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ABSTRACT: Cell-to-cell variability and functional heterogeneity are
integral features of multicellular organisms. Chemical classification of cells
into cell type is important for understanding cellular specialization as well
as organismal function and organization. Assays to elucidate these
chemical variations are best performed with single cell samples because
tissue homogenates average the biochemical composition of many
different cells and oftentimes include extracellular components. Several
single cell microanalysis techniques have been developed but tend to be
low throughput or require preselection of molecular probes that limit the
information obtained. Mass spectrometry (MS) is an untargeted, multiplexed, and sensitive analytical method that is well-suited
for studying chemically complex individual cells that have low analyte content. In this work, populations of cells from the rat
pituitary, the rat pancreatic islets of Langerhans, and from the Aplysia californica nervous system, are classified using matrix-
assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI) MS by their peptide content. Cells were
dispersed onto a microscope slide to generate a sample where hundreds to thousands of cells were separately located. Optical
imaging was used to determine the cell coordinates on the slide, and these locations were used to automate the MS
measurements to targeted cells. Principal component analysis was used to classify cellular subpopulations. The method was
modified to focus on the signals described by the lower principal components to explore rare cells having a unique peptide
content. This approach efficiently uncovers and classifies cellular subtypes as well as discovers rare cells from large cellular
populations.

Cell-to-cell chemical variability and heterogeneity are
fundamental features of multicellular organisms. Cells

have historically been classified by their morphology and
localization within an organism. However, a cell’s chemical
content can also suggest cellular function and specialization.
Further, even within supposedly homogeneous cell populations,
chemical heterogeneities can be observed due to a variety of
endogenous and exogenous factors. Although chemical analyses
of cells are often conducted on tissue homogenates, these
assays may be less useful for cell classification because
homogenization typically mixes many cell types as well as
extracellular materials. Signals from rare cells can also be missed
because their unique chemical content is diluted during
homogenization. Single cell chemical analysis is therefore
important for categorizing individual cells based on their
chemical content. As a recent example, single cell tran-
scriptomics uncovered molecularly distinct cellular classes in
the cortex and the hippocampus, demonstrating the value of
single cell analysis for molecular cellular classification.1

Beyond the transcriptome, there also have been many
advances in single cell metabolomics and peptidomics analyses,
often using mass spectrometry (MS) and different separation
methods.2−4 The nontargeted and multiplexed nature of mass

spectrometric methods makes them useful for single cell
characterization but many are serial approaches. Consequently,
the required separation times and sampling processes have
restricted investigations to relatively few cells,3,5−7 thereby
limiting capabilities for categorizing populations of cells. Higher
throughput methods have been developed. Mass cytometry, for
example, enables classification of immune cell types based on a
panel of markers,8 but the reliance on molecular probes
requires a priori knowledge of the cellular chemical content and
restricts the number of analytical channels available per analysis.
Another high throughput approach, microarray MS, uses arrays
of hydrophilic wells surrounded by an omniphobic material,
depositing one to a few cells into each well,4 and has been used
to study metabolites from single cell organisms like algae and
yeast.9,10 Mass spectrometry imaging (MSI) is another option
that can obtain thousands of spectra from tissues,11−14 although
MSI has yet to be demonstrated for high-throughput single cell
profiling.
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In this work, we scale up single cell matrix-assisted laser
desorption/ionization (MALDI) MS to enable label-free mass
spectrometric categorization of cells in endocrine systems based
on their peptide profiles. We analyzed a variety of endocrine
and nervous system cell types, including cells from the rat
pituitary and pancreatic islets of Langerhans, and the Aplysia
californica central nervous system. These systems were chosen
because there is detailed information on the peptide content of
these cells, and we have extensive experience working with
these cell types,3,5,7 important factors in allowing the efficacy of
our approach to be evaluated. The analysis begins by spreading
a population of fluorescently labeled, intact cells onto a
microscope slide so that the cells are randomly distributed. The
population is optically imaged, and the cell coordinates are
determined. The coordinates are then used to automate the
MALDI-TOF MS analysis to target the individual cell or cells of
interest. This approach is a refinement of the stretched sample
method, in which MSI, or profiling, is conducted on tissue
samples that are placed on an array of beads embedded on a
Parafilm substrate and analyzed via MALDI MS.15−18 A similar
approach has also been used for laser ablation electrospray
ionization MSI.19 Instead of analyzing tissues or tissues on
beads, here we focused on determining distinct subpopulations
of cells based on their peptide profiles. Although a cell
population prepared in this way can also be analyzed via
traditional MSI, this targeted approach greatly reduces data size
and complexity, and improves the quality of the data as MS
acquisitions are only from the cells of interest (and not from
cellular debris or other features).
Along with optimizing the data collection process, we also

worked on effective data mining. A challenge in analyzing single
cell data sets involves finding both the major and minor
patterns that characterize cell populations. We conducted
principal component analysis (PCA) and PCA-based outlier
detection, enabling identification of subpopulations and rare
cells. Using this data collection and analysis method, we
profiled the peptide content of populations of hundreds to
thousands of cells, classifying multiple cell types within the
pituitary and pancreas, as well as revealing several rare cells
having a unique cellular content.

■ EXPERIMENTAL SECTION
Chemicals. All chemicals were purchased from Sigma-

Aldrich (St. Louis, MO), unless noted otherwise.
Sample Preparation. Details for the Aplysia neuronal

samples are provided in the Supporting Information. The
pituitary and islets of Langerhans cellular populations were
extracted from male Sprague−Dawley outbred rats (Rattus
norvegicus, 2.5−3 months-old; Harlan Laboratories, Indian-
apolis, IN). Animals were housed on a 12 h light cycle and fed
ad libitum. Euthanasia was performed in accordance with the
protocols established by the University of Illinois Institutional
Animal Care and Use Committee, and in accordance with all
state and federal regulations for the humane care and treatment
of animals.
For pituitary isolation, rats were sacrificed by decapitation

using a guillotine. The pituitaries were immediately surgically
removed and placed into ∼2 mL of ice cold Modified Gey’s
balanced salt solution (mGBSS) containing 1.5 mM CaCl2, 4.9
mM KCl, 0.2 mM KH2PO4, 11 mM MgCl2, 0.3 mM MgSO4,
138 mM NaCl, 27.7 mM NaHCO3, 0.8 mM NaH2PO4, and 25
mM HEPES dissolved in Milli-Q water (Millipore, Billerica,
MA), with the pH adjusted to 7.2 using NaOH in Milli-Q

water. Enzymatic treatment was done in an mGBSS solution
containing 1% trypsin and 0.2% collagenase at 37 °C for 20
min, followed by 5 min incubation in mGBSS containing 1%
trypsin, and another 5 min in 0.2% collagenase and 5 mg/mL of
DNase I (Boehringer-Mannheim, Mannheim, Germany)
dissolved in mGBSS. Finally, the sample was washed with
and kept for 30−180 min in a mixture containing 33% glycerol
and 67% mGBSS. The cell nucleus was stained by adding 10 μL
of 1 mg/mL of Hoechst 33342. Gentle trituration with a wide-
bore plastic Pasteur pipet was used to form the cell suspension,
which was deposited onto indium tin oxide (ITO) slides. To
remove excess extracellular glycerol, the samples were rinsed
with 150 mM ammonium acetate buffer (pH 10), which
minimizes damage to the cells,20 and which was pH balanced to
reduce removal of endogenous peptides. A total of four sample
slides containing cells from four animals were used for analysis.
Islets of Langerhans isolation was performed according to a

previously described protocol with minor modifications.21

Briefly, the pancreas was injected with 2 mL of 1.4 mg/mL
collagenase P solution from Clostridium histolyticum (Clos-
tridiopeptidase A, EC 3.4. 24. 3; cat. no. 11 213 857 001, Roche
Diagnostics, Indianapolis, IN) dissolved in mGBSS. The
injected pancreas was surgically dissected and placed in a 10
mL glass vial containing 3 mL of the collagenase P solution and
then incubated in a recirculating water bath for 20−30 min at
37 °C. The resulting suspension was washed twice with mGBSS
for 3 min at 300g, resuspended in 10 mL of mGBSS, and sieved
through a 1 × 1 mm mesh into a Petri dish. Manual collection
of islets of Langerhans into 2 mL of mGBSS in a 35 mm Petri
dish was performed with a micropipette under an inverted light
microscope. To stain the nuclei, 2 μL of 1 mg/mL Hoechst
33342 was added to the dish, followed by incubation for 15 min
at 15 °C. Islets were then treated with 0.25% trypsin-EDTA at
37 °C for 20 min. Islets were triturated into single cells and
transferred to an ITO-slide, stabilized in a 40% glycerol, 60%
mGBSS solution, and followed by washing with 150 mM
ammonium acetate.

Optical Imaging. Each dispersed cell population was
imaged using an AxioVert 200 fluorescence microscope (Carl
Zeiss, Oberkochen, Germany) with an X-CITE 120 mercury
lamp (Lumen Dynamics, Mississauga, Canada) and a 31000v2
DAPI filter set (Chroma Technology, Irvine, CA). A 10×
objective was used to obtain a mosaic image with 10% overlap
between neighboring images. Images were taken using an
AxioCam HRC color camera (Carl Zeiss) set to a resolution of
4164 × 3120.

Cell Localization. All mosaic optical images were stitched
in ImageJ to output a list of relative offsets between images.22

Individual images were batch processed with the “color
threshold” and “analyze particles” features in ImageJ to find
the cell coordinates in each image. Cell coordinates from each
image were added to the corresponding image offset to obtain
the cell coordinates on the sample slide.

Geometry File Creation. Before fluorescence imaging, a
silver sharpie was used to draw an ∼5 mm thick line along two
opposite sides of the cell population. An ultrafleXtreme mass
spectrometer (Bruker Daltonics, Billerica, MA) was used to
generate multiple fiducial markers into each line by laser
ablation.
After microscopy imaging and cell localization, 3000 rat

pituitary cells or ∼600 islets of Langerhans cells were randomly
chosen from their respective cellular populations. The
determined cell coordinates were used to create a custom
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geometry file for automatic single cell MALDI-TOF MS
analysis. The geometry file was created using the Java JDK 1.6
Applet available at http://neuroproteomics.scs.illinois.edu/
imaging.html, as described previously.15 All fiducial markers
were used when calculating the scaling and rotation parameters,
but only four markers were input into the applet.
Matrix Application. A solution of the MALDI matrix 2,5-

dihydroxybenzoic acid (50 mg/mL) in 1:1 acetone:water plus
0.5% trifluoroacetic acid (TFA) was sprayed onto the samples
using an artist’s airbrush (Paasche Airbrush Company, Chicago,
IL) propelled with nitrogen at 40 psi. The airbrush was held
∼60 cm from the sample, and the matrix coating was built up
by alternatively spraying 1 and 2 mL of the matrix solution. The
slide was rotated after each spray cycle and dried completely.
Coating thickness was estimated by weighing the sample slide
before and after matrix application and measuring the coated
area. A MALDI matrix coating of 0.2−0.4 mg/cm2 was applied.
MALDI-TOF MS. MALDI-TOF MS analysis was conducted

using the Bruker ultrafleXtreme mass spectrometer with a
frequency tripled Nd:YAG solid state laser. The laser was set to
the “small” footprint setting at an ∼30 μm diameter.
Acquisition was automated to each cell location using the
autoXecute feature of the instrument and the custom geometry
file generated earlier. For pituitary cells, signals from 250 laser
shots fired at 1000 Hz were summed for each cell. Islets of
Langerhans cells were analyzed with 1000 laser shots fired at
1000 Hz. Signals were summed from one spot on the cell for
both types of cells. Details for analyzing Aplysia neurons are
included in the Supporting Information. To confirm and
identify the markers for pituitary subpopulations, tandem MS
(MS/MS) was conducted on the pituitary extracts using the
LIFT mode of the mass spectrometer with argon as the
collision gas and an isolation window of 10 Da for the precursor
ions.
Identifying the Peptides in Pituitary Extracts. For the

pituitary samples, we also identified the peptides present using
larger samples, extracting the peptides and characterizing them
via liquid chromatography (LC)−MS. Details of the peptide
extraction, capLC−MALDI MS, and capLC−electrospray
ionization (ESI) MS/MS are provided in the Supporting
Information.
Statistical Analysis. For all cell types, the raw mass spectra

were first processed using two R packages, MALDIquant and
MALDIquantForeign,23 in order to identify those without a
signal. Mass spectra were baseline subtracted using the Top Hat
algorithm with a half-window size of 50, smoothed using the
Savitzky-Golay algorithm with a half window size of 4, and peak
picked with a minimum signal-to-noise ratio of 3. After peak
picking, the intensity of the strongest peak was used to sort the
mass spectral data set in increasing intensity. Spectra sorted in
this manner were manually examined to exclude those without
signal.
The remaining mass spectra were processed and visualized

using a custom Python script (see the Supporting Information).
The spectra were down-binned to unit m/z resolution, baseline
subtracted with a window of 10, and normalized to the total ion
count before further analysis. PCA was used to categorize major
cell subpopulations by projecting the data onto the heavily
weighted principal vectors. Principal component (PC)-based
outlier detection was performed to find rare cells.24 The same
program also generated false-color peptide distribution maps of
the population. Signal intensity is illustrated using a rainbow
color scheme. To further enhance contrast, colors associated

with lower intensities (blue and green) were also made more
transparent using the GNU Image Manipulation Program
(GIMP; see http://www.gimp.org).

■ RESULTS AND DISCUSSION
The goal of our approach is to classify populations of neurons
and endocrine cells based on their peptide profiles in order to
determine categories of cells (cell types) in a complex sample,
as well as to identify unusual peptide profiles among the studied
cells. MALDI appears well-suited for this application because of
its ability to profile the hormone and neuropeptide content of
individual cells.7,25−28 The cell population is dispersed over a
microscope slide so that the distance between the cells is large
enough to enable MALDI MS to assess individually isolated
cells; next, each cell location is profiled via MALDI-TOF MS.
To validate the protocol and our ability to target and assay
individual cells, a preliminary experiment was conducted on a
population of A. californica neurons as they are larger and easier
to visualize. Our results confirm that the method enables
targeting of cells randomly localized on a slide (see the
Supporting Information). Rather than further characterize our
protocol using the 30−50 μm diameter Aplysia neurons, we
then moved to smaller mammalian neuroendocrine cells.

High-Throughput MALDI-TOF MS Analysis of Pitui-
tary Cells. We demonstrate the capability of the approach by
analyzing populations of rat pituitary cells. The pituitary was
chosen because it contains different morphological and
functional regions, with many cell types expressing high levels
of well-characterized cell-to-cell signaling peptides.7,29−31

Challenges faced when working with these samples include
their relatively small cell size (10−20 μm diameter) and cell
optical transparency (Figure S3 of the Supporting Informa-
tion). Therefore, live pituitary cells were labeled with the
nuclear stain Hoechst 33342 and stabilized with glycerol before
being dispersed onto the slides. We have previously used a
similar glycerol stabilization protocol to conduct quantitative
single cell MALDI MS peptide measurements26 and in another
study showed that glycerol stabilization helps to maintain cell
integrity during sample preparation and decreases CE−MS
measurement variability.5 We have also obtained pituitary
peptide profiles using this protocol that are similar to those
reported by others using different approaches.30 Nuclear
staining enables cell coordinates to be determined from
fluorescent images based on nucleus size and brightness. The
stain did not produce interfering MS signals in the peptide mass
range (Figure S4 of the Supporting Information).
To speed up the MALDI MS analysis while still

demonstrating high-throughput capabilities, 3000 cells were
randomly chosen from each population and deposited on the
four microscope slides. These cells were typically distributed
over a roughly 2.5 × 4 cm2 area. If we used traditional MSI to
analyze these cell populations, ∼10000000 pixels would have
been needed to image the area at a 10 μm lateral resolution.
This high a resolution would be necessary for spatially resolving
single cells when using a raster pattern in imaging mode.
Assuming the same MALDI MS conditions as used in this
study, each pixel would need at least 0.25 s to be acquired
(summing signals from 250 laser shots fired at 1000 Hz). These
conditions would lead to an overall data collection time of
several hundred hours. With the targeted profiling technique
presented here, the MS analysis can be done in about an hour.
Each cell was profiled with a single MALDI MS acquisition.

The laser spot was set at a diameter of ∼30 μm, which is larger
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than typical pituitary cells, ensuring that the entire cell was
sampled. This reduces signal variations that may result from
only partially sampling a cell. Even from a single cell, several
pituitary peptides were detected, including arginine vasopressin
(AVP), oxytocin, and alpha-melanocyte stimulating hormone
(α-MSH) (Figure 1), which are markers of the posterior and

intermediate pituitary. The identity of these peptides was
confirmed via MALDI MS/MS (Figure S5 of the Supporting
Information). Melanotrophs in the intermediate pituitary
express high amounts of peptides derived from the pro-
opiomelanocortin (POMC) prohormone, such as α-MSH,
joining peptide and β-endorphin.32 As is typical for
melanotrophs, mass spectra with intense α-MSH signals also
contain other POMC peptides (Figure 2). The detection of
AVP and oxytocin in cells selected by nuclear stain and cell
morphology is surprising. According to the classical view, AVP
and oxytocin are expressed in the soma of distantly located
hypothalamic neurons and then transported to their release
sites in the posterior pituitary.33 Thus, no AVP and oxytocin
cell bodies were expected. The posterior pituitary is primarily
composed of these hypothalamic-originating terminals and
neurites rather than cells, so it is intriguing to find pituitary cells
with AVP and oxytocin signals. It is possible that hypothalamic
neuron terminals were colocalized with some pituitary cells,
which is consistent with the weak-to-moderate coappearance of
POMC peptides with AVP in many spectra (Figure S6 of the
Supporting Information). However, several reports have
demonstrated AVP-related immunostaining34 and vasopressin
RNA35 in some pituicytes,36 and AVP may be internalized into
some cells,37,38 and so either is a possibility. The current data
do not resolve the source of these peptides.
Determination of Major Pituitary Cell Subpopulations

using PCA. We also worked on effective data mining.
Compared to traditional MSI, the data set collected with this
approach is simplified and minimized because it contains only
spectra from cells rather than a mix of spectra from cells, debris,

media, and empty spaces. PCA was conducted to classify cell
types (Figure 3). Although more manual statistical methods

(e.g., examining biaxial plots) can also be used, multivariate
methods take into account the entire data set. Our non-
supervised analysis facilitates the detection of features because
it reveals those that are responsible for major patterns in the
data. For the described data set, the chemical profiles obtained
via MALDI MS revealed multiple pituitary cellular populations.
The loading spectra have a strong contribution from ac-α-MSH
in PC 1, lipidlike signals for PC 2, and AVP for PC 3 (Figure
3B). This pattern is consistent with examining peptide
distribution maps, with PC 1 highlighting melanotrophs and
PC 3 showing cells with strong AVP signal. PC 2 may be
composed of cells from the anterior pituitary, where lipids may
be the dominant chemical species observed in the targeted mass
range. Another possibility may be partially lysed cells that still
retain the stained nucleus. Although the pituitary contains
distinct cell types with well-characterized content, the PCA
shows a high degree of heterogeneity, with data points
spreading out along the PCs to show a continuum of signal
instead of an on−off behavior (Figure 3A). We have taken care
to reduce measurement variations by validating our ability to
target cells using an Aplysia neuronal population. Our previous
work with the stretched sample method also corroborates our
targeting accuracy.15−18 Together, these factors support the

Figure 1. Spatial distribution maps for peptides detected in a dispersed
population of pituitary cells. Distribution of (A) AVP-containing cells
and (B) ac-α-MSH-containing melanotrophs. Signal intensity is color
coded and increases from blue to red, with blue indicating noise level.
The intensity of the color scale is distinct for each ion.

Figure 2. Mass spectrum acquired from a melanotroph. Several peptides from the POMC prohormone are detected, including α-MSH, joining
peptide (J-peptide), corticotropin-like intermediate peptide (CLIP), and β-endorphin.

Figure 3. PCA of the MS data set acquired from the pituitary cell
population. (A) Score plot projected onto the PC 1 by PC 2 plane,
with a rainbow color scale indicating scores on PC 3 (warmer color =
higher PC 3 score). PC1: 49.1% variance, PC2: 10.7% variance, and
PC3: 6.0% variance. (B) Loading spectra for PCs 1, 2, and 3. Blue: PC
1; black: PC 2; and red: PC 3.

Analytical Chemistry Article

DOI: 10.1021/acs.analchem.5b01557
Anal. Chem. 2015, 87, 7036−7042

7039

http://dx.doi.org/10.1021/acs.analchem.5b01557


notion that the observed variations may be biological in origin
rather than a measurement artifact.
Determination of Chemically Distinct Rare Cells in the

Pituitary. Examining the first few PCs is useful for finding
major patterns; however, minor variations, such as chemically
rare cells, may be overlooked because they are not captured in
the first few PCs. Mass spectra corresponding to rare cells may
not strongly influence the largest principal vectors but may be
identified by projecting the data onto the smallest principal
vectors. In practice, with high-dimensional data sets, it is often
more computationally efficient to project onto the largest
principal vectors then back-project into the original data space
and, finally, subtract the resulting spectra from the original. The
difference reveals the parts of the data that were not captured
by typical PCA.24 The number of PCs used for back-projection
determines the sensitivity for detecting rare signals, with more
PCs leading to the observation of more unique signals.
This PCA-outlier detection approach was applied using the

first 23 PCs (∼90% of the total variance) for back-projection.
Figure 4 shows the generated difference mass spectrum.
Although some major pituitary peptides are still present,
many uncommon signals are also visible. Several signals are
tentatively labeled as contaminants (and not from cells) by
examining the relevant mass spectra and the ion distribution
pattern on the slide. Table 1 summarizes the peptide-containing
cell types found using traditional and extended PCA. Other

than melanotrophs, each cell type is labeled with their
distinguishing peptide marker. The characteristic ions for
each population are listed in Table S1 of the Supporting
Information. Cells identified as melanotrophs, or those
containing AVP and oxytocin signals, are classified as major
cell populations. AVP and oxytocin-exhibiting cells are
separated into two groups because some differences were
seen in their spatial distribution. A characteristic ion at m/z
2264.2 was detected in a large portion of melanotrophs and
used to classify a subpopulation of melanotrophs. For rare cells,
it is not surprising that most of the apparent biomarkers
detected were not identified. One exception is the signal at m/z
1622.8, which matches by mass to unmodified α-MSH. Most α-
MSH in the intermediate pituitary is acetylated, but the
nonacetylated form is also present39 and has been observed in
prior MSI studies of the pituitary.31 Revealing these rare cells in
conjunction with larger subpopulations demonstrates the
usefulness of our PCA-based statistical workflow to highlight
major and minor patterns.
Another interesting signal at m/z 2105.3 was detected in

many cells and does not appear to have originated from the
intermediate or posterior pituitary. Using LC−MALDI MS/
MS, we identified this ion as a putative somatotropin-related
peptide. However, only a portion of the sequence is supported
by genomic data (Figure S7 of the Supporting Information).
This assignment suggests the detection of somatotrophs from
the anterior pituitary. LC−ESI MS/MS measurements on the
same sample uncovered a number of other pituitary peptides,
including known somatotropin-related peptides (Table S2 of
the Supporting Information). Peptidomic analysis revealed
peptides from the prolactin prohormone, suggesting the
presence of lactotrophs in the sample. Both somatotrophs
and lactotrophs are acidophiles, while other major cell types in
the anterior pituitary more readily take up basophilic stains.40

Peptides from prohormones known to be expressed in
basophiles (corticotropin, thyrotropin, lutropin, and follicle-
stimulating hormone) were not detected in our peptidomic
experiments. It is possible that the predominant detection of
peptides from acidophilic cell types may have been caused by
the acidic extraction and separation conditions.

Determination of Islets of Langerhans Cell Popula-
tions. In order to explore whether the approach will work with
smaller endocrine cells, we studied the rat pancreatic islet of
Langerhans. As the islet cells are smaller than cells from
pituitary, being between 3−6 μm in diameter, these represent a
more difficult challenge for accurate cell targeting. In these

Figure 4. Difference mass spectrum for the studied pituitary cell population after accounting for 90% of the total variance (23 PCs were used for
back-projection). Known pituitary peptides are labeled; other unidentified ions are labeled with their m/z ratios. Possible contaminant signals are
marked by asterisks.

Table 1. Major Cell Populations, A Subpopulation of
Melanotrophs, And Rare Cells Found in the Rat Pituitary
Using Peptide Biomarkers Revealed via Traditional PCA and
the Extended PCA Approacha

major cell population
biomarkers subpopulation

POMC peptides
(melanotrophs)

POMC peptides and m/z 2264.2
(melanotrophs)

AVP −
oxytocin −
m/z 2105.3 −

rare cells

m/z 944.5 m/z 3175.1
m/z 1125.6 m/z 3455.3
m/z 1622.8 (unmodified α-MSH) m/z 5882.6
m/z 2491.4

aEach presented biomarker classifies a cell population, subpopulation,
or a rare cell type. Only cells with peptide signals are classified.
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cases, we dispersed cells from individual islets for each
experiment.
PCA was performed on a MALDI MS data set with spectra

from ∼600 single cells. PC 1, 2, and 3 distinguished cell types
based on known pancreatic prohormones (Figure 5, Table

2).41,42 In the loading spectrum for PC 1, peptides character-
istic for beta cells (insulin 1 and 2 prohormones) separated
cells containing peptides characteristic for alpha cells (the
glucagon prohormone), with the peptides having opposite
loading signs. Beta cells also have higher scores on PC 3 than
alpha cells. In PC 2, the somatostatin-14 peptide, characteristic
of delta cells, appeared with an opposite sign to the loading for
insulin peptide from beta cells, hence separating these cell types
as well. Although these three cell types are separated via PCA,
gamma cells, which are characterized by the pancreatic
hormone, appear convoluted in the same direction as alpha
cells in the score plot. The loading for pancreatic hormone in
PC 1 has the same sign as the glucagon prohormone peptide,
and the loading in PC 2 is close to zero. Gamma cells are much
less abundant than other cell types in islets of Langerhans

throughout a majority of the rat pancreas.41 We expect that the
low count of these observations did not provide enough data
variability to separate this cell type from others, and explains
why alpha and gamma cells are grouped together in the score
plot. Our results show successful categorization of most cell
types from the rat pancreatic islets of Langerhans, further
demonstrating the method’s capability to conduct population-
level single cell analysis, and to classify cells based on peptide
biomarkers.

■ CONCLUSIONS
We have developed a novel approach that combines in vitro live
cell labeling, optical microscopy, image processing, high
throughput single cell mass spectrometry, and multivariate
statistical analysis, to enable cellular classification via multi-
plexed analysis of cell peptide content. Cells in a randomly
distributed population were individually examined by finding
the cell coordinates using optical microscopy and performing
automated single cell MALDI-TOF MS analysis. The entire cell
is profiled via MALDI MS, and the MS data obtained from
hundreds to thousands of single cells allows cellular
subpopulations and rare cells to be revealed. We demonstrate
this method on multiple cell populations from the rat pituitary
and pancreatic islets of Langerhans, and the A. californica
nervous system.
The multiplexed chemical data that is generated, which

includes spatial information, has parallels to data obtained using
MSI. However, the approach described here saves time and
improves specificity by examining only the cells of interest. One
could use more specific stains than the nuclear stains used here.
For example, stains that differentiate glia and neurons can be
used that enable populations of cells to be classified based on
the localization stain, and then their chemical differences
compared. In addition, although we have categorized cells here
based only on their peptide profiles, morphological information
generated during optical cell finding may contribute another
dimension for cell classification. Beyond the endocrine cell
populations covered here, this approach may be used to
conduct chemical classification of many cell types across
multiple species and can easily be extended to lipids and other
molecular classes that are detected via MALDI MS.
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