT), including those known 
to support object recognition37,38. Skeletal sensitivity in these regions was decoded across changes in orientation 
and variations in local shape properties, suggesting a 3D object-centered representation that is robust to changes 
in viewpoint and component parts.

Despite the success of skeletal descriptions in computer vision systems26 and their biological plausibility in 
the primate visual system37, shape skeletons are rarely incorporated into models of object recognition. Instead, 
modern computational approaches to object recognition emphasize image statistics39 or hierarchical feature 
extraction operations such as those implemented by convolutional neural networks (CNNs)40,41. Yet, without 
explicitly invoking any skeletal description, these models match human performance on object recognition 
tasks41, and they are predictive of both human behavioral and neural responses42–44. Even models that do empha-
size global shape properties do so by describing the local properties of components parts (e.g., geons) and coarse, 
categorically-defined, spatial relations12,45, not a skeletal structure. Given that these other models successfully 
approximate human object recognition, one might ask whether skeletal descriptions of shape are necessary for 
human object recognition at all. Thus, in the current study, we tested the degree to which skeletal descriptions of 
shape make unique, and possibly privileged, contributions to human object recognition in comparison to several 
other models of shape and object perception.

If the shape’s skeletal structure provides unique contributions to object recognition, then humans should 
perceive objects with similar skeletons as more similar to one another, even when controlling for other models. 
Moreover, if skeletal structures are a privileged source of information for object recognition, then humans should 
favor the shape skeleton over both non-shape based models of visual similarity, as well as other descriptors of 
shape. To this end, we assessed whether participants’ perceptual judgments of object similarity scaled with the 
skeletal similarity between novel 3D objects (Experiment 1), including objects whose coarse spatial relations 
could not be used for judging similarity (Experiment 2). We also tested how participants classified objects when 
the shape’s skeletal structure was placed in conflict with the object’s surface form, a manipulation that altered the 
shape’s contours and non-accidental properties (NAPs) without changing its skeleton (Experiment 3). In all cases, 
we examined the unique contributions of skeletal structures in object recognition by contrasting the shape skele-
ton with models of vision that do not explicitly incorporate a skeletal structure, but are nevertheless predictive of 
human object recognition. These models included those that describe visual similarity by their image statistics, 
namely, the Gabor-Jet (GBJ) model46 and GIST model47, as well as biologically plausible neural networks models, 
namely, the HMAX model40 and AlexNet, a CNN pre-trained to identify objects41. To anticipate our findings, 
a model of skeletal similarity was predictive of participants’ perceptual similarity and classification judgments 
even when accounting for these other models, suggesting that skeletal descriptions of shape play a crucial role in 
human object recognition, independent of other models of shape and object perception.

Experiment 1 – Is Perceived Object Similarity Uniquely Predicted by a Model of 
Skeletal Similarity?
Here we tested one of the predictions outlined above: namely, as object skeletons become more similar, partici-
pants should judge the objects as being more alike. To test for a relation between human perceptual judgments 
and the shape skeleton, we generated a novel set of 3D objects that varied in their skeletal structures. Crucially, we 
compared the predictive power of skeletal descriptions to other models of visual similarity and tested the degree 
to which a model of skeletal similarity explained unique variance in human perceptual judgments.

Stimuli and experimental design.  A total of 150 3D objects consisting of 30 skeletons were generated 
(see Fig. 2A). All objects were comprised of three segments and were normalized for overall size (see Methods). 
Each object was rendered with five surface forms, serving to change the visible shape of the object on the retina 
without altering the underlying skeleton (see Fig. 2B and Methods). Skeletal similarity between every object was 
calculated in 3D, object-centered, space as the mean Euclidean distance between each point on one skeleton 
and the closest point on the second skeleton following maximal alignment (see Methods). We chose to test a 3D 

Figure 1.  An illustration of the shape skeleton for a 2D airplane with (B) and without (A) perturbed contours. 
A strength of a skeletal model is that it can describe an object’s global shape structure across variations in 
contour. Skeletons computed using the ShapeToolbox24.
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skeletal description because of behavioral48 and neural49 evidence for 3D object-centered representations in the 
visual system, which include a sensitivity to 3D skeletal structures36,37.

Participants (n = 42) were administered a discrimination task in which they were shown images of two objects 
presented simultaneously in one of three depth orientations (−30°, 0°, +30°), with either the same or different 
skeletons. Participants were instructed to decide whether the two images showed the same or different object 
(independent of orientation). Participants were given unlimited time to respond but the instructions emphasized 
speed and accuracy.

We chose to use an untimed discrimination task where the objects were presented simultaneously in order to 
minimize task demands. However, we also confirmed that this task could be accomplished in a speeded context 
and found comparable performance to that reported below (see Supplemental Experiment 1).

Results and discussion.  Participants discriminated the objects significantly above chance (0.50) 
Maccuracy = 0.80, t(41) = 17.64, p < 0.001, d = 2.72 (MRT = 2129 ms). Thus, even though our stimulus set may be 
considered one class of object, and potentially difficult to discriminate, the objects differed sufficiently to support 
accurate discrimination (see also Supplemental Experiment 1 for comparable performance in a speeded version 
of the task).

To analyze whether a skeletal model was predictive of human object judgments, we converted participants’ 
binary discrimination judgments for each object pair into a continuous dissimilarity score. Dissimilarity scores 
for each object pair were computed by taking the mean discrimination accuracy for each pair across all partic-
ipants. Human judgments were compared to each model by regressing human dissimilarity scores on model 
dissimilarity scores (see Methods).

Skeletal similarity was a significant predictor of participants’ judgments, r = 0.30, p < 0.001, explaining 9% 
of the variance (significance determined via permutation test; see Fig. 3A). That is, as the similarity between 
skeletal structures increased, participants were more likely to judge the objects as the same. However, one might 
ask whether another model of vision, which does not incorporate skeletal information, would also correlate with 
human judgments. To answer this question, we compared participants’ judgments to GBJ, GIST, HMAX, and 
AlexNet models. When compared independently, these models were all predictive of participants’ judgments 
(rs = 0.25–0.32, r2 = 6–11%; see Fig. 3A), with no significant differences between models (overlapping confidence 
intervals). For context, a noise ceiling representing a hypothetical true model (calculated by repeatedly splitting 
participants’ data into two sets and correlating them to one another; 1000 iterations) was computed: rmean = 0.50, 
SE = 0.03 (see Fig. 3A).

Because the different models were predictive of participants’ judgments to similar degrees, and because 
objects with similar skeletons might also have similar image-level properties, it was important to test whether the 
different models accounted for the same variance in participants’ judgments, or whether a model of skeletal sim-
ilarity explained unique variance. To this end, we conducted a regression analysis wherein all of the models and 
the most predictive layer of AlexNet (Skeleton ∪ GBJ ∪ GIST ∪ HMAX ∪ AlexNet-fc6) were included as predic-
tors of human dissimilarity judgments. Together, these models explained 20.5% of the variance in human judg-
ments, with Skeletal and GBJ models each explaining significant unique variance (ps < 0.01; see Supplemental 
Table 1). To ensure that the predictive power of the skeletal model was not simply the result of a suppression 

Figure 2.  Stimuli used in Experiment 1. (A) Objects were procedurally generated to have different skeletal 
structures. (B) Each object was also rendered with five surface forms so as to vary in contour shape and non-
accidental properties (NAPs) without disrupting the object’s skeleton. A cluster analysis revealed that the first 
and second surface forms (from top to bottom) were comprised of the same NAPs (see Methods for more 
stimulus details). Subsets of these stimuli were used in Experiments 2 and 3 (see Methods).
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effect, we tested the skeletal model individually against every other model (Skeleton ∪ GBJ; Skeleton ∪ GIST; 
Skeleton ∪ HMAX; Skeleton ∪ AlexNet-fc6). Skeletal similarity was predictive of human judgments in each case 
(r2 = 14–18%, ps < 0.001).

Finally, to better understand how the amount of variance explained by the skeletal model compared to the 
other models, we used variance partitioning analyses50,51. These analyses allowed us to determine how much of 
the total explainable variance was unique to the different models and how much was shared by a combination 
of models. These analyses revealed that the model of skeletal similarity accounted for the greatest amount of 
unique variance in participants’ responses (6.6%) explaining 33.13% of the total explainable variance (see Fig. 3B 
and Supplemental Table 2). A 4-predictor model consisting of the GBJ, GIST, HMAX, and AlexNet-fc6 models 
accounted for the next greatest amount of variance in participants’ responses (3.1%) accounting for 15.49% of the 
total explainable variance (see Supplemental Table 2). Taken together, these analyses suggest that, although other 
models of visual similarity were predictive of participants’ perceptual judgments, a model of skeletal similarity 
contributed to these judgments. These results suggest that skeletal structures may be an important source of infor-
mation for making object identity judgments.

A potential concern with these findings is that, because we created objects that varied in skeletal similarity, 
it was inevitable that a model of skeletal similarity would predict participants’ performance. We would empha-
size, however, that other, non-skeletal models were also predictive of participants’ judgments, suggesting that 
participants incorporated other visual properties into their judgments. Nevertheless, to address this concern 
more directly, we tested whether the objects differed sufficiently for non-skeletal models to discriminate between 
them. A feature vector was extracted for every image (30 skeletons × 5 surface forms × 3 orientations) from each 
of these models (GBJ, GIST, HMAX, AlexNet-fc8). Then, for each model and object pair (same surface form), 
a linear support vector machine (SVM) classifier was trained to label objects using two object orientations; its 
ability to label the objects was tested using the third orientation. This procedure was repeated for every surface 
form and every combination of orientations between objects (0° × 0°; 0° × 30°; 0° × −30°; 30° × 30°; 30° × −30°; 
−30° × −30°). A final discrimination score was computed for each object pair by averaging the decoding accu-
racies across every surface form and combination of orientations. This analysis revealed that every model could 
discriminate between objects significantly above chance (0.50; Ms > 0.75), ts > 41.88, ps < 0.001, ds > 2.01  
(see Supplemental Fig. 1). Together, these findings demonstrate that the objects within our stimulus set were 
sufficiently different along other visual dimensions that non-skeletal models could accurately discriminate them.

Experiment 2 – Can Perceived Similarity Be Explained by Another Model of 
Structure?
The results of Experiment 1 suggest that humans incorporate skeletal representations when making object sim-
ilarity judgments. However, an alternative possibility is that participants’ sensitivity reflected a different model 
of structure, namely one based on the coarse spatial relations between object parts52–54. A model based on coarse 
spatial relations suggests that the structure of an object is represented by the categorical relations between compo-
nent parts (e.g., components above one another vs. components side-by-side). In contrast to skeletal descriptions 
of shape, which describe quantitative relations between component parts, a coarse spatial-relations model would 
predict that only qualitative changes to the overall spatial arrangement of the parts (e.g., changing component 
relations from ‘side-by-side’ to ‘end-to-end’) should influence object recognition. Yet objects with similar spatial 
relations also have more similar skeletal structures. Thus, the relation between skeletal similarity and human 

Figure 3.  Results from Experiment 1. (A) Bar plot displaying the correlations (Pearson) between each model 
and human perceptual similarity judgments (error bars are bootstrapped SE). Models did not differ significantly 
from each other in the degree to which they predicted human judgments. The horizontal black bar represents 
the noise ceiling, which indicates the expected performance of the true model given the noise in the data (width 
represents SE). (B) Bar plot displaying the percentage of variance accounted for by each model individually 
(lighter shade) and the percentage of unique variance of the total explainable variance (r2

Total = 20.5%) 
accounted for by each model (darker shade). A model of skeletal similarity explained the most unique variance 
(33.13% of total explainable variance) when compared to any single model or combination of models (see 
Supplemental Table 2 for the unique and shared variance explained by all model combinations).
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perceptual judgments in Experiment 1 could have reflected the co-variation between the shape skeleton and an 
object’s coarse spatial relations.

Here we tested whether participants’ judgments of perceptual similarity were influenced by an object’s skeletal 
structure even when coarse spatial relations were held constant, and thus unable to be used as a similarity cue. 
If perception of object shape is based on a skeletal structure, then a proportional change to the shape skeleton 
would elicit a proportional decrease in recognition, even when the coarse spatial relations are unchanged. Thus, as 
two skeletons become more dissimilar, participants should judge the objects as more different from one another.

Stimuli and experimental design.  To test whether proportional changes to the shape skeleton led to pro-
portional deficits in recognition, we adapted three objects from Experiment 1 to have six increments of skeletal 
dissimilarity (0%, 10%, 20%, 30%, 40%, 50% difference; see Methods for additional details). The three objects 
consisted of distinct coarse spatial relations (see Fig. 4A, Methods, and Supplemental Fig. 2). Changes to the skel-
eton were implemented by moving one component along the length of another component in 10% increments 
(see Fig. 4A). This manipulation caused systematic changes to the shape skeleton without changing the coarse 
spatial relations between the object’s component parts. Thus, if skeletal similarity affects participants’ perceptual 
judgments, independent of coarse spatial relations, then performance should scale proportionally with changes 
to the skeleton.

Participants (n = 42) completed a discrimination task in which they were shown two simultaneously pre-
sented objects and were instructed to judge whether the objects were the same or different in their coarse spa-
tial relations. Crucially, participants were instructed to ignore any changes to the precise positions of the object 
parts (i.e., exact skeleton) so as to make their decision on the basis of “overall shape.” Participants were given a 
familiarization phase to ensure they understood that these instructions referred to objects with the same coarse 
spatial relations (e.g., in Fig. 4A each column consists of objects with the same “overall shape”, but different skele-
tons). Objects were presented from three orientations that maximized the visibility of the object’s structure (30°, 
60°, and 90°). Participants were given unlimited time to respond but were encouraged to respond quickly and 
accurately.

Results and discussion.  Participants performed significantly above chance (0.50) at every level of skeletal 
change, Ms > 0.60, ts(34) > 2.32, ps < 0.026, ds > 0.39, (MRTs  < 1705 ms), demonstrating that they followed the 
task instructions to identify objects by their coarse spatial relations. Crucially, however, participants’ perfor-
mance in discriminating between objects with the same coarse spatial relations was less accurate as a function 
of skeletal change, F(1, 34) = 51.77, p < 0.001, ηp

2 = 0.60 (Fig. 4B), suggesting that when participants make per-
ceptual similarity judgments, they incorporate fine-grained structural information, as predicted by a skeletal 
model. Nevertheless, as in the previous experiment, a change to the object’s shape skeleton also induced changes 
along other visual dimensions (e.g., image-statistics). Thus, we tested whether participants’ performance was 

Figure 4.  Example stimuli and results from Experiment 2. (A) Objects were comprised of three sets, each with 
distinct coarse spatial relations (separate columns). Crucially, objects with the same spatial relations varied 
in skeletal similarity by increments of 0%, 10%, 20%, 30%, 40%, or 50% (each row within a column). On the 
‘same’ test trials (objects within the same column), participants were presented with a reference object (0%; top 
row) and an object with the same coarse spatial relations. On the ‘different’ test trials (objects across columns), 
participants were presented with objects that had different coarse spatial relations. Objects were presented 
in one of three orientations (30°, 60°, 90°; see Supplemental Fig. 2 for full stimulus set). (B) Participants’ 
recognition accuracy (proportion correct) for objects with the same coarse spatial relations decreased as a 
function of skeletal change, suggesting that humans represent object structure by their skeletons. The dotted line 
represents chance performance and the error bars represent ± 1 SE.
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better described by other models of vision. To this end, we used a random-effects regression analysis, with the 
skeletal similarity model and other models (i.e., GBJ, GIST, HMAX, and AlexNet-fc6) as predictors (subject and 
object as the random effects; see Methods for additional details). Analyses revealed that the model of skeletal 
similarity remained a significant predictor of human performance, even when controlling for the other mod-
els, χ2(1) = 22.30, p < 0.001, and that it explained the greatest amount of variance in participants’ responses, 
β = −1.24. The only other model to explain unique variance was GIST, χ2(1) = 19.55, p < 0.001, β = 0.63, sug-
gesting a role for image-statistics in this process (see Supplemental Table 3 for the results of the other models).  
To ensure that the predictive power of the skeletal model was not simply the result of a suppression effect, we 
tested the skeletal model against every other model (Skeleton ∪ GBJ; Skeleton ∪ GIST; Skeleton ∪ HMAX; 
Skeleton ∪ AlexNet-fc6). Skeletal similarity was predictive of human judgments in each case, χ2(1) > 9.27, 
ps < 0.002. Taken together, these findings suggest that participants’ judgments of perceived object similarity 
reflect the metric positions of object parts, consistent with an object representation based on skeletal structure, 
not the course spatial relations. Combined with Experiment 1, these results provide further support for the 
unique, and possibly privileged, role of skeletal descriptions of shape in object recognition.

Experiment 3 – Are Skeletal Structures a Privileged Source of Information For Object 
Recognition?
A model of skeletal similarity was most predictive of human perception in Experiments 1 and 2, when compared 
to other, non-shape-based, models of visual similarity (i.e., GBJ, GIST, HMAX, and AlexNet), as well as another 
descriptor of structure (i.e., coarse spatial relations). Together, these results suggest that shape information, par-
ticularly skeletal descriptors of shape, plays an important role in object recognition. However, there exist alterna-
tive descriptors of shape which emphasize local contour information55,56 or the non-accidental properties (NAPs) 
of component parts12, not skeletal structures. Thus, it remains unknown whether, for object recognition, skeletal 
structures offer a more informative descriptor of shape than local contour information and component parts.

To test this hypothesis, the skeleton of an object was pitted against its surface form in a match-to-sample task. 
Surface forms were designed to alter the object’s contours without changing the object’s underlying skeleton37 (see 
Fig. 2B). As described in more detail below, surface form similarity was perceptually matched to skeletal similarity 
and surface forms were well characterized by other models of vision. Moreover, surface forms were created such 
that they differed in NAPs in order to compare the skeletal descriptions against a model of shape based on com-
ponent parts12,57. NAPs, such as the degree to which a component tapers or bulges outward, are thought to play an 
essential role in models of shape perception because they serve as unique identifiers of component parts, allowing 
objects to be identified from a variety of viewpoints12,58. Thus, by pitting an object’s skeleton against its surface 
form, we can better understand the degree to which different descriptors of shape are used for object recognition.

Surface form properties.  To quantify the degree of visual similarity between surface forms, participants 
(n = 41) conducted a surface form discrimination task (see Methods). In this task, participants judged whether 
two objects were the same or different in surface form (same skeletons). Surface form discrimination accuracy 
was compared to skeletal discrimination accuracy from Experiment 1 for the four skeletons used here (see 
Methods and Supplemental Fig. 3). This analysis revealed that surface form discrimination accuracy (M = 0.90, 
SD = 0.15) did not differ from skeleton discrimination accuracy (M = 0.88, SD = 0.14), t(74) = 0.48, p = 0.63. 
Follow up analyses revealed that participants’ surface form discrimination performance was well described by 
GBJ, GIST, HMAX, and AlexNet-fc6 models, rs = 0.63–0.77, with AlexNet-fc6 explaining unique variance when 
all four models were entered into a random-effects regression, χ2(1) = 12.71, p < 0.001.

To test whether surface forms were comprised of unique NAPs, a separate group of participants (n = 41) were 
taught to identify different NAPs and they then rated the degree to which each surface form exhibited a particular 
NAP (e.g., “To what extent do parts of this object exhibit taper?”) on a 7-point Likert scale (1 “not at all”; 7 “a 
lot”; see Methods for details). A k-means cluster analysis59 revealed that participants’ ratings were best described 
by four clusters, and a permutation test, in which cluster labels were shuffled 10,000 times, revealed that cluster 
labels were predictive of each surface form significantly better than chance (ps < 0.002). That the surface forms 
were better described by four, rather than five (one for each surface form), clusters is consistent with two of the 
surface forms having the same NAPs, but differing in metric properties such as circumference (see Fig. 2B)57,60.

Match-to-sample task: design.  Having confirmed that the surface forms were perceptually matched to 
skeletal differences, and that they were comprised of unique NAPs, we were in a position to test whether skeletal 
descriptions of shape were a privileged source of information for object recognition relative to other descriptors 
of shape. In a match-to-sample task, a separate group of participants (n = 39) were presented with a sample object 
and two choice objects (i.e., target and distractor; see Fig. 5A–C). They were instructed to judge which of the 
two choice objects was most likely to be from the same category as the sample object. The target object matched 
the sample object in either its skeleton or surface form. The distractor object differed from the sample object by 
both skeleton and surface form. These trials ensured that participants were able to match objects by either their 
skeleton or surface form when each property was presented in isolation (see Fig. 5A,B). Other trials presented a 
conflict between the object’s skeleton and surface form such that one of the choice objects matched the sample’s 
skeleton, but not surface form, and the other object matched the object’s surface form, but not skeleton (see 
Fig. 5C). The conflict trials tested whether the skeletal descriptors served as a preferred cue for object recogni-
tion. The objects were presented as still images in one of three depth orientations (30°, 60°, 90°; see Supplemental 
Fig. 3). Participants were instructed to ignore the orientations of the objects and, on each trial, to choose which of 
the two choice objects was from the same category as the sample object.
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Match-to-sample task: results and discussion.  Participants successfully categorized objects by either 
their skeletons, M = 0.88 (MRT = 1167 ms), t(38) = 27.01, p < 0.001, d = 4.32, 95% CI [3.35, 5.41], or surface forms, 
M = 0.78 (MRT = 1419 ms), ts(38) = 15.51, p < 0.001, d = 2.48, 95% CI [1.87, 3.16], when each cue was presented 
in isolation, as indicated by their above chance performance in these conditions (see Fig. 6A). Crucially, however, 
on the conflict trials, participants categorized objects by their skeletons, not surface forms, t(38) = 6.63, p < 0.001, 
d = 1.06, 95% CI [0.66, 1.45] (see Fig. 6B,C). Indeed, participants preferentially categorized objects by their skel-
etons when pitted against all, M > 0.61 (MRT < 1218 ms), ts[38] > 2.52, ps < 0.016, ds > 0.40) but one, M = 0.58 
(MRT = 1140 ms) (p = 0.059, d = 0.31) surface form. Thus, although surface forms were perceptually matched to 
the objects’ skeletons and were comprised of unique NAPs, participants relied more heavily on the shape skeleton 
when classifying objects, suggesting that skeletal structure may be a privileged source of shape information for 
object recognition.

General Discussion
The ability to determine the similarity between shapes is crucial for object recognition. Shape skeletons may be 
particularly useful in this context because they provide a compact descriptor of shape, as well as a formalized 
method for computing shape similarity. Nevertheless, few models of biological object recognition include skeletal 
descriptions in their implementation. Here we tested whether skeletal structures provide an important source 
of information for object recognition when compared with other models of vision. Our results showed that a 
model of skeletal similarity was most predictive of human object judgments when contrasted with models based 

Figure 5.  Examples of the three trial types used in Experiment 3. (A) A skeleton match trial wherein one choice 
object matched the sample’s skeleton, but not surface form. The other choice object matched on neither skeleton 
nor surface form. (B) A surface form match trial wherein one choice object matched the sample’s surface form, 
but not skeleton. The other choice object matched on neither skeleton nor surface form. (C) A conflict trial 
wherein one choice object matched the sample’s skeleton, but not surface form, and the other choice object 
matched the sample’s surface form, but not skeleton.

Figure 6.  Results from the match-to-sample task of Experiment 3. (A) Participants’ mean accuracy (error bars 
represent ± 1 SE) on trials in which only a skeleton or surface form match was possible (dotted line indicates 
chance performance). (B) Participants’ categorization judgments in the conflict trial. A value closer to 1 
indicates greater weighting of the object’s skeleton; a value closer to 0 indicates greater weighting of the object’s 
surface form. Although participants successfully matched objects by their skeletal structure or surface forms 
when each cue was presented in isolation, they were more likely to match objects by their skeletons, as opposed 
to their surface forms, when these cues conflicted with one another. (C) Histogram of participants’ responses 
on the conflict trials. A value greater than zero indicates greater weighting of skeletal information. The majority 
of participants matched objects by their skeletons, demonstrating a consistent pattern of responses across 
participants.

https://doi.org/10.1038/s41598-019-45268-y


8Scientific Reports |          (2019) 9:9359  | https://doi.org/10.1038/s41598-019-45268-y

www.nature.com/scientificreportswww.nature.com/scientificreports/

on image-statistics or neural networks, as well as another model of structure based on coarse spatial relations. 
Moreover, we found that skeletal structures were a privileged source of information when compared to other 
properties thought to be important for shape perception, such as object contours and component parts. Thus, our 
results suggest that not only does the visual system show sensitivity to the skeletal structure of objects32,36,37, but 
also that perception and comparison of object skeletons may be crucial for successful object recognition.

The strength of skeletal models is that they provide a compact description of an object’s global shape structure, 
as well as a metric by which to determine shape similarity. Indeed, shape skeletons may offer a concrete formali-
zation for the oft poorly defined concept of global shape. Skeletal descriptions exhibit many properties ascribed 
to global shape percepts such as relative invariance to local contour variations22,35. Moreover, there exist many 
methods by which to compare skeletal structures, such as by their hierarchical organization61 or using distance 
metrics (as used here)27, thereby allowing for a quantitative description of shape similarity. Such a description 
may be particularly important when recognizing objects across previously unseen views or categorizing novel 
object exemplars.

In the current study, we chose to test whether humans represent a 3D skeletal structure rather than a 2D 
skeleton that is arguably more easy to compute from an image26. Our decision was motivated by behavioral36 
and neuroimaging work37,38 suggesting sensitivity to 3D skeletons in the primate visual system, as well as accu-
mulating evidence that object perception (at least for novel objects) is best described by a 3D object-centered 
shape representation48,49. However, it remains unknown how a 3D skeletal structure arises from 2D images on the 
retina. One possibility is that skeletal computations in the visual system invoke generative shape processes62,63. 
These processes may be able to recover an object’s 3D skeletal structure from retinal images by incorporating 
a small number of image-computable 2D skeletons (e.g., one from each eye)64. Alternatively, it is possible that 
an object’s 3D structure may be recovered from a single image by first creating a representation based on depth 
properties and surface orientation, a so-called 2.5D sketch8. Indeed, recent neural network models have been able 
to successfully reconstruct an object’s 3D shape from single images by incorporating 2.5D sketches65, offering a 
possible mechanism for 3D skeleton generation. Consistent with these possibilities, our results showed that object 
judgments were well described by a 3D skeletal structure even though participants were only ever shown object 
images from a limited number of viewpoints. Nevertheless, more research is needed to understand how 3D skel-
etal representations arise from 2D images on the retina.

A question that arises from the current findings is the extent to which the stimuli and tasks used here invoke the 
same mechanisms as rapid real-world object perception, also known as ‘core’ object recognition66. Indeed, one might 
ask whether the tightly controlled stimulus set, which was designed to vary in skeletal similarity, and the untimed tasks, 
where participants could directly compare the similarity of objects, invoke ‘core’ object recognition processes. It is well 
known that the visual system receives input from multiple systems (e.g., frontal and parietal regions) and incorpo-
rates recurrent processes to solve object recognition, particularly in cases of uncertainty67–69. Thus, it is possible that 
object recognition tasks in this study, and the implementation of skeletal models more generally, may have invoked 
higher-level processes. Although we acknowledge that object recognition is not a unitary process, with higher-level 
processes playing an important role, we suggest that our stimuli and tasks likely measured core object recognition. 
In particular, in Experiment 1, we found that the objects could be discriminated by models that are implemented 
during a feedforward sweep through the ventral visual stream, and these models were also predictive of human judg-
ments. Moreover, we found that participants performed equally well when objects were presented for only 100 ms (see 
Supplemental Experiment 1). Nevertheless, it is an open question whether shape skeletons are implemented using 
exclusively feedforward mechanisms or whether recurrent or generative processes are also needed6,63,70.

Although our findings suggest that skeletal descriptors play an important role in object recognition, we would not 
argue that skeletal descriptions alone are sufficient. Humans do not perceive the visual environment simply as a collec-
tion of skeletons, but rather, as complete objects where local contours, textures, and colors are integrated with a shape 
structure. Indeed, our results showed that other models of vision were also predictive of participants’ object judgments 
to varying degrees in every experiment. That other models were also predictive may be unsurprising, given that both 
shape- and non-shape-related properties are known to play important roles in object recognition. For instance, local 
contour information may be particularly useful for making subordinate-level category distinctions where the skeletons 
of objects are roughly the same54,71. Similarly, texture statistics and feature descriptions have been shown to be impor-
tant indicators for both basic11,72 and superordinate-level73,74 object distinctions. And though it is currently unclear 
whether feedforward neural network models (such as the one tested here) incorporate global shape information75,76, 
more biologically plausible models with recurrent or generative architectures may begin to approximate human shape 
perception68. Nevertheless, our work highlights the importance of formalized models of shape for object recognition, 
particularly the unique, and possibly privileged, role that skeletal structures may play.

Methods
Participants.  205 participants were tested in the current study (Mage = 19.75 years; range = 18.03–23.48 
years). Of these participants, 17 were excluded for exhibiting chance, or below chance, performance (3 from 
Experiment 1; 7 from Experiment 2; 4 from the surface form discrimination task of Experiment 3). Because accu-
racy could not be evaluated in the NAP rating task of Experiment 3, we ensured that participants exhibited reli-
able performance; 6 participants were excluded from this experiment for failing to meet this criterion (αs < 0.7). 
All participants provided informed consent and participated for course credit. Experimental procedures were 
approved by Emory University’s Institutional Review Board (IRB). All experiments were performed in accord-
ance with the relevant guidelines and regulations of the IRB.

Apparatus.  All tasks were presented on a desktop computer with a 19-inch screen (1280 × 1024 px) and con-
trolled using custom software written in Visual Basic (Microsoft). Participants sat at a distance of ~60 cm from 
the computer screen.
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Experiment 1
Stimulus generation.  Objects were procedurally generated using the Python API for Blender (Blender 
Foundation). Each skeleton was comprised of three segments created from Bezier curves of a random size and 
curvature scaled between 0.05 and 0.25 virtual Blender units (vu). The first axis segment was oriented forward 
towards the ‘camera’. The second and third segments were oriented perpendicular to the first segment and 
attached to the first segment or second segment at a random point along their length. Surface forms were created 
by applying a circular bevel to the object’s skeleton along with one of five taper properties that determined the 
shape of the surface form. Finally, the overall size of the object was normalized to 0.25 vu.

Skeletal similarity model.  The coordinates of the skeleton for each object were extracted by sampling 999 
points along the length of each axis segment (2997 points in total). Skeletal points were normalized by the length 
of each segment by subsampling points along the skeletal structure until these points were evenly spaced across 
the skeleton by 0.0005 vu (for ease of analysis, coordinates were rescaled by a factor of 1000). Skeletal similarity 
was calculated as the mean Euclidean distance between each point on one skeleton structure with the closest point 
on the second skeleton structure following maximal alignment. Maximal alignment was achieved by overlaying 
each structure by its center of mass and then iteratively rotating each object in the picture plane orientation by 15° 
until the smallest distance between structures was found.

Gabor-jet (GBJ) model.  The GBJ model is a low-level model of image similarity inspired by the response 
profile of complex cells in early visual cortex46. It has been shown to scale with human psychophysical dissimilar-
ity judgments of faces and simple objects77. To simulate the response profile of complex cell responses, the model 
overlays a 12 × 12 grid of Gabor filters (5 scales × 8 orientations) along the image. The image is convolved with 
each filter, and the magnitude and phase of the filtered image is stored as a feature vector. Dissimilarity between 
each image is computed as the mean Euclidean distance between feature vectors of each image. A single dissim-
ilarity value was computed for each object pair by taking the mean Gabor activation distance for an object pair 
across the three orientations (30 objects × 3 orientations).

GIST.  The GIST model is considered a mid-level model of image similarity that describes the content of an 
image through global image features47. It has been shown to accurately describe the content of natural images, 
particularly as they relate to scene perception39. The model overlays a grid of Gabor filters (4 scales × 8 orienta-
tions) on the image and then convolves the image with the filters, creating a feature activation map. This feature 
map is divided into 16 regions (based on the 4 × 4 grid) and then mean activation within each region is computed 
and stored as a GIST feature vector. GIST dissimilarity between each image is computed as the mean Euclidean 
distance between feature vectors of each image. A single dissimilarity value was computed for each object pair by 
taking the mean Euclidean distance for an object pair across the three orientations (30 objects × 3 orientations).

HMAX.  The HMAX (hierarchical MAX) model is a biologically inspired hierarchical neural network model 
that describes an image by max-pooling over a series of simple (S1, S2) and complex (C1, C2) units40,78. It has 
been shown to match human performance on simple category judgment tasks (e.g., animals and non-animals) 
and exhibits some invariance to changes in position and scale. In the current study, we used the feature patches 
provided with the HMAX model. In the first layer (S1), each image is convolved with Gabor filters (8 scales × 4 
orientations), the output of which is fed into a second layer (C1) that determines the local maximum over all 
positions and scales. The outputs of these layers are fed through a second set of simple and complex units (S2, C2). 
Dissimilarity was computed by extracting the C2 activations for each image and correlating (Pearson) it with the 
activations for every other image. A single dissimilarity value was computed for each object pair by taking the 
mean correlation for an object pair across the three orientations (30 objects × 3 orientations).

CNN.  As a model of high-level vision, we used AlexNet, an eight layer CNN pre-trained to classify objects 
from the ImageNet database41,79. We adopted AlexNet rather than other CNNs in our analyses because its archi-
tecture is relatively simple by comparison and because it can identify objects with high accuracy41. Importantly, 
AlexNet has been shown to be predictive of human object similarity judgments42. CNN similarity for each object 
was calculated by extracting a feature vector from each convolutional, and fully connected, layer for each object 
image, and then computing the mean Euclidean distance between the feature vector for each image with every 
other image. A single difference value was computed for each object pair by taking the mean CNN difference for 
an object pair across the three orientations (30 objects × 3 orientations). Dissimilarity values were calculated for 
every layer and correlated to participants’ behavioral judgments. Participants’ similarity judgments in Experiment 
1 were most strongly correlated with fully-connected layer 6 (fc6) of AlexNet, r = 0.34 (see Fig. 3A). Because fc6 
was most predictive in this experiment, we tested only fc6 in subsequent experiments.

Discrimination task.  On each trial, participants were shown images of two objects (side-by-side) presented 
simultaneously in one of three depth orientations (−30°, 0°, +30°). Objects were matched for surface form and 
either had the same or different skeleton. Participants were instructed to decide whether the two images showed 
the same or different object (independent of orientation). Each object was paired with every other object (includ-
ing itself) during the experimental session. Participants were administered a total of 885 trials (435 different and 
450 same trials). Each trial began with a fixation cross (500 ms), followed by a pair of objects, which remained 
onscreen until a response was made, followed by an inter-trial interval (500 ms). Each object was approximately 
6° × 6° in size and subtended 9° from the center of the screen.
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Experiment 2
Stimulus generation and model analyses.  A k-means cluster analysis was conducted on participants’ 
discrimination data from Experiment 1. This analysis revealed that objects were well described by four clusters. 
Based on these clusters, three perceptually matched objects were chosen whose skeletons could be altered without 
changing the coarse spatial relations (see Supplemental Fig. 2). Importantly, these objects also had different coarse 
spatial relations (Set 1: two components below a third, pointing down, one component placed in front of the 
other; Set 2: one component on either side of a third, one pointing up and the other down; Set 3: one component 
on either side of a third, each pointing diagonally down). Six versions of each object (0%, 10%, 20%, 30%, 40%, 
and 50% skeleton difference) were generated by moving one segment along the length of the central segment in 
10% increments (relative to the length of the central component). Objects were rendered with only the thinnest 
surface form to prevent component parts from overlapping. Images of each object (18 total) were generated in 
three orientations (30°, 60°, 90°) intended to maximize the view of each object. Each object was analyzed and 
compared with every other object using the same models and procedure described in Experiment 1.

Discrimination task.  On each trial, participants were shown images of two objects (side-by-side) presented 
simultaneously in one of the three depth orientations (30°, 60°, 90°). Each object was rendered with the same 
surface form (see Fig. 4A) and either had the same or different coarse spatial relations. On each ‘same’ trial, partic-
ipants were presented with both a reference object (0% skeletal difference) and another object that had the same 
coarse spatial relations but different skeleton in one of the increments described previously (objects in the same 
columns of Fig. 4A). On each ‘different’ trial, participants were presented with two objects that had different coarse 
spatial relations (any possible skeleton; objects in different columns of Fig. 4A). Participants were instructed to 
decide whether the two images showed an object with the same or different “overall shape” (independent of orien-
tation). Participants were given instructions and 8 sample trials (with feedback) using a separate set of objects to 
ensure that they understood that “overall shape” referred to objects with the same coarse spatial relations (4 same 
trials; 4 different trials). In the same trials, each skeletal difference was presented an equal number of times in each 
possible orientation. In the different trials, object pairs with different coarse spatial relations (any possible skele-
ton) were randomly selected and presented in randomly determined orientations. Participants were administered 
at total of 648 trials (324 same trials and 324 different trials). Each trial began with a fixation cross (500 ms), fol-
lowed by a pair of objects, which remained onscreen until a response was made, followed by an inter-trial interval 
(500 ms). Each object was approximately 6° × 6° in size and subtended 9° from the center of the screen.

Experiment 3
Stimulus generation and model analyses.  Four perceptually matched objects were chosen from the 
object clusters identified in Experiment 2. Images of each object (4 objects × 5 surface forms) were generated in 
three orientations (30°, 60°, 90°) intended to maximize the view of each object (see Supplemental Fig. 3).

Surface form discrimination task.  On each trial, participants were shown images of two objects 
(side-by-side) in one of the three depth orientations (30°, 60°, 90°). Objects had the same shape skeleton and 
either the same or different surface forms. Participants were instructed to decide whether the two images showed 
the same or different object (independent of orientation). Each surface form was paired with every other surface 
form an equal number of times for a total of 600 trials.

NAP task.  To test whether surface forms were comprised of unique component parts, participants rated each sur-
face form on the degree to which it exhibited a specific NAP. During a training phase, participants were taught a subset 
of NAPs (drawn from Amir, et al.57) and then shown a subset of objects that they were asked to rate on the degree to 
which they exhibited the specific NAP. The four NAPs were: (1) taper, defined as the degree to which the thickness of 
an object was reduced towards the end (taper in the current study corresponds to ‘expansion of cross-section’ in Amir 
et al.57); (2) positive curvature, defined as the degree to which an object part curved outwards; (3) negative curvature, 
defined as the degree to which an object part curved inwards; and (4) convergence to vertex, defined as the degree to 
which an object part ended in a point. We excluded the curved versus straight axis property of Amir et al.57 because 
it was confounded with the object’s skeleton. We also excluded the change in cross-section property (e.g., circular vs. 
rectangular shape) because all of the surface forms had a circular cross-section. Participants were tested on their under-
standing of the four NAPs with a task in which they were presented with pairs of single-part objects (simultaneously 
onscreen) where one exhibited an NAP and the other did not. Participants were instructed to select the object that 
exhibited more/less of a particular NAP (e.g., “Which object exhibits more positive curvature?”; feedback was pro-
vided). During the rating phase, participants were shown each test stimulus with each surface form (4 objects × 5 sur-
face forms) and asked to rate the degree to which each surface form exhibited a particular NAP (e.g., “To what extent do 
parts of this object exhibit taper?”) on a 7-point Likert scale (1 = “not at all”; 7 = “a lot”).

Match-to-sample task.  On each trial, participants were shown one object (sample) placed centrally near 
the top of the screen above two objects near the bottom of the screen (target and distractor). Participants were 
instructed to choose which of the two bottom objects was most likely to be in the same category as the sample. 
Participants were presented with three possible trial types: skeleton and surface form trials, in which one object 
matched the sample in either skeleton or surface form, respectively (the other object matched on neither; see 
Fig. 5A,B); and conflict trials in which one object matched in skeleton, but not surface form, and the other object 
matched in surface form, but not skeleton (see Fig. 5C). Participants were administered a total of 480 trials (160 of 
each trial type). Each trial began with a fixation cross (500 ms), followed by the sample and choice objects, which 
remained onscreen until a response was made, followed by an inter-trial interval (500 ms). Each stimulus was 
approximately 6° × 6° in size, and choice objects subtended 9° from the center of the screen.
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Data Availability
All data, stimuli, and stimulus generation tools are available at: https://github.com/vayzenb/Skeletal-obj-recog.
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