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60-179 Poznań, Poland; mateusz.kowacz@ifmpan.poznan.pl (M.K.);
blazej.anastaziak@ifmpan.poznan.pl (B.A.); schmidt@ifmpan.poznan.pl (M.S.);
feliks.stobiecki@ifmpan.poznan.pl (F.S.)

2 NanoBioMedical Centre, Adam Mickiewicz University in Poznan, Wszechnicy Piastowskiej 3,
61-614 Poznań, Poland
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Abstract: The ability to induce and control the perpendicular magnetic anisotropy (PMA) of ferro-
magnetic layers has been widely investigated, especially those that offer additional functionalities
(e.g., skyrmion stabilization, voltage-based magnetization switching, rapid propagation of domain
walls). Out-of-plane magnetized ferromagnetic layers in direct contact with an oxide belong to this
class. Nowadays, investigation of this type of system includes antiferromagnetic oxides (AFOs)
because of their potential for new approaches to applied spintronics that exploit the exchange bias
(EB) coupling between the ferromagnetic and the AFO layer. Here, we investigate PMA and EB
effect in NiO/Co/Au and NiO/Co/NiO layered systems. We show that the coercive and EB fields
increase significantly when the Co layer is coupled with two NiO layers, instead of one. Surrounding
the Co layer only with NiO layers induces a strong PMA resulting in an out-of-plane magnetized
system can be obtained without a heavy metal/ferromagnetic interface. The PMA arises from a
significant surface contribution (0.74 mJ/m2) that can be enhanced up to 0.99 mJ/m2 by annealing at
moderate temperatures (~450 K). Using field cooling processes for both systems, we demonstrate
a wide-ranging control of the exchange bias field without perturbing other magnetic properties
of importance.

Keywords: perpendicular magnetic anisotropy; exchange bias; magnetic thin films; antiferromag-
netic oxides

1. Introduction

For many years, magnetic thin films have aroused great interest related to their
potential uses in information technology and spintronics. For such applications, among
many different properties, the most important are those that determine the magnetization
reversal process and the stability of the magnetic configuration at remanence. Multilayer
systems composed of ferromagnetic (FM) layers surrounded by non-ferromagnetic layers,
usually heavy metals (HM) (e.g., Au, Pt, Pd [1–3]), exhibit surface anisotropy of the
Néel type [4] that enables strong perpendicular magnetic anisotropy (PMA) and greatly
stabilizes the magnetic configurations of these nanostructures [5]. Apart from PMA, the
interactions between the FM layers and the surrounding layers are crucial modifiers of the
magnetization reversal process. In particular, the exchange bias (EB) coupling occurring at
the FM/antiferromagnetic (AF) interface [6] causes unidirectional anisotropy. The presence
of this type of anisotropy is manifested in the asymmetry of the magnetization reversal
process with respect to reversals of the magnetic field [7,8].

In addition to magnetic properties, the electrical properties of multilayers are also de-
cisive in spintronic applications. Therefore, many studies have focused on layered systems
consisting of FM layers surrounded by non-conductive metal oxide layers (MO) [9–13]. Cur-
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rent extensive research on such system reveals that, at the FM/MO interfaces, the MO lay-
ers induce strong PMA [9,14,15] and interfacial Dzyaloshinskii-Moriya interaction [16,17].
These responses can also be triggered using antiferromagnetic oxides (AFOs) [18–20], en-
abling new ways to tailor magnetization reversal through the EB coupling. This capability
can be used to stabilize skyrmions at room temperature (RT) without external magnetic
fields [21–23]. The EB effect induced by coupling FM with AFO might be particularly
important to domain wall (DW) pinning [24], which is essential for the stabilization and
optimization of the DW movement in racetrack memories [25,26].

To date, research has mainly focused on HM/FM/AFM systems, where the heavy
metal (HM) induces interfacial contribution to PMA in the FM layer, and the single an-
tiferromagnetic (AFM) layer provides EB coupling. This means that the key properties
of these systems are separately activated at different interfaces, making strong interfacial
PMA and large EB field (HEB) difficult to obtain simultaneously. However, because EB
coupling originating from both interfaces may show additive behavior [27], a large HEB
should be achievable by coupling the FM to AFMs on both sides. Therefore, it is essen-
tial to find suitable AFM materials to surround the FM layer so that both AFM/FM and
FM/AFM interfaces simultaneously support strong PMA and high HEB. These systems
should also offer the ability to tune HEB and coercive field (HC), which is of particular
interest to design layered stacks suitable for applications [28]. A good candidate is Co/NiO,
because NiO favors both of these effects at RT [29]. Moreover, NiO is an insulator with
good magnetotransport properties, useful as a barrier in magnetic tunnel junctions [30,31]
or as a conductor of spin current [32–34] in oxide-based spintronic devices. The electrical
insulating properties of NiO are also used to control the EB effect by the electric field [35],
which opens a way to realize multifunctional devices with low power consumption. Fur-
thermore, the development of layered systems in which the FM layer is surrounded only
by a dielectric layer may improve the efficiency of spin-transfer torque-driven domain wall
motion due to an increase in the current density flowing in the FM layer.

In this paper, we investigate EB and PMA in NiOb/Co/Au, and in a double-exchange
biased NiOb/Co/NiOt systems (the superscript b and t denote the bottom and top NiO
layer, respectively) that has not been studied so far. We show that in these systems, the
AFM–FM interface supports a strong PMA caused by surface contributions to the effective
anisotropy, with similar values as in HM/FM/HM systems. Moreover, because EB coupling
between Co and both antiferromagnetic NiO layers is an additive effect, HEB reaches a
large value of 45 mT. Additionally, we showed that a field cooling (FC) process enhances
the PMA, which in turn allows for tuning HEB in a wide range.

2. Experiment

This work describes two systems: NiOb(10 nm)/Co(wedge shape: 0–2.2 nm)/Au(2 nm)
and NiOb(10 nm)/Co(wedge shape: 0–3 nm)/NiOt(10 nm)/Au(2 nm) deposited on nat-
urally oxidized silicon substrates with Ti(4 nm)/Au(60 nm) buffers (Figure 1). The Co
thickness gradient is 0.15 and 0.27 nm/mm for the NiOb/Co/Au and NiOb/Co/NiOt

systems, respectively. The thicknesses of the layers were calibrated using X-ray reflectivity
and a quartz balance. The wedge-shaped Co layer was deposited using a shutter move-
ment with constant velocity calculated according to the deposition rate. The samples were
fabricated in a PREVAC (Rogów, Poland) ultra-high vacuum (UHV) system with three
chambers for distinct deposition technologies: magnetron sputtering (MS), pulsed laser
deposition (PLD), and ion beam sputtering. The Ti, Au, and Co layers were deposited using
MS in an argon-rich atmosphere (pAr = 1 × 10−4 mbar), and the NiO layer was deposited
by PLD in an oxygen-rich atmosphere (pO = 1.5 × 10−5 mbar) [36]. For deposition, we used
an ultra-pure Ti (Testbourne Ltd., Basingstoke, UK), Au (Mennica Metale Szlachetne S.A.,
Warsaw, Poland), Co (Kurt J. Lesker Company Ltd., Hastings, UK), and stoichiometric NiO
(MaTeck GmbH, Jülich, Germany) targets. The transfer between MS and PLD chambers is
done through a distribution chamber without breaking UHV conditions (during transfer,
p ≤ 5 × 10−8 mbar). Nevertheless, formation of an ultrathin CoO layer at the Co/NiOt
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interface in NiOb/Co/NiOt structure is expected during deposition of NiO in the oxygen-
rich atmosphere [36,37]. To stabilize the HEB in an as-deposited state, all depositions took
place in perpendicular external magnetic fields (Hdep = −185 mT).

Materials 2021, 14, x FOR PEER REVIEW 4 of 12 
 

 

  
Figure 1. Morphology of samples and representative PMOKE hysteresis loops for the NiOb/Co-wedge/Au system: (a) tCo 
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above. 
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Figure 1. Morphology of samples and representative PMOKE hysteresis loops for the NiOb/Co-wedge/Au system:
(a) tCo = 0.68 nm, (b) tCo = 0.9 nm, (c) tCo = 2.18 nm and for the NiOb/Co-wedge/NiOt system: (d) tCo = 0.69 nm,
(e) tCo = 0.97 nm, (f) tCo = 2.19 nm.

The magnetic properties of the NiOb/Co/Au and the NiOb/Co/NiOt systems were
measured at RT along the Co thickness gradient using a polar magneto-optical Kerr effect
(PMOKE) magnetometer. The measurements were performed in two different ranges of
external perpendicular magnetic fields (Hz): (a) between −600 and 600 mT to determine
HC and HEB fields, and (b) between −1500 and 1500 mT to obtain anisotropy fields (HK)
above the Co thickness (tSRT) at which spin reorientation transition (SRT) from PMA to
easy-plane anisotropy (EPA) occurs.
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The surface topography of the NiOb/Co/Au and the NiOb/Co/NiOt samples was
measured using atomic force microscopy (Agilent 5500, Santa Clara, CA, USA) in tapping
mode. The measurements were performed using an All-In-One atomic force microscope
probe (Budget Sensor, Sofia, Bulgaria).

The sign and value of HEB of the NiOb/Co/Au and NiOb/Co/NiOt systems were
tuned with the following four FC steps. Each step took place in a vacuum chamber
(p = 1 × 10−6 mbar), starting from RT to a given temperature (TFC) with a heating rate
~16 K/min. After 5 min isothermal annealing at TFC, the sample was cooled down to RT
with a fixed orientation of perpendicular magnetic field (HFC = ±170 mT) (Table 1).

Table 1. Combinations of heating temperatures and signs of HFC for each field cooling (FC) step.

Steps TFC (K) HFC (mT)

1st 350 +170
2nd 450 +170
3rd 350 −170
4th 450 −170

3. Results and Discussion

3.1. Magnetic Properties of NiOb/Co/Au and NiOb/Co/NiOt Systems in As-Deposited State

Figure 1 shows three representative PMOKE hysteresis loops for both investigated sys-
tems measured at different tCo. For thin Co layers, the rectangular shape of hysteresis loops
with φHEB /φSat = 1 (φHEB and φSat are PMOKE signals at HEB and saturation, respectively)
(Figure 1a,d,e) shows that both systems exhibit PMA. In the case of NiOb/Co/Au with tCo
slightly below SRT, the loop shape suggests (Figure 1b) that a small in-plane magnetization
component exists at remanence. In all cases, a positive HEB (the hysteresis loop shift from
Hz = 0 is opposite to Hdep) is also clearly visible, indicating that the EB coupling is parallel
to Hdep. For thicker Co, the system undergoes SRT and exhibits EPA (Figure 1c,f).

Before comparing results for the entire tCo range, it should be emphasized that the
dependence of the PMOKE signals versus tCo (φ(tCo)) of NiOb/Co/NiOt are shifted by
about ∆tCo = 0.26 nm with respect to NiOb/Co/Au and Au/Co/Au systems [36]. We have
previously shown that the deposition of the NiO layer in an oxygen-rich atmosphere results
in the formation of a thin CoO layer between Co and NiO at the Co/NiOt interface [36,37].
The samples in this report were deposited in the same conditions; therefore, a similar
CoO layer should form in NiOb/Co/NiOt. Comparisons of the present data with the
NiOb/Co/Au and Au/Co/Au systems should be based on the real Co thickness (without
CoO); therefore, the data in this paper were adjusted based on ∆tCo determined above.

From the analysis of hysteresis loops for NiOb/Co/Au, we distinguished three impor-
tant thickness ranges: (I) for 0.5 nm < tCo ≤ 0.75 nm, the hysteresis loops are rectangular
with sharp corners and φHEB/φSat ≈ 1 (Figure 2a). This is typical of systems with strong
PMA in which magnetization reversal takes place by domain nucleation followed by rapid
propagation of domain walls [38,39]; (II) for 0.75 nm < tCo < 0.93 nm, the shape of the hys-
teresis loops (φHEB /φSat < 1, Figure 1b) indicates that the activation of multiple nucleation
centers defines the reversal process [39]. This also suggests that there is a small in-plane
magnetization component at remanence; (III) at tCo = 0.93 nm, the system undergoes SRT
(see Figure 3); and as tCo, grows further, the magnetization reversal process approaches
that of coherent magnetization rotations for EPA (Figure 1c).
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systems. Inset in (c) shows HEB (1/tCo) dependence.
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The dashed lines indicate Co thickness corresponding to spin reorientation transition (tSRT = −2KS /KV).

A similar result was obtained for NiOb/Co/NiOt, with SRT happening at a slightly
thicker Co layer (tCo = 1 nm) (see Figure 3). For this system, the transition from PMA to EPA
appears more abruptly for NiOb/Co/Au, where it extends over a much greater tCo range
(Figure 2a). This means that the squareness of the hysteresis loops improves (Figure 1e)
when the Co layer is coupled with NiO on both sides (like in ref. [27]). A rectangular loop
with sharp corners occurs when the nucleation energy significantly exceeds the energy
of DW propagation, and the nucleation energies do not show a significant distribution of
values in the sample plane [38]. As the difference between these energies decreases and
the dispersion of the nucleation energy increases, the magnetization reversal process will
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evolve from a situation where it occurs through the creation of a few domains and rapid
propagation of DW to a situation where nucleation processes take place in many places
at different values of the magnetic field. Since the effect on Co out-of-plane anisotropy
is stronger in the Co/NiOt than in the Co/Au interface (this will be discussed later), we
attribute the distinct magnetization reversal close to SRT to a higher magnetic anisotropy
of the NiOb/Co/NiOt system. We should also emphasize that the magnetization reversal
process close to SRT can also be influenced by the relation between second- and first-order
magnetic anisotropy [40]. Since, for the HM/Co/Oxide systems, the second-order magnetic
anisotropy can be large [41,42], this anisotropy might be a source of wider tCo transition
range from PMA to EPA for NiOb/Co/Au than for NiOb/Co/NiOt. An understanding of
the role of second-order magnetic anisotropy in both systems needs further investigation.

For both systems (which show polycrystalline structure (Figure 4) with grain sizes
below 52 nm for NiOb/Co/Au and below 32 nm for NiOb/Co/NiOt), we found the typical
behavior of the EB effect; that is, HEB is inversely proportional to tCo (Figure 2c). This
reveals that the strong EB coupling is present on both Co/NiOt and NiOb/Co interfaces.
The most significant difference between our systems in the as-deposited state is related
to the values of HC and HEB (Figure 2b,c): for NiOb/Co/NiOt, HC and the HEB fields
are almost two times larger than those of NiOb/Co/Au and Au/Co/NiO [36]. This
indicates that EB coupling is a sum from both interfaces in NiOb/Co/NiOt, showing
the additive nature of this coupling. Sort et al. [27] reached the same conclusion in their
investigations of AFM/FM/AFM systems. In contrast to that work, our study focuses on
the additive nature of EB coupling with variable FM thickness. This results in high values
of magnetic properties important for applications, e.g., HC,max = 171 mT at tCo = 0.83 nm
and HEB,max = 45 mT at tCo = 0.55 nm for NiOb/Co/NiOt system.
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tCo = 1 nm and (b) the NiOb/Co-wedge/NiOt system at tCo = 1 nm.

We now proceed to confirm the origin of the PMA using values of surface (KS) and
volume (KV) contributions to effective anisotropy (Keff). Anisotropy field values (HK) are
determined from PMOKE hysteresis loops (Figure 1c,f) for Co thicknesses above the SRT.
Then, Keff is calculated using:

Keff =
−µ0MSHK

2
(1)

where µ0 is the vacuum permeability and MS is the saturation magnetization of bulk Co.
Here, we compare the data with similar Au/Co/Au and Au/Co/NiO systems; therefore,
we assume the same saturation magnetization MS = 1.42 × 106 A/m [36]. Linear fits using
KefftCo = 2KS + KVtCo and KefftCo data (Figure 3) provide the values for KS and KV, as
summarized in Table 2.

The data in Table 2 show that the surface contribution (2KS) to the effective anisotropy
on both of our systems is similar to those on Au/Co/Au [2,36,43] and on Pt/Co/Pt [2,3].
In comparison with HM/Co/Oxide systems, our values are two times smaller [44,45];



Materials 2021, 14, 1237 7 of 12

however, after low-temperature annealing during the FC procedure, these values increase
significantly (see Figures 5e and 6e), similar to what was found in Ref. [44]. Note that a
direct comparison of individual surface contributions to PMA from the Co/oxide interfaces
is quite difficult because typical studies of oxide interface effects on PMA are performed for
HM/Co/oxide systems, where the FM layer is adjacent to HM (e.g., Au, Pt, Pd), providing
high interface anisotropy [2,3]. To get information about KS for the Co/oxide interface,
the contribution from HM/Co must be subtracted from 2KS and it is usually determined
from symmetrical HM/Co/HM systems with the assumption that both HM/Co and
Co/HM interfaces are identical and contribute equally to surface anisotropy. Hence, the
determination of these values is often approximated under this assumption. Nevertheless,
the NiOb/Co/NiOt data clearly show that the AFO/FM (FM/AFO) interface is a source of
PMA, with KS of a similar order of magnitude to those of HM/FM.

Table 2. Volume and surface anisotropy constants (KV, KS) and tCo at SRT thickness (tSRT) for
NiOb/Co/Au and NiOb/Co/NiOt in the as-deposited state.

System KV (MJ/m3) 2KS (mJ/m2) tSRT (nm)

NiOb/Co/Au −0.73 ± 0.01 0.68 ± 0.01 0.93 ± 0.01
NiOb/Co/ NiOt −0.73 ± 0.01 0.74 ± 0.01 1.01 ± 0.01
Au/Co/Au [36] −0.58 0.65 1.12

Au/Co/NiO/Au [36] −1.06 1.4 1.32
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function of tCo (d) for NiOb/Co/NiOt in the as-deposited state and after different FC steps. Volume and surface anisotropy
constants (e) and SRT thickness (f) for NiOb/Co/NiOt in the as-deposited state and after four different FC steps (1st—350 K,
+170 mT; 2nd—450 K, +170 mT; 3rd—350 K, −170 mT; 4th—450 K, −170 mT).

If the NiOt gives a higher KS than Au [36], the 2KS value should be higher for
NiOb/Co/NiOt than for NiOb/Co/Au. Indeed, this is the case for our studies (Table 2).
A larger 2KS also explains the shift of the SRT to larger tCo (Table 2). Note that, for the
NiOb/Co/Au and NiOb/Co/NiOt systems, the KV values are identical and equal to the
sum of shape anisotropy for Co thin films (−1/2µ0MS

2 = −1.27 MJ/m3) and magne-
tocrystalline anisotropy for the hexagonal structure of Co (0.53 MJ/m3) [2]. This indicates
that magnetocrystalline anisotropy enhances PMA when Co is deposited on a NiO layer;
however, we cannot exclude additional contribution to the KV, e.g., from magnetoelastic
anisotropy. It should be emphasized that to date, the PMA has been investigated mainly in
HM/FM/oxide systems, where a strong Co/HM surface anisotropy also helps to stabilize
the PMA. Here, we demonstrate that HM is not necessary to stabilize PMA at RT, which
offers a new type of multilayer system with strong PMA.

3.2. Magnetic Properties of NiOb/Co/Au and NiOb/Co/NiOt Systems after Different FC Steps

To tune the EB coupling, the NiOb/Co/Au and NiOb/Co/NiOt systems underwent
the four FC steps described above (see Table 1 in the Experiment section). After the first FC
step (TFC = 350 K in HFC = +170 mT), the HEB reduces significantly (Figures 5c and 6c) but
coercivity (Figures 5b and 6b) and effective anisotropy (Figures 5d and 6d) maintain their
high values for both systems. Note that the direction of HFC is opposite to the direction
of Hdep. One would expect a flip in the EB coupling direction for FC processes starting
at TFC higher than the Néel (blocking) temperature TN(TB). This is not observed in our
case, although HEB experiences a significant decrease. In the analysis of polycrystalline
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samples (Figure 4), the AFM layer is usually treated as a set of magnetically noninteracting
grains with a size distribution that spreads the TB [46,47]. Therefore, grains with TB < TFC
lose their AFM pinning strength and, during the FC procedure, the pinning direction
may reverse from the initial direction set by Hdep to the direction parallel to HFC. For
NiOb/Co/Au, this means that part of the grain is coupled along HFC and part along Hdep
(i.e., in opposite directions), and as a result, the effective HEB is strongly reduced.

In the case of NiOb/Co/NiOt, we need to consider EB effect contributions from two
interfaces simultaneously (NiO/Co and Co/NiOt), and the fact that EB couplings at each
interface are too weak to introduce rotation of the Co spin across the film thickness if the
EB coupling direction at both interfaces is opposite. This is due to the small thickness and
higher exchange and anisotropy energies than EB coupling energy. Since after the first step
of FC we found that the HEB for NiOb/Co/Au is slightly larger than for NiOb/Co/NiOt,
many more grains at the Co/NiOt interface are coupled along HFC than at the NiOb/Co
interface. This means that the grains of NiOb show a lower blocking temperature than NiOt,
which can be correlated with CoO at the Co/NiOt interface, which reduces the ordering
(blocking) temperature of NiO [48]. It should be emphasized that, at this low annealing
temperature (350 K), only HEB changes significantly, showing that annealing below 350 K
can be used to tune this parameter without altering magnetic anisotropy.

To couple even more grains, a second FC step was applied starting from a higher
temperature (TFC = 450 K) and with the same value and direction of HFC (+170 mT). In
this step, we expected that the temperature was high enough to align the EB coupling
of many more grains with HFC for both systems. Indeed, HEB became highly negative
(Figures 5c and 6c), indicating a strongly effective EB. However, the magnitude of HEB
was smaller, especially for NiOb/Co/NiOt, than for the as-deposited state, which could
have been caused by interface modification during annealing. This statement also supports
an additional observation: the SRT occurs at a larger tCo (Figures 5d,f and 6d,f), and the
corresponding increase in PMA (Figures 5d and 6d) correlates with an increase in HC
(Figures 5b and 6b). Therefore, at this step, irreversible changes in the microstructure
take place, which are stable for further annealing up to 450 K (see Figures 5 and 6 for 3rd
and 4th steps). Since the second FC process did not result in the shift of tCo where PMA
starts to appear (Figures 5a and 6b), and we do not detect any additional shift of φSat(tCo)
dependence, we assume that there is no further oxidation of the Co layer and therefore
the anisotropy changes are not related to reductions in tCo. Note that for both systems, KV
almost does not change (KV = 0.67 MJ/m3 and KV = 0.77 MJ/m3 for NiOb/Co/Au and
NiOb/Co/NiOt systems, respectively) (Figures 5e and 6e); therefore, additional oxidation
of Co layer can be excluded after the FC process. Thus, the increase in PMA is attributed to
interface morphology modifications because 2KS increases to 0.86 mJ/m2 for NiOb/Co/Au
(Figure 5e) and to 0.99 mJ/m2 NiOb/Co/NiOt (Figure 6e). A similar increase in KS was
shown for HM/Co/oxide systems after annealing, which was attributed to homogeneous
oxidation along the interface and to interface smoothening [44]. Considering that this type
of interface modification might be a source of smaller HEB [49] and that 2KS increase less
for the NiOb/Co/Au system than for NiOb/Co/NiOt, we expect that the changes on the
Co/NiOt interface are greater than those on the NiOb/Co interface, which may be a source
of the lower HEB for NiOb/Co/NiOt.

The last two FC steps described in Table 1 help us to understand the effects of PMA
enhancement on EB coupling. After these steps, for both systems, neither effective magnetic
anisotropy (Figures 5d–f and 6d–f) (KS and KV, and tSRT) nor HC show significant changes.
This means that strong interface modifications caused by annealing at T ≤ 450 K have
ceased, and the reversible HEB changes in the 3rd and 4th step can be repeated without
altering other magnetic properties.

Note that in the 4th step, the HFC is aligned in the same direction as Hdep, therefore
we should expect that pinning directions from all NiOb and NiOt grains are aligned in
the same direction giving a high HEB effect. Indeed, these values are high; however, HEB
is smaller than that observed for the as-deposited state, which we attribute to a smaller
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contribution to effective EB field from Co/NiOt appearing after the 2nd step of the FC
process. Nevertheless, HEB and HC for NiOb/Co/NiOt (Figure 6b,c) are still much higher
than for NiOb/Co/Au (Figure 5b,c) showing additive nature of EB coupling. All that
shows that a carefully chosen AFM–FM system offers simultaneous support for a strong
PMA and high HEB, which can be tuned over a wide range by the proper selection of an
FC procedure.

4. Conclusions

In summary, the EB coupling in NiO/Co and Co/NiO interfaces has been investigated
in terms of perpendicular magnetic anisotropy and EB field. Using NiO/Co/Au and
NiO/Co/NiO systems, we have shown that the CoNiO interface induces strong surface
contribution to the effective magnetic anisotropy, favoring out-of-plane magnetization
of Co layer. We also demonstrate that strong perpendicular magnetic anisotropy can be
achieved by using only AFO-FM interfaces, where the EB field can be modified over a
wide range by proper selection of field cooling conditions. The presence of two interfaces,
NiO/Co and Co/NiO, in a NiO/Co/NiO system allows us to reach high HC and HEB
because each interface simultaneously supports EB coupling and PMA. These results
establish that a new multilayer system based on antiferromagnetic oxides offers strong
PMA and the ability to tune HEB and HC in a wide range, which are important qualities for
spintronic applications.
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