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Abstract

As the global burden of dementia continues to plague our healthcare systems, efficient, objective, and sensitive tools to detect
neurodegenerative disease and capture meaningful changes in everyday cognition are increasingly needed. Emerging digital tools
present a promising option to address many drawbacks of current approaches, with contexts of use that include early detection,
risk stratification, prognosis, and outcome measurement. However, conceptual models to guide hypotheses and interpretation of
results from digital tools are lacking and are needed to sort and organize the large amount of continuous data from a variety of
sensors. In this viewpoint, we propose a neuropsychological framework for use alongside a key emerging approach—digital
phenotyping. The Variability in Everyday Behavior (VIBE) model is rooted in established trends from the neuropsychology,
neurology, rehabilitation psychology, cognitive neuroscience, and computer science literature and links patterns of intraindividual
variability, cognitive abilities, and everyday functioning across clinical stages from healthy to dementia. Based on the VIBE
model, we present testable hypotheses to guide the design and interpretation of digital phenotyping studies that capture everyday
cognition in vivo. We conclude with methodological considerations and future directions regarding the application of the digital
phenotyping approach to improve the efficiency, accessibility, accuracy, and ecological validity of cognitive assessment in older
adults.
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Introduction

The global burden of dementia, a clinical syndrome associated
with cognitive deficits that impair everyday functioning, poses
a tremendous and growing challenge to our healthcare system.
As the worldwide population of older adults continues to
increase and becomes more medically complex and diverse, the
number of people that will develop Alzheimer’s disease and
related dementias (ADRD) without current pharmacologic
treatments to improve cognition and function [1] is expected to
triple from 55 million in 2021 to over 139 million by 2050 [2].
Estimates of disability-adjusted life years (ie, sum of years lost
due to premature mortality and years lived with disability)
indicate that ADRD is extremely burdensome to individuals
diagnosed, their families, and their caregivers, ranking among

the top 10 most burdensome diseases in the United States [3].
Early diagnosis and intervention before neuronal degeneration
and functional disability begin presents one promising route to
meaningfully delay disease burden and promote aging in place
[4-6]. From a health economics perspective, it is estimated that
early detection of the prodromal, mild cognitive impairment
(MCI) stage [7] could save $7.9 trillion in the United States
alone [8]. Novel digital methods have great potential for
efficient, accessible, reliable, and accurate assessment of early
cognitive changes reflecting ADRD. However, to be most
effective, digital tools should be informed by conceptual models
that explain and predict early cognitive changes.

In this viewpoint, we focus on the application of digital
phenotyping to assess age-related changes in functional
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cognition, with contexts of use that include early detection, risk
stratification, prognosis, and outcome measurement. We begin
by outlining current approaches to detecting pathological
cognitive change along with their notable drawbacks. The digital
phenotyping approach is introduced as a promising
complementary method. We then present a neuropsychological
framework of everyday cognitive and functional changes, termed
the Variability in Everyday Behavior (VIBE) model, which can
be used to inform studies and generate testable hypotheses in
the context of digital phenotyping. Supporting literature that
was integrated to develop the VIBE model is also summarized.
We conclude with methodological considerations and future
directions regarding the digital phenotyping approach.

Current Approaches to Early Detection
of Pathological Change

Neurodegenerative pathology may be directly measured in the
brain tissue and detected in cerebrospinal fluid (CSF) and blood
[9]; biological measures are classified using biomarker-based
diagnostic frameworks for ADRD [10,11]. Importantly, existing
methods of biomarker testing are expensive, not widely
available, and may be invasive depending on the methodology
(eg, lumbar puncture). More concerning, however, is that
biological indicators of neurodegenerative disease yield limited
information on clinical outcomes such as progression, cognitive
abilities, and everyday functioning [12,13]. For example,
approximately 30% of individuals with substantial amyloid
burden—a core Alzheimer’s disease (AD) biomarker—fail to
show clinical symptoms of dementia, whereas up to 25% of
individuals who meet clinical criteria for AD have no or limited
amyloid burden [14]. The prioritization of biological outcomes
is also concerning given that clinical outcomes such as cognitive
and functional abilities are most predictive of quality of life,
cost of care, and independence, which are precisely the outcomes
that individuals diagnosed, their caregivers, healthcare
professionals, and policy makers most value [15].

Neuropsychological assessment is less expensive and invasive
compared to biomarker testing and is currently used for clinical
staging, differential diagnosis, tracking change in cognitive
functioning over time, and informing personalized
recommendations. The neuropsychological measures that are

used for clinical assessments have undergone extensive
psychometric validation and are informed by cognitive
neuroscience theories. At present, neuropsychological test results
are a key component of clinical diagnostic criteria for dementia
and MCI [10,16,17] and serve as a primary end point in most
clinical trials [18]. In recent years, several neuropsychological
tests and composite measures have shown promise in identifying
very early, subtle changes that occur in presymptomatic disease
stages [19-21].

Nevertheless, current assessment methods present
methodological drawbacks, including lengthy and
resource-intensive in-person testing sessions that are often
inaccessible to individuals from underserved or rural
communities, highly controlled testing environments that foster
limited ecological validity and test anxiety, burdensome and
error-prone scoring procedures, and limited data sharing
infrastructures. Traditional assessments take place on a single
occasion representing a one-time snapshot that may not reflect
an individual’s typical range of performance or intervening
contextual factors [22,23]. Even when repeat testing is
performed, practice effects between sessions may obscure subtle
but meaningful cognitive decline [24].

New mobile and computerized platforms with enhanced
efficiency and sensitivity, such as repeat ambulatory cognitive
assessments, address some of these methodological drawbacks
[25] and have been examined in various studies among
populations comprising healthy and community-based older
adults [22,26], those with preclinical AD [27], and those with
MCI or early dementia [28]. However, many of these methods
continue to be (A) modeled after traditional tests that measure
isolated cognitive domains with limited ecological validity; (B)
susceptible to practice effects [29]; (C) influenced by
socioeconomic status and cultural factors [30-32]; and (D) prone
to challenges with adherence even among highly motivated and
engaged individuals, particularly with longer study durations
[27,33,34]. Thus, while tremendous advances have been made
in the realm of digital cognitive assessment, existing methods
continue to show limited generalizability to diverse populations
and real-world settings, even when used at home outside of the
clinic. The strengths and weaknesses of the current approaches
are summarized in Table 1.
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Table 1. Strengths and weaknesses of current approaches to detect pathological change.

WeaknessesStrengthsApproaches

Biomarker testing •• High costObjective measurement of disease presence in the
body • Limited accessibility

• Good sensitivity/early detection of target pathology • Potentially invasive (CSFa and blood biomarkers)
• Ability to localize pathology • Limited correspondence with functional outcomes
• Ability to identify specific pathology • Limited prognostic value

• Interpretation can be subjective

Traditional neuropsychological
assessment

•• Limited accessibilityExtensively validated and informed by cognitive
neuroscience theories • Lengthy and error-prone administration and scoring

procedures• Noninvasive
• Highly controlled environment and tasks/limited

ecological validity
• Measure discrete cognitive abilities
• Inform personalized recommendations

• Limited sensitivity to early decline• Moderate correspondence with functional outcomes
• Single time point without context
• Practice effects at repeat administration
• Influenced by socioeconomic and cultural factors

Mobile cognitive assessment •• Challenges in adherenceBrief administration
• •Improved accessibility Practice effects at repeat administration

•• Impact of hardware and software differences when
personal devices are used

Potential for increased sensitivity
• Noninvasive

• Continued impact of socioeconomic/cultural factors• Ability to assess cognition in everyday context and
across multiple time points • Uncontrolled testing environment may lead to in-

creased measurement error/noise• Possible reduction in test anxiety

aCSF: cerebrospinal fluid.

Digital Phenotyping

Emerging digital tools lend a unique opportunity to address
many of the drawbacks of traditional, computerized, and mobile
cognitive testing. One such method is digital phenotyping, an
innovative approach that utilizes the “moment-by-moment
quantification of the individual-level human phenotype in situ”
based on interactions with technology, including smartphones
and smart home devices, to capture social and behavioral data
passively, continuously, and with minimal interference [35-37].
Because most everyday tasks require the coordinated effort of
multiple cognitive processes and are highly context dependent,
digital phenotyping data collected in this passive manner may
provide a more naturalistic, comprehensive, and nuanced
understanding of behavior and cognition as compared to
traditional active assessment methods that take place in the
clinic, the lab, or during a discrete period of time. Contrary to
standardized neuropsychological tasks that are highly related
to educational quality [38] and other sociocultural factors [39],
digital proxies of everyday behavior captured in someone’s
natural environment may yield a less biased measure of
cognition and function, particularly when methods rely on
longitudinal monitoring of individual change. Furthermore, high
frequency continuous data have the potential to improve
sensitivity and reliability and reduce the sample size
requirements needed to detect subtle differences between groups
or among individuals over time [40].

Smartphones, which are ubiquitous, are equipped with a host
of embedded sensors that are common across different devices
and may be leveraged to passively assess everyday activities
and behaviors. Preliminary studies have investigated
smartphone-based digital biomarkers (via sensor and application

use data) to measure specific behaviors and offer support and
validation for call and text message logs [41] as well as call
reciprocity [42] as measures of social patterns; WiFi/Bluetooth
signals as a proxy for social engagement (time spent proximal
to other people) [37]; GPS movement trajectories and keystroke
data as measures of mood [43-45]; and accelerometer data to
infer sleep patterns [46]. The validity of smartphone digital
phenotyping has been demonstrated in mental health and
neurological populations, with results supporting the predictive
utility of a range of smartphone data for daily stress levels [47],
changes in depression and loneliness [43,46,47], psychosis onset
and relapse [48-50], suicide risk [47], speech changes [51], and
biological rhythms [52].

Other studies have attempted to identify digital markers that
reflect underlying cognitive abilities. A 2018 study of 27 healthy
young adults [53] followed by a 2019 study of 84 healthy older
adults [54] demonstrated significant associations between
smartphone metrics (eg, number of apps used, usage by hour
of day, swipes, and keystroke events) and performance on
standard cognitive tests. Of note, these studies were exploratory
in nature and lacked a priori hypotheses to guide analyses. A
separate pilot study of adults with and without bipolar disorder
examined performance on a digital trail making test and found
associations between smartphone typing speed and typing speed
variability and test performance, suggesting a possible link
between executive functioning and keystroke measures [29]. In
the context of MCI and dementia, a feasibility study employing
multiple sensor streams and machine learning models identified
5 digital features that discriminated symptomatic (MCI, mild
AD) from asymptomatic groups; these features included typing
speed, regularity in behavior (via first and last phone use),
number of received text messages, reliance on helper apps, and
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survey compliance [55]. As noted by the authors of the
aforementioned pilot and feasibility studies, a major limitation
was the small sample sizes, which limited interpretability.

Indeed, although preliminary studies have laid the groundwork
for exploring relationships between passive digital variables
and standard measures of cognition, the lack of integrative
theoretical models to inform interpretation of large continuous
datasets represents a major gap [23]. As digital tools and
machine learning approaches become increasingly sophisticated,
it is critical that theoretically sound models are developed to
avoid scattershot analyses and spurious findings and to facilitate
interpretability [56]. Furthermore, as technologies inevitably
continue to evolve, the development of testable models that are
agnostic to hardware and software differences is key to the
continued validation of passive approaches [56-58]. Therefore,
we propose a neuropsychological framework to guide studies
using emerging digital tools to assess age-related cognitive and
functional decline. The VIBE model integrates established
findings regarding intraindividual variability, cognitive abilities,
and everyday functioning in the context of aging and ADRD.
Importantly, the VIBE model generates specific, testable
hypotheses grounded in theory that may inform the design and
interpretation of future digital phenotyping studies and
represents a preliminary step toward establishing conceptual
guidelines for the field.

Approach to Framework Development

The VIBE model resulted from an in-depth review of the
neuropsychology, neurology, neuroscience, rehabilitation

psychology, and computer science literature. Consistent findings
in both performance level and intraindividual variability were
identified across the spectrum of cognitive impairment and
interpreted in the context of known patterns of cognitive change
and their underlying mechanisms. The literature review was
used to conceptualize changes in everyday behavior across the
spectrum from healthy aging to ADRD and how these changes
would be captured by digital phenotyping approaches. For
example, the increased variability in standardized cognitive
testing and everyday task performance in people with MCI is
expected to result in meaningful variability in passive
smartphone sensor data in digital phenotyping studies. Without
a framework to guide analyses, aggregate data might be
prioritized over meaningful variability, which could be
misinterpreted as a nuisance (ie, “noise”). Therefore, the VIBE
model integrates and extends existing findings to provide
structure, guidance, and optimize digital phenotyping study
designs.

Our Proposed Framework

Early stages of pathological aging (ie, MCI) are associated with
mild isolated decrements on standardized cognitive tests, subtle
difficulties with complex activities of daily living, and increased
variability in both cognitive and functional measures. Later
stages (ie, dementia) are characterized by greater cognitive and
functional impairment, reduced activity and task
accomplishment, and less variability in cognitive and functional
performance. Table 2 provides a summary of these trends.
Multimedia Appendix 1 contains a comprehensive review of
the supporting literature [59-107].

Table 2. Summary of background literature supporting the Variability in Everyday Behavior (VIBE) framework.

Later decline (dementia)Early decline (MCIa)Healthy aging

Cognitive ability ••• Impaired performance on multiple
domains according to normative
scores

Impaired performance on 1+ do-
main according to normative scores

Subtle declines within normative
limits

Cognitive variability ••• Less variability than MCI for com-
plex tasks at floor

Increased variability versus healthy
older adults

Increased variability versus younger
adults

•• Increased variability than MCI for
simple tasks

Increased variability predicts fur-
ther decline and poorer cognition

Everyday functioning ••• Impaired for basic and complex
tasks

Difficulty with complex tasksSubtle changes/inefficient behaviors
(microerrors) • Independent with some compensato-

ry strategy use •• DependentFully independent
• •Inefficient (commission errors) and

more variable than healthy older
adults

Outright failure to complete tasks
(omission errors)

aMCI: mild cognitive impairment.

Theoretical models from computational science offer a useful
framework for understanding changes in ability level and
variability in the progression of pathological aging. The term
“graceful degradation” is used to characterize the way in which
complex systems maintain functionality in the face of mild
damage or problematic changes in the environment [108]. From
a neuropsychological perspective, increased inefficiency and
variability in the early stage of decline may stem from faulty

executive control mechanisms governed by the prefrontal cortex
and associated white matter projections, which, according to a
framework proposed by Giovannetti and colleagues [109], are
essential to modulate goal activations, enable smooth transitions
between goals, and inhibit inappropriate activations from
internal or external distractors during everyday tasks. Reductions
in extrastriatal dopaminergic neuromodulation required for
consistent cognitive control in early stages of dementia support
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this framework [110-112]. Indeed, long-standing explanations
for the link between inconsistency and neurologic disease
include impaired neural networks, functional connectivity, and
executive functioning [113-115]. An alternative framework
from which to interpret early patterns of inefficiency and
variability, particularly in the absence of executive function
deficits, is the resource theory [116], which originates from the
cognitive rehabilitation literature. This theory posits that early
damage to any nonspecific brain region depletes overall
cognitive resources and leads to errors in task performance and
that the level—not the type—of cognitive impairment is critical
in determining functioning [109]. As a result of mild resource
depletion, compensatory strategies are engaged to allow the
system to function, but at a cost (ie, inefficiently, slowly, and
inconsistently). In moderate-to-severe stages, greater decrements
are observed across multiple cognitive domains, basic activities
of daily living are impaired, and patterns of variability are less
clear because people are generally less active.

Considering this, we propose the Variability in Everyday
Behavior (VIBE) model as a dual-pronged neuropsychological
framework that integrates trends in variability (see Figure 1,
blue dotted line showing a U-shaped pattern peaking at MCI)
and declining ability level (see Figure 1, solid purple line
showing a negative linear trend) that are observed across the
cognitive aging spectrum. The VIBE model proposes a

theoretical foundation from which to evaluate metrics of
everyday behavior and cognition captured by the digital
phenotyping approach, both in studies examining cross-sectional
differences in individuals with different levels of cognitive
impairment, and over time in individuals with progressive
neurodegenerative disease in longitudinal designs. For example,
decreasing cognitive abilities may be indexed by decreases in
social activity [117,118], technology usage [119,120], positive
mood (ie, increased depressive symptoms [121]), and range of
movement/physical activity [122], which can all be inferred
from passive sensor metrics. These activity metrics tend to
remain stable in earlier stages and begin to decline more notably
in the transition from MCI to dementia. A simultaneous
examination of intraindividual variability within these metrics
across a longitudinal study period may reflect increased
day-to-day variability as early as the healthy to MCI transition
stage, as individuals engage reserve mechanisms and
compensatory strategies to combat mild difficulties and
inefficiencies (eg, commission errors). On metrics/activities
where dementia-level performance is at floor (eg, movement
trajectories outside the home, text messaging, other complex
activities where compensatory mechanisms have failed and task
goals are no longer achieved; ie, omission errors), we expect
variability to decrease below that which we observe in MCI
(Figure 1, blue dotted line).

Figure 1. The Variability in Everyday Behavior (VIBE) model of intraindividual variability, cognitive abilities, and everyday functioning for pathological
cognitive decline in older adults.

The existing literature is less clear on patterns of variability in
the transition from MCI to dementia [123], and we acknowledge
the possibility that for relatively simple activities that individuals
with mild dementia still perform (eg, movement trajectories
within the home, incoming phone calls, sleep/wake cycle),
variability may continue to increase in the mild dementia stage
followed by eventual decline as abilities further decline. Thus,
model predictions should be tested and interpreted with attention

to task demands, as well as other contextual features, including
the time of day [29], mood, and technology use habits. In other
words, the progression from increased variability to decreased
variability and complete failure to act depicted in Figure 1 is
expected with increasing severity of impairment, though
impairment level is determined by more than just clinical status.
There may be some period—likely at the transition between
MCI and dementia—where contextual factors (eg, task
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complexity, time of day, external distractors) interact with
clinical status to influence level of impairment on metrics of
everyday behavior. For example, a person with mild dementia
may show marked impairment and decreased variability in
financial tasks but may show only mild impairment and
increased variability in meal preparation until later in the course
of their illness when both tasks are impaired, and variability is
diminished. Thus, task effects should be carefully considered,
particularly at the boundary of MCI and dementia.

Application of the VIBE Framework
Through Digital Phenotyping Studies

Digital phenotyping using personal smartphone devices
represents a promising method to examine age-related changes
in functional cognition according to our proposed framework.
Study designs may take a variety of forms, but initial studies
should include collection of clinically relevant validation

measures and longitudinal monitoring. One potential protocol
would involve comprehensive baseline assessment to gather
gold-standard validation data on function, cognition, mood, and
other participant features such as demographics, attitudes toward
and experience with technology, and technology use habits that
are likely to influence resulting digital data. A period of passive
longitudinal monitoring using available, open-source digital
phenotyping applications (eg, Beiwe [37], mindLAMP [124])
would involve collection of a host of sensor and application
data, including the examples listed in Textbox 1.

The VIBE framework enables systematic selection and analysis
of the mobility, sociability, and device activity features from
Textbox 1 to obtain activity and variability metrics that could
be tested according to a priori hypotheses. A list of
nonexhaustive, sample hypotheses derived from the VIBE model
that are appropriate for cross-sectional studies of older adults
across the cognitive aging spectrum is included in Table 3.
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Textbox 1. Example digital phenotyping metrics across 3 feature domains.

Mobility

• Time spent at home

• Distance traveled

• Radius of gyration

• Maximum diameter

• Maximum distance from home

• Number of significant locations

• Average flight length

• Standard deviation of flight length

• Average flight duration

• Standard deviation of flight duration

• Fraction of the day spent stationary

• Significant location entropy

• Minutes of GPS data missing

• Physical circadian rhythm

• Average sleep duration

• Standard deviation of sleep duration

Sociability

• Number of outgoing texts

• Total outgoing text length

• Number of incoming texts

• Total incoming text length

• Texting reciprocity

• Texting responsiveness

• Number of outgoing calls

• Total outgoing call duration

• Number of incoming calls

• Total incoming call durations

• Call reciprocity

• Call responsiveness

Device activity

• Average battery level

• Total phone off/on events

• Total charge initiations

• Total screen on/off events

• Total application launches

• Application switches

• Central processing unit (CPU) utilization

• Time to view daily survey

• Time to complete daily survey

• Time of first/last screen on event
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Table 3. Sample hypotheses informed by the Variability in Everyday Behavior (VIBE) model.

Across-day variability metricsTotal activity level metricsDigital phenotyping feature domain

Variability in distance traveled from home will be
highest in MCI versus healthy/dementia.

Average distance traveled from home will decline from

healthy to MCIa to dementia.

Mobility

Variability in daily average outgoing text length will
be highest in MCI versus healthy/dementia.

Average number of outgoing calls will decline from
healthy to MCI to dementia.

Sociability

Variability in daily number of screen on/off events
will be greater in MCI versus healthy/dementia.

Average number of application launches will decline
from healthy to MCI to dementia.

Device activity

Time of first phone use will be most variable in MCI
versus healthy/dementia.

Average time of first phone use will decline from
healthy (earlier) to MCI to dementia (later).

Time of day effects

aMCI: mild cognitive impairment.

Methodological Considerations of the
Digital Phenotyping Approach

There are a host of important methodological factors that must
be thoughtfully considered when conducting such studies, many
of which remain unresolved. Cross-device compatibility is a
concern that becomes relevant when participants use their own
personal devices for data collection. Individual devices may
differ in operating system, screen size, sensor sampling rates,
and more. These device differences impact user interactions
and the quality of data that is collected; they are also related to
socioeconomic status and other important participant features
and thus cannot be simply covaried in analyses. A single
study-issued device may be provided to all participants to
standardize data collection and ensure that individuals from
underserved groups have an equal opportunity to participate in
such studies. However, introducing new technology creates a
deviation from participants’ routines, diminishing ecological
validity and posing more demands on everyday functioning.
Therefore, the personal versus study-provided device decision
must be weighed according to the study population and specific
aims [27,33]. Although there is a critical concern that studies
employing personal digital devices will serve to widen existing
health disparities, rates of smartphone ownership—particularly
among diverse individuals—have skyrocketed in recent years
to include a total of 85% of Americans as of 2021, up from just
35% in 2011 [125]. This rate is consistent across individuals
who identify as White (85%), Black (83%), and Hispanic (85%)
and is only slightly lower (76%) for individuals with a household
annual income less than US $30,000. Therefore, although careful
attention must be paid to ensure smartphone studies are
equitable, accessible, and generalizable to all, the increased
affordability of smartphones may alleviate this concern.
Relatedly, recruitment efforts should ensure diverse
representation within digital phenotyping studies to investigate
the generalizability of these methods. Updates to hardware,
software, and allowable permissions (ie, which sensors an app
can collect) are occurring at increasingly frequent rates as
technology evolves, presenting an additional challenge to the
continued validation and generalizability of such approaches.
Thus, a device- and operating system–agnostic theoretical
model, such as the VIBE model, from which to continually
evaluate new data is critically important.

The naturalistic and passive collection of data in a completely
unstandardized fashion presents an additional challenge in
making between-group comparisons [56], and it remains
undetermined whether between-group differences in metrics of
interest will emerge despite individual differences in everyday
phone use. The most powerful insights from the digital
phenotyping approach may be realized by monitoring
intraindividual change over longer periods of time, which would
require theoretically informed statistical models to make
generalizable claims in n-of-1 trials [56]. Another open question
relates to the various sampling rates that can be selected to
collect raw data from phone sensors and applications, which
should be considered in the context of the scientific question
and device battery limitations. Although most software platforms
include default settings for sensor sampling (eg, GPS sampled
at 1 Hz when the phone is in motion, WiFi signals recorded
every 5 minutes), they also allow for customization of sampling
rates [37]. A variety of GPS sampling rates have been applied
across several studies of primarily young adult participants
[48,49], and statistical approaches for imputing missing mobility
data have been developed [126]. However, limited studies have
examined the incremental utility of increased sampling rates
across sensors other than mobility for making predictions of
interest. Older adult phone users may require less frequent
sampling due to less activity, though this may result in a
restricted range of variability and impact findings. Determining
the minimum necessary sampling frequency for smartphone
data is directly tied to feasibility and is critical to inform the
design of future studies, as greater frequencies come with greater
costs (ie, increasingly expensive sensors, decreased battery life,
increased storage needs). This also applies to the optimal length
of the data collection period and the study sample size, which
may differ depending on the population of interest and the study
design [120], and are not appropriately determined using
traditional power calculation methods. Barnett and colleagues
[127] recommend the use of generalized linear mixed models
and change point detection methods to inform the sample size
and study duration necessary to achieve adequate power in such
studies.

Digital phenotyping studies may employ a combination of
passive and active data streams. In active data collection, users
are prompted to complete a standardized test or survey on their
smartphones, which can be used to yield key contextual
information to inform the interpretation of passive sensor data
[23,37,128-130]. However, this type of engagement detracts
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from the unobtrusive, naturalistic nature of pure passive
monitoring, and it is unclear which types of active data are most
useful when attempting to infer cognition from passive digital
data. These methodological questions around sampling
frequency and active data collection have not yet been explored
in a population of older adult phone users, whose usage patterns
may differ and may require increased sampling frequencies or
increased active data than younger adults to accurately infer
clinically relevant information.

It is also important to establish the context of use of the digital
phenotyping approach and determine whether it is best applied
as a risk, diagnostic, monitoring, prognostic, or outcome
measurement tool. Regulatory agencies like the US Food and
Drug Administration and pharmaceutical companies have
increasingly recognized the potential of digital devices as a
source of “real-world data” and “real-world evidence,” with the
capability to monitor health status and clinical response over
time and yield new insights about long-term health outcomes
in the real world, outside of traditional randomized controlled
trials [131]. However, as thoughtfully outlined by O’Bryant and
colleagues [9], there are many challenges associated with
translating new biomarker discoveries from research domains
to routine clinical settings. For this to occur, standardization of
the underlying platforms and data frameworks is critical to help
make these data more uniform, interoperable, reproducible, and
actionable [124]. Questions of scalability, manufacturability,
intellectual property law, and regulatory considerations,
including inconsistent governance of entities conducting digital
health research [132], should not be disregarded [9]. In
particular, the point at which mobile digital phenotyping
applications are considered “software as a medical device” is
ambiguous in the face of rapidly evolving regulatory guidance
[133]. Finally, and most importantly, privacy and security
concerns must be addressed, and protections of confidentiality
must be clearly and continuously communicated to users and
participants. Deidentification using study identification numbers,
industry-standard encryption methods, storage of encrypted
data on secure severs, and ongoing transparency and control
over personal data are examples of privacy considerations that
should be carefully addressed at the study design phase. Given
the extent of personal and sensitive health information involved,
prospective risk assessment using tools like the Digital Health
Checklist for Researchers should be completed beforehand to
evaluate risks and benefits and ensure safe and responsible use
of digital tools [132,134]. Importantly, the development and
enforcement of privacy standards that are applied consistently
across studies will be key to the success of this burgeoning field
[35].

Benefits of the Digital Phenotyping
Approach

Despite the numerous unresolved challenges and considerations
outlined above, the potential for the digital phenotyping
approach to yield ecologically valid and sensitive information
on changes in everyday cognition is increasingly apparent. The

benefits of emerging digital approaches are outlined in detail
in the recent American Psychological Association Handbook
of Neuropsychology [57]. To reiterate a few, sample size
requirements are reduced when using continuous largescale
data, and subtle fluctuations can be captured when data are
sampled at such high rates, lending a highly sensitive scale that
is captured in vivo. The use of personal smartphone devices
represents a complex activity of daily living, thus creating an
ideal platform to capture changes that occur early in the disease
phase. Early detection of decline provides an opportunity for
early intervention, which can lead to notable cost savings and
reduced disability-adjusted life years, as noted earlier. Increased
smartphone ownership lends increased accessibility compared
to traditional methods. Passive data are objective and do not
rely on current or retrospective self-report. However, it is
possible that the most optimal application of this approach
involves a blend of passive phenotyping, ecological momentary
assessment for context, and burst cognitive testing to uncover
the mechanisms of how changes in cognition within and across
days relate to changes in behavior. Additionally, within-person
n-of-1 designs may be increasingly sensitive and may address
the interpretive challenges of between-groups designs. Finally,
emerging digital methods should be considered complementary
to traditional neuropsychological evaluations that remain the
gold standard tool for diagnosis and intervention. If shown to
be valid, emerging digital tools may represent a sensitive and
accessible first line measure for early detection, risk
stratification, and change in response to interventions.

Conclusions

Traditional approaches to measuring age-related changes in
cognition and function provide valuable and distinct insights.
Notable strengths of biomarker, traditional, and mobile cognitive
assessments include extensive validation, measurement of
discrete cognitive abilities, and localization of pathology (Table
1). At the same time, these approaches present many drawbacks
that have become increasingly apparent in the face of
technological advances that offer innovative solutions. The
digital phenotyping approach is just 1 example of a novel tool
that can serve as an increasingly accessible, efficient, sensitive,
and personalized complement. Importantly, digital phenotyping
remains in its infancy, and many methodological considerations
warrant careful attention. Multiple sources of within-person
differences (eg, hardware, software, technology habits, daily
routines), as well as interpretive challenges of large-scale
continuous datasets, make comparisons across individuals and
across studies near impossible without a sound theoretical model
from which to design and interpret such studies. The VIBE
model, supported by decades of cross-discipline literature in
neuropsychology, neurology, neuroscience, rehabilitation
psychology, and computer science, proposes testable hypotheses
(see Figure 1 and Table 3) that can be used in future digital
phenotyping studies to provide novel, valuable, and clinically
interpretable insights into meaningful changes in everyday
behavior and cognition.
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