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Abstract: Short oligopeptides are some of the most promising and functionally important
amide bond-containing components, with widespread applications. Biosynthesis of these
oligopeptides may potentially become the ultimate strategy because it has better cost efficiency and
environmental-friendliness than conventional solid phase peptide synthesis and chemo-enzymatic
synthesis. To successfully apply this strategy for the biosynthesis of structurally diverse amide
bond-containing components, the identification and selection of specific biocatalysts is extremely
important. Given that perspective, this review focuses on the current knowledge about the typical
enzymes that might be potentially used for the synthesis of short oligopeptides. Moreover, novel
enzymatic methods of producing desired peptides via metabolic engineering are highlighted. It
is believed that this review will be helpful for technological innovation in the production of
desired peptides.

Keywords: short oligopeptides; biosynthesis; non-ribosomal peptide synthesis; ATP-grasp enzyme;
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1. Introduction

Short oligopeptides, especially l-α-dipeptides and their derivatives, are the simplest amide
bond-containing components. However, they display various special and interesting biological
activities, including taste-enhancing, antibacterial, nutritional, and anti-tumor activities [1] (Table 1).
These activities are mainly due to the special structures of dipeptides. A dipeptide can be seen either as
a derivative of an amino acid or as the dipeptide itself. As a derivative of an amino acid, the dipeptide
and the parent amino acid usually show different physicochemical properties but the same biological
effects, because dipeptides, such as Ala-Gln and Gly-Tyr, can be degraded into individual amino acids
via specific proteases in organisms. In contrast, various dipeptides, such as aspartame and carnosine,
have unique bioactivities that cannot be found in the parent amino acids. Compared with the numerous
studies on the function, application, and preparation of proteins or amino acids, the research progress
on dipeptides has been relatively slow, and only a few dipeptides, such as Ala-Gln and aspartame, are
available. One of the major reasons is the lack of cost-effective and efficient manufacturing processes.
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Table 1. The dipeptides with interesting biological activities.

Function Chemical Compound Reference

Parenteral nutrition
Gly-Tyr [2]
Ala-Gln [3]

Taste-enhancing Sweetener: Aspartame [4]
Salt substance: Pro-Gly [5]

Cytosolic buffering Carnosine [6]
Ophthalmic drug N-Acetyl carnosine [7]

Analgesic Kyotorphin (Arg-Tyr) [8]
Anti-tumor Lys-Glu [9]

Neuroprotective Leu-Ile [10]

Anti-bacterial
Bacilysin/Chlorotetaine [11]

rhizocticin [12]
tabtoxin [13]

Various methods have been reported for the synthesis or formation of peptide bonds, such as
chemical synthesis, chemo-enzymatic synthesis, and enzymatic synthesis (biosynthesis). The chemical
synthesis of dipeptides usually includes four principal procedures [14]: (1) protection of functional
groups, (2) activation of the free carboxy group, (3) formation of a peptide bond, and (4) removal of the
protecting groups. With chemical synthesis, almost all designed dipeptides can be synthesized with
appropriate protecting groups, and the yield is usually high. However, the disadvantages of chemical
synthesis, such as the high cost, possibility of racemization, and lack of environmental-friendliness,
are also very clear. The chemo-enzymatic synthesis of dipeptides results from the reverse reaction
catalyzed by peptide bond-hydrolyzing enzymes (proteases or esterases). This method includes
two distinct types of reaction processes: the thermodynamically controlled process or the kinetically
controlled process. The former is carried out to drive the equilibrium toward peptide synthesis with
necessary interventions, such as the precipitation of synthesized dipeptides or reaction with a large
excess of substrates. The latter is dependent on an acylated serine or cysteine protease, which will
then undergo a competitive deacylation process with water and the other amino acid. This method
leads to temporary accumulation of the formed dipeptide. Compared with the chemical synthesis
process, these two methods usually involve stricter stereoselectivity and milder conditions. However,
they are usually influenced by many complicated factors such as severe hydrolytic side-reactions,
the racemization-free preparation of activated peptide esters, and the limited availability of efficient
peptide coupling and enzymes with high catalytic performance.

The synthesis of peptides by amide bond formation between specific (or partially protected) amino
acid derivatives is, unfortunately, one of the most wasteful and least green chemical processes [15,16].
Due to the rapid development of DNA sequencing, tremendous progress has been made in the
technologies of metagenomics, proteomics, and metabolomics, which lead to the identification of
various enzymes that could be used to efficiently catalyze the synthesis of dipeptides. Given the great
advantages of dipeptide biosynthesis, this review details strategies for dipeptide biosynthesis. Recent
successful biosynthesis processes are also highlighted.

2. Biocatalysts Available for the Biosynthesis of Short Oligopeptides

2.1. Enzymes Used as Biocatalysts for the Biosynthesis of Dipeptides

Various enzymatic machineries that can catalyze the synthesis of dipeptides, such as the ribosome,
non-ribosomal peptide synthetases (NRPSs), ATP(Adenosine triphophate)-grasp enzymes, and
α-amino acid ester acyltransferases, have been found in nature [17]. These naturally occurring
peptide-synthesizing enzymes seem to be ideal catalysts for dipeptide synthesis, even though they
are diverse in their specificity and physiological function. However, one common feature is the
requirement for ATP to catalyze the peptide bond-forming reaction. Based on the intermediates
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formed in the catalytic process, either aminoacyl-AMP (Adenosine monophosphate) or aminoacyl
phosphate, these enzymes are generally divided into two categories [18]. The representatives of the
former category are the ribosome, tRNA-dependent ligases, adenylate-forming amide ligases, and the
NRPSs (Figure 1). The latter category usually contains a variety of enzymes, which usually shares a
characteristic ATP-grasp motif in their amino acid sequence and are known as the ATP-grasp enzymes.
This includes glutathione synthetase, d-alanine-d-alanine ligase, and other ATP-grasp enzymes.
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(1) Acyladenylate intermediates are formed in the process catalyzed by NRPSs. (2) Acylphosphate
intermediates are formed in the process catalyzed by ATP-grasp enzymes.

2.1.1. NRPSs

Non-ribosomal peptide synthesis is a universal and critical biochemical process catalyzed
by NRPSs in bacteria and fungi, through which a wide array of therapeutically important
peptides with highly diverse structures and bioactivities, including penicillin, bleomycin, and
cyclosporine, are produced [19,20]. Biocatalysts capable of NRP synthesis could be divided into
two groups (ATP-independent and ATP-dependent enzymes) [21] based on the difference in substrate
activation [22,23]. In the ATP-dependent process, enzymes such as tRNA-dependent ligase can activate
the substrate through aminoacyl-adenosine monophosphate. In the ATP-independent process, enzymes
such as transacylase use aminoacyl phosphate.

NRPSs are large multi-functional proteins organized into different modules, where each consists
of the catalytic domains responsible for incorporating one amino acid into the growing peptide
product. A standard NRPS complex usually contains at least four enzymatic domains (Figure 2):
the condensation domain (C-domain), the adenylation domain (A-domain), the thiolation domain
(T-domain), and the thioesterase domain (Te-domain). The A-domain could activate a specific amino
acid substrate as an aminoacyl adenylate. In the PCP domain, a thioester, aminoacyl-S-PCP, could
be formed. The C-domain then catalyzes the amide bond formation by releasing a dipeptide. The Te
domain is usually located at the end of the large proteins and is capable of terminating the biosynthesis
of specific peptides. The process of NRPS-catalyzed peptide bond formation can be summarized as
follows (Figure 3). First, the A-domain can identify the substrate amino acid and then activate it as an
aminoacyl-AMP. Then, the activated amino acid is transferred to the 4′-phosphopantetheine moiety of
the T-domain, accompanied with the release of adenosine monophosphate (AMP). Next, the peptide
bond is formed in the adjacent condensation domain (C-domain). Lastly, the synthesized peptide is
released from the NRPS complex by catalysis via the Te-domain. In addition, the PCP is a small 8 kDa
domain that belongs to the non-overlapping members of a superfamily of carrier protein domains,
which play many roles in acyl group transport.
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Due to the superior catalytic activity and the unique reaction mechanism of NRPSs in dipeptide
synthesis, modular manipulation of NRPS has been successfully applied to dipeptide synthesis. This
approach is detailed in the following section.Biomolecules 2019, 9, x 4 of 23 
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2.1.2. ATP-Grasp Enzymes

The ATP-grasp enzymes (or ATP-dependent carboxylate-amine ligases) activate carboxylic acids
such as acylphosphate intermediates. ATP-dependent carboxylate-amine ligases are seen in many
different biological systems, such as de novo purine biosynthesis, which is the assembly of the
pentapeptide chain of peptidoglycan. Another biologically important example is RimK, which
catalyzes the tandem addition of l-glutamic acids to the carboxyl terminus of ribosomal proteins.

This family was the first of the amide bond-forming enzymes to be recognized and includes biotin
carboxylase, d-Ala-d-Ala ligase (Ddl), and glutathione synthetase [24]. ATP-grasp enzymes are usually
made up of three conserved domains (the N-terminal as well as central and C-terminal domains),
which is a structure unique to this kind of enzyme (Figure 4). As their name implies, these enzymes
usually have a nonclassical ATP binding fold comprising two α + β domains that “grasp” an ATP
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molecule between the central and C-terminal domains. Most ATP-grasp enzymes require an Mg2+ ion,
which is coordinated by ATP in the active site.
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l-Amino Acid Ligase (Lal)

l-Amino acid ligase (Lal) is a special type of ATP-grasp enzyme that can catalyze only dipeptide
synthesis from unprotected amino acids in an ATP-dependent manner (Figure 5). BacD (or YwfE, EC
6.3.2.28), which is identified from Bacillus subtilis in 2005 by Tabata et al. [25], was the first identified
Lal. To date, several Lals have been identified and investigated, including RizA, Rsp1486a, BL00235,
PSPPH 4299, plu1440, TabS, and FtyB (details shown in Table 2).

As shown in Table 2, almost all Lals identified to date show different substrate specificities, which
leads to the production of different dipeptides. For example, the substrate specificity of BacD is
restricted to smaller amino acids (e.g., l-Ala) at the N-terminal end of the dipeptide, whereas a wide
range of hydrophobic amino acids (e.g., l-Phe) are recognized at the C-terminal end [26]. However,
TabS can accept larger amino acids as its N-terminal substrate [27]. Plu1440 synthesizes dipeptides that
contain l-asparagine at the N-terminus [28], and RSp1486a accepts bulkier amino acids as N-terminal
substrates and less bulky amino acids as C-terminal substrates [29]. Based on these findings, it is
reasonable to biosynthesize target dipeptides by modified Lals with improved substrate specificity [30].
This approach has provided novel methods for the production of useful dipeptides.
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Table 2. Typical Lals and their functions.

Enzyme Components Catalyzed Availability of the
Crystal Structure Source Ref.Natural Product Unnatural Product

BacD
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Rsp1486a Phe-Cys, His-Ala, His-Val, His-Gly / - Ralstonia solanacearum JCM 10486 [28]
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d-Alanine: d-Alanine Ligase

Recently, it was reported that compared with l,l-dipeptides, d-amino acid-containing dipeptides
have novel biological properties and are expected to be novel functional compounds for pharmaceuticals
and food additives [35,36]. d-Alanine: d-alanine ligase (carboxylate-amine ligase, EC 6.3.2.4) is involved
in the biosynthesis of the peptidoglycan component of the bacterial cell wall [37] and catalyzes the
ATP-driven ligation of two d-alanine molecules, which results in the formation of d-alaninyl-d-alanine
dipeptides (Figure 6). Given that Ddls do not have any homologue in humans, they have historically
been considered promising targets for developing novel anti-bacterial components [38]. In addition
to d-Ala-d-Ala, the formation of d-Ala-d-Ser dipeptides or d-Ala-d-Lac depsipeptides can also be
catalyzed by Ddls [37].
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The Poly-α-Glutamic Acid (αPGA) Synthetase RimK

RimK is a member of the ATP-dependent carboxylate-amine/thiol ligase superfamily, which is
reported to catalyze the modification of ribosomal protein S6 (RPS6) from Escherichia coli (E. coli)
K-12 (Figure 7). In this biological process, Glu is added to the C-terminus of RPS6, which leads to the
biosynthesis of RPS6-Glu, RPS6-Glu-Glu, RPS6-Glu-Glu-Glu, and RPS6-Glu-Glu-Glu-Glu.
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In addition, Kino recently reported that RimK could catalyze the biosynthesis of αPGA from
unprotected amino acids via ATP hydrolysis [39]. The results showed that the lengths of the resulting
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products changed with pH, and, at a pH of 9.0, a maximum 46-mer of Glu was obtained. RimK has
strict substrate specificity for Glu. Therefore, it is possible to produce various biological Glu-containing
products, such as dipeptides (e.g., l-glutamyl-l-glutamate and poly-glutamic acid) or tripeptides.

2.1.3. α-Amino Acid Ester Acyltransferase

Kenzo et al. [40] reported an efficient enzymatic method for producing oligopeptides from
unprotected amino acids at a high yield. In this study, Empedobacter brevis ATCC 14234 was found to
produce l-alanyl-l-glutamine (Ala-Gln) much more efficiently than previous methods. Furthermore,
an enzyme catalyst (named carboxypeptidase Y) for the rapid production of Ala-Gln and other
oligopeptides with unprotected substrates (l-alanine methyl ester hydrochloride, Gln, and more) was
discovered in this strain and could be used to rapidly catalyze a reaction between l-alanine methyl ester
hydrochloride (AlaOMe) and Gln to synthesize Ala-Gln. However, no additional detailed information,
including the amino acid sequence, the coding gene sequence, or the 3D crystal structure, was reported
in this study. Isao ABE et al. [41] first reported the cloning and expression of α-amino acid ester acyl
transferases (AETs) from Empedobacter brevis ATCC14234 and Sphingobacterium siyangensis AJ2458.
The proteins encoded are two similar polypeptides composed of 616 and 619 amino acid residues,
respectively. Their amino acid sequences were 35% and 36% identical to that of the α-amino acid
ester hydrolase from Acetobacter pasteurianus, respectively. AETs were believed to display dipeptidyl
peptidase activity and transferase activity simultaneously. This enzyme was reported to use l-alanine
methyl ester hydrochloride and Gln to synthesize Ala-Gln in a high yield (Figure 8) [42,43]. However,
this enzyme also shows wide substrate specificity for both acyl donors and nucleophiles, which leads
to the synthesis of not only dipeptides but also oligopeptides from different accepted substrates [40].
To date, there have been no studies on the 3D structure of α-amino acid ester acyltransferase and the
detailed reaction mechanisms it catalyzes. These aspects should be explored further.

Biomolecules 2019, 9, x 8 of 23 

2.1.3. α-Amino Acid Ester Acyltransferase 

Kenzo et al. [40] reported an efficient enzymatic method for producing oligopeptides from 
unprotected amino acids at a high yield. In this study, Empedobacter brevis ATCC 14234 was found to 
produce L-alanyl-L-glutamine (Ala-Gln) much more efficiently than previous methods. Furthermore, 
an enzyme catalyst (named carboxypeptidase Y) for the rapid production of Ala-Gln and other 
oligopeptides with unprotected substrates (L-alanine methyl ester hydrochloride, Gln, and more) was 
discovered in this strain and could be used to rapidly catalyze a reaction between L-alanine methyl 
ester hydrochloride (AlaOMe) and Gln to synthesize Ala-Gln. However, no additional detailed 
information, including the amino acid sequence, the coding gene sequence, or the 3D crystal 
structure, was reported in this study. Isao ABE et al. [41] first reported the cloning and expression of 
α-amino acid ester acyl transferases (AETs) from Empedobacter brevis ATCC14234 and 
Sphingobacterium siyangensis AJ2458. The proteins encoded are two similar polypeptides composed of 
616 and 619 amino acid residues, respectively. Their amino acid sequences were 35% and 36% 
identical to that of the α-amino acid ester hydrolase from Acetobacter pasteurianus, respectively. AETs 
were believed to display dipeptidyl peptidase activity and transferase activity simultaneously. This 
enzyme was reported to use L-alanine methyl ester hydrochloride and Gln to synthesize Ala-Gln in 
a high yield (Figure 8) [42,43]. However, this enzyme also shows wide substrate specificity for both 
acyl donors and nucleophiles, which leads to the synthesis of not only dipeptides but also 
oligopeptides from different accepted substrates [40]. To date, there have been no studies on the 3D 
structure of α-amino acid ester acyltransferase and the detailed reaction mechanisms it catalyzes. 
These aspects should be explored further. 

NH2

O

H2N

O

OH N
HO

H2N

O OH
O

NH2

O

O
CH3HCl

+
AET

 
Figure 8. Reactions catalyzed by α-amino acid ester acyltransferase (AET). 

2.1.4. Enzymes Used for β-Lactam Biosynthesis (β-Lactam Acylases) 

β-Lactam antibiotics are a large class of antibiotics containing a β-lactam ring in their chemical 
structure (Figure 9) [44], such as penicillin, cephalosporins, and thiamycins. β-Lactam antibiotics are 
among the most widely used clinical anti-infective agents and occupy an important position in the 
domestic pharmaceutical industry. The enzymatic synthesis of β-lactam antibiotics is more 
environmentally-friendly and economical than traditional chemical methods, with the advantages of 
mild reaction conditions, a clean and non-polluting nature, and good product quality. Therefore, this 
strategy has also been applied successfully in pilot-scale production in modern pharmaceutical 
enterprises. Traditionally, the β-lactam acylases are used for the hydrolytic processing of β-lactam 
antibiotics (e.g., penicillin G and cephalosporin C). However, some other acylases can also be used 
for the synthesis of semi-synthetic β-lactam antibiotics [45]. To date, several β-lactam acylases, 
including penicillin acylase (PA, EC 3.5.1.11), glutaryl acylase (GA, EC 3.5.1.93), and β-amino acid 
ester hydrolase (AEH, EC 3.1.1.43), have been widely investigated in the biosynthesis of β-lactam 
antibiotics. The biosynthesis of nocardicin is performed by an NRPS enzyme consisting of two mega-
enzymes known as NocA and NocB [46]. 

Figure 8. Reactions catalyzed by α-amino acid ester acyltransferase (AET).

2.1.4. Enzymes Used for β-Lactam Biosynthesis (β-Lactam Acylases)

β-Lactam antibiotics are a large class of antibiotics containing a β-lactam ring in their chemical
structure (Figure 9) [44], such as penicillin, cephalosporins, and thiamycins. β-Lactam antibiotics
are among the most widely used clinical anti-infective agents and occupy an important position
in the domestic pharmaceutical industry. The enzymatic synthesis of β-lactam antibiotics is more
environmentally-friendly and economical than traditional chemical methods, with the advantages
of mild reaction conditions, a clean and non-polluting nature, and good product quality. Therefore,
this strategy has also been applied successfully in pilot-scale production in modern pharmaceutical
enterprises. Traditionally, the β-lactam acylases are used for the hydrolytic processing of β-lactam
antibiotics (e.g., penicillin G and cephalosporin C). However, some other acylases can also be used for
the synthesis of semi-synthetic β-lactam antibiotics [45]. To date, several β-lactam acylases, including
penicillin acylase (PA, EC 3.5.1.11), glutaryl acylase (GA, EC 3.5.1.93), and β-amino acid ester hydrolase
(AEH, EC 3.1.1.43), have been widely investigated in the biosynthesis of β-lactam antibiotics. The
biosynthesis of nocardicin is performed by an NRPS enzyme consisting of two mega-enzymes known
as NocA and NocB [46].



Biomolecules 2019, 9, 733 9 of 23

Biomolecules 2019, 9, x 9 of 23 

N
O

H
N S

O OH

O

N
O

Penicillin G

-Lactam

HO O

N

N
H

H2N

O

O

H
S

Cephalexin

N
O

S

OH
O

OH NH2HH

Thienamycin

O

O
O

O
O

N
O

NH

O
Lactivicin

HO

NH2

N
H

O N
O

O OH

OH

 
Figure 9. The chemical structures of β-lactam and several derivatives. 

Penicillin acylase is a well-known pharmaceutically important enzyme produced by various 
microorganisms. Based on the substrate specificity, PAs are further divided into penicillin G acylases 
(PGAs) [47] and penicillin V acylases (PVAs). The former preferentially hydrolyzes benzylpenicillin 
(pen G), and the latter preferentially hydrolyzes phenoxymethyl penicillin (pen V). These enzymes 
could be used on an industrial scale for producing the active pharmaceutical intermediate 6-
aminopenicillanic acid (6-APA) by cleaving the side chain from natural penicillins. In addition, they 
could be used for the potential synthesis of newer semi-synthetic antibiotics by coupling new acyl 
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of novel synthetic fragments (novel side chains and β-lactam nuclei). Similarly, the enzyme 
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Penicillin acylase is a well-known pharmaceutically important enzyme produced by various
microorganisms. Based on the substrate specificity, PAs are further divided into penicillin G acylases
(PGAs) [47] and penicillin V acylases (PVAs). The former preferentially hydrolyzes benzylpenicillin
(pen G), and the latter preferentially hydrolyzes phenoxymethyl penicillin (pen V). These enzymes could
be used on an industrial scale for producing the active pharmaceutical intermediate 6-aminopenicillanic
acid (6-APA) by cleaving the side chain from natural penicillins. In addition, they could be used
for the potential synthesis of newer semi-synthetic antibiotics by coupling new acyl groups to free
β-lactam nuclei. On this basis, PAs hold great potential for application in the field of novel drug
development. For example, these enzymes could be used directly to catalyze the ligation of novel
synthetic fragments (novel side chains and β-lactam nuclei). Similarly, the enzyme engineering (e.g.,
directed evolution or rational design) of PAs could be performed for the catalytic synthesis of novel
drugs. These developments will help to further expand and increase the potential ofβ-lactam antibiotics
for future biopharmaceutical applications. In addition, PAs are employed in peptide synthesis and in
the resolution of racemic mixtures [48]. Due to their enantioselectivity and promiscuity [49], PAs can
also be used for producing achiral and chiral compounds for the preparation of synthons and bioactive
pharmaceutical intermediates on a laboratory scale.

Although PAs have gained a unique position among the enzymes used by the pharmaceutical
industry, they have serious drawbacks, such as the strong inhibitory effect of the produced phenyl
acetic acid and instability at alkaline pH values. Given these considerations, α-amino acid ester
hydrolases (AEHs, EC 3.1.1.43) are a promising alternative for the synthesis of α-amino-containing
cephalosporins. Naturally, AEHs are capable of the semi-synthesis of β-lactam antibiotics containing
an amino group, such as cephalexin, cefaclor, cefprozil, and cefadroxil [50,51]. Since variations in
the side chain can alter the biochemical properties of a β-lactam antibiotic, semisynthetic antibiotics
with novel side chains show promise in the development of novel drugs to cope with drug resistance.
However, the presence of a hydroxyl group at the p-position of the phenylglycine side chain has been
reported to cause a drastic decrease in specificity (Kcat/Km) compared to that of the analogue without
this hydroxyl group. To address the issue of decreased activity toward components with a p-hydroxyl
group, Ye et al. [52] explored the possibility of improving the substrate specificity of AEH toward
para-hydroxyl cephalosporin synthesis by site-directed mutagenesis. The results showed that Arg87,
Ser131, and Y175 play important roles in substrate recognition and the V131S mutant showed a 64%
increase in the maximum accumulation of the cefatrizine product.

Glutaryl acylases are well-known industrial biocatalysts with wide substrate specificity
(cephalosporin C (CPC) and/or glutaryl 7-aminocephalosporanic acid (GL-7ACA)) for producing
7-aminocephalosporanic acid (7-ACA) [53]. These enzymes have further been classified into five types
(class I to class V) based on their gene structures (sequence conservation), substrate specificity, and
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enzyme properties [54]. All cephalosporin acylases are active toward GL-7ACA, but only members of
classes I and III show appreciable activity toward cephalosporin C (CephC). Cephalosporin C acylases
(CAs) [55] can specifically use CephC as their substrate to produce 7-ACA. 7-ACA is an important
β-lactam nucleus for preparing many widely used semisynthetic β-lactam antibiotics [56]. In contrast,
glutaryl-7-ACA acylases (GAs, EC 3.5.1.93) usually preferentially use GL-7ACA as their substrate.
The most important application of GAs is the expensive and environmentally hazardous two-step
enzymatic route for the synthesis of 7-ACA. As an excellent alternative, the single-step production of
7-ACA can be accomplished using CephC acylase (Figure 10) [57]. Unfortunately, natural CAs are
usually efficient in the deacylation of GL-7ACA but are less active toward adipyl-7-ADCA and are
barely able to hydrolyze CPC for the industrial production of 7-ACA [58].
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2.1.5. Cyanophycinases (CGPases)

Cyanophycin granule polypeptide (CGP, or multi-l-arginyl-poly) is an intracellular storage
polymer found in most cyanobacteria. Equimolar concentrations of arginine and aspartic acid are
observed in the aspartic acid backbone, where the arginine moieties are linked to the β-carboxyl group
of each aspartic acid through its α-amino group. In most genera of cyanobacteria, the cyanophycin
synthetase gene (cphA) has been identified and verified for the synthesis of CGP. In contrast, the
intracellular and extracellular degradation of CGP is catalyzed by cyanophycinases (CphB and CphE),
which releases dipeptides (β-Asp-Arg, Table 3, Figure 11). In this respect, β-Asp-Arg can be efficiently
synthesized via the simultaneous production of CGP and CGPase, which could be further applied in
various fields requiring arginine (Arg) content in feed or food. However, the production and efficient
isolation of CGP from various organisms have been successfully established in several recombinant
strains, including Escherichia coli [59], Nicotiana tabacum [60], Pseudomonas putida [61], and Pseudomonas
alcaligenes DIP1 [62]. Therefore, it is very feasible to produce dipeptides (e.g., β-Asp-Arg) via the
metabolic engineering of suitable hosts [63] and chemo-enzymatic strategies [64]. For example,
successful co-expression of CGP and CGPase in the Nicotiana tabacum plant was recently achieved [65].
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A further study showed that it is possible to realize the goal of sufficient storage and efficient transport
of arginine and β-Asp-Arg dipeptides in this synthetic model.

Table 3. Enzymes used for the degradation of CGP.

Enzyme Source Product Reference

Intracellular Cyanophycinase (CphB) Anabaena cylindrica β-Asp-Arg [66]

Extracellular

CphEPa Pseudomonas anguilliseptica BI β-Asp-Arg [67]
CphEBm Bacillus megaterium BAC19 Small molecules [68]

CphE Sedimentibacter hongkongensis KI β-Asp-Arg, β-Asp-Lys [69]
CphE Pseudomonas alcaligenes DIP1 Ethanol, acetic acid, succinic acid [70]Biomolecules 2019, 9, x 11 of 23 
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2.1.6. Methods Used for the Biosynthesis of Cyclic Dipeptides

Cyclic dipeptides, or cyclodipeptides (CDPs), which are mainly produced by microorganisms as
secondary metabolites, are the smallest cyclic peptides frequently found in nature and exhibit various
noteworthy biological properties [71]. For example, cyclo(l-Phe-l-Pro), cyclo(l-Phe-trans-4-OH-l-Pro),
clomycin, albonoursin, pulcherrimin, mycocyclosin, ambewelamides, and phenylahistin are several
typical CDPs with potent antibacterial, antiviral, and immunosuppressive properties [72]. From a
chemical structural perspective, CDPs are also called 2,5-diketopiperazines, and they are characterized
by amide linkages formed to the two nitrogen atoms of a six-membered piperazine ring.

In nature, the formation of the scaffold of CDPs is catalyzed by two unrelated biosynthetic
enzyme families (Figure 12): either CDP synthases (CDPSs) [72] or non-ribosomal peptide synthetases
(NRPSs) [73]. Subsequently, the resulting cyclodipeptides are usually further modified by tailoring
enzymes, and the final CDPs are released [74–76].

CDPSs, first defined in 2002, can connect primary metabolic pathways with secondary metabolic
pathways by using aminoacyl-tRNAs as substrates to catalyze the formation of f diketopiperazines
(DKPs) [75]. Based on the identity of three essential residues, CDPSs have been further divided
into two subfamilies: NYH (e.g., AlbC and YvmC) and XYP (e.g., X40 and P203) [77]. Enzymes in
the former subfamily are characterized by a typical structural architecture (Rossmann fold) used for
substrate binding, which might lead to an exceptionally broad tRNA substrate specificity, producing
various cyclodipeptides [78]. To date, the structures of six CDPSs can be retrieved from the RCSB
PDB (https://www.rcsb.org/), including AlbC (PDB ID: 3OQV, Figure 13) from Streptomyces noursei [79],
CDPS (PDB ID: 6EZ3) from Staphylococcus haemolyticus [80], CDPS (PDB ID: 4Q24) from Streptomyces
noursei [81], CDPS from Fluoribacter dumoffii [80](PDB ID: 5OCD), CDPS from Rickettsiella grylli [80]
(PDB ID: 5MLP), and CDPS from Nocardia brasiliensis [80] (PDB ID: 5MLQ). In addition, with the
advent of next-generation sequencing, many more have been identified via BLAST (Basic Local
Alignment Search Tool) searches and genome mining [82]. In addition to CDPSs, cyclic peptides
could also be synthesized by NRPS modules [83]. In this study, BPSA prtein, which is a single NRPS
module encoded by bpsA, was determined to be able to catalyze the synthesis of a blue pigment
5,5′-diamino-4,4′-dihydroxy-3,3′-diazadiphenoquinone-(2,2′).

https://www.rcsb.org/
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Recently, the catalytic mechanism of CDPSs has been further investigated and reported to fit a
ping-pong-type model [84] with two characteristic and conserved pockets known as P1 and P2 [77].
Catalysis starts with the binding of the first aa-tRNA (in the P1 pocket) and the subsequent transfer
of its aminoacyl moiety to a conserved serine, which leads to the formation of an aminoacyl enzyme
intermediate (in the P2 pocket). The aminoacyl moiety of a second aa-tRNA interacting with the
pre-formed intermediate is then transferred to the aminoacyl enzyme, which leads to the formation
of a dipeptidyl enzyme intermediate [81]. The final cyclodipeptide is released after intramolecular
cyclization of the dipeptidyl moiety.
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Considering the great potential of CDPSs in the biosynthesis of CDPs, it is believed that studies
on the protein engineering of CDPSs will greatly facilitate the production of a variety of natural and
unnatural bioactive cyclodipeptides [85,86].

2.1.7. Biosynthesis of Imidazole-Related Dipeptides by Carnosine Synthase

Histidine dipeptides (or imidazole-related dipeptides), such as carnosine, anserine, ophidine, and
homocarnosine, play a critical role in detoxifying cytotoxic reactive carbonyls and reversing protein
glycation (Figure 14) [87]. Structurally, all of these enzymes contain a non-α-amino acid (β-alanine
or γ-aminobutyric acid) at the N-terminus and an imidazole-related amino acid (histidine) at the
C-terminus. They are widely distributed in the skeletal muscle, heart, and central nervous system of
most vertebrates and some invertebrates.Biomolecules 2019, 9, x 14 of 23 
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Figure 14. Biosynthesis of imidazole-related dipeptides by carnosine synthase.

To date, three types of vertebrate enzymes have been identified for the biosynthesis of
imidazole-related dipeptides: carnosine synthase (EC 6.3.2.11), carnosine N-methyltransferase (EC
2.1.1.22), and histidine N-acetyltransferase (EC 2.3.1.33). Histidine N-acetyltransferase is a type of
Nα-acetyl-histidine (NAH) synthesizing enzyme that can catalyze the biosynthesis of NAH with l-His
and acetyl-CoA. Carnosine synthase is an ATP-grasp ligase that is one of the most important enzymes
involved in the biosynthesis of anserine, homocarnosine, and carnosine (Figure 15) [88]. Similar to Lals,
carnosine synthase is a catalytically promiscuous enzyme. Therefore, it can accept not only histidine
but also lysine, ornithine, and arginine as C-terminal substrates to synthesize various dipeptides, such
as β-Ala-Lys [89]. This promiscuity could also provide an efficient approach to modify the catalytic
function of carnosine synthase to form novel natural or “unnatural” products.
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2.1.8. Proteases

Although proteases are primarily used for the hydrolysis of proteins and peptides, they can also
be used to catalyze the kinetically or thermodynamically controlled formation of peptide bonds with
unprotected substrate amino acids [90–92]. Thermodynamically controlled (or equilibrium-controlled)
peptide synthesis can be achieved with all types of proteases. In contrast, kinetically controlled
peptide synthesis is usually conducted with serine and cysteine proteases [93] because the specific
triads (Ser-His-Asp and Cys-His-Asn) in these two enzymes can catalyze the transfer of an acyl
donor to the acceptor (nucleophile) via the formed acyl–enzyme intermediate [94]. Therefore, the
kinetically controlled method is more widely applied in biosynthesing oligopeptides, and various
proteases, including papain, thermolysin, trypsin, α-chymotrypsin, and ficin, have been thoroughly
explored [90,95].

In a study by Wei Qi et al. [96], papain, which is a commercially available and low-cost protease,
was used successfully for the biosynthesis of N-(benzyloxycarbonyl)-alanyl-glutamine (Z-Ala-Gln)
through a kinetically controlled strategy. The results showed that the dipeptide yield was 35.5%, and
the apparent maximum reaction rate was determined to be 6.09 mmol/(L·min) under the optimized
conditions. Wen-Yong Lou et al. proposed a novel method for the more efficient synthesis of dipeptides
with the same biocatalyst (papain) in deep eutectic solvents [97]. In this study, papain was successfully
immobilized onto magnetic nanocrystalline cellulose, and the obtained nano-biocatalyst (PA@MNCC)
showed improved stability, enhanced solvent tolerance, and increased enzyme-substrate affinity. When
this method was used for the synthesis of Z-Ala-Gln, the yield of the dipeptide in deep eutectic
solvent was approximately 71.5%, which was the highest reported yield. This strategy is a competitive
method for the synthesis of Z-Ala-Gln. Moreover, this study provided a promising carrier (magnetic
nanocrystalline cellulose) that might be widely applied for enzyme immobilization.

3. Emerging Approaches for the Efficient Production of Short Oligopeptides: Rational Protein
Engineering and Strain Development

3.1. Dipeptide Formation by Rational Engineering of NRPSs

NRPSs are modular ‘mega-enzymes’ that can catalyze the assembly of many smaller units, which
produces various bioactive molecules. NRPSs can synthesize and assemble peptides in-line from amino
acid monomers, which are first activated by the A domains and then loaded onto the adjacent carrier
domains. Lastly, the formation of peptide bonds and transfer of the growing chain are catalyzed by the
C domains. Because each module of NRPSs performs specific reactions, such as substrate activation,
modification, and condensation, the rational arrangement of these specific modules (domain assembly
and module fusion) for the design of novel engineered NRPSs to produce interesting products is very
promising [98,99].
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In a pioneering study by Marahiel et al. (Figure 16) [98,100], different Asp-Phe synthetases
were designed and constructed through fusion of the Asp and Phe activating modules and
condensation domains. The product formation assay showed that two different forms of
Asp-Phe were successfully bio-synthesized (α-Asp-Phe and β-Asp-Phe), while enzyme III
[A-PCP]SrfB2-[C-A]TycB2-[PCP-Te]TycC6 showed the best catalytic activity (Kcat = 0.7 min−1, α:β =

100:0). The turnover rates (ranging from 0.01–0.7 min−1) and the purity of α-Asp-Phe (75–100% of the
overall product) indicate that the rational engineering of NRPSs shows great potential for the design
and efficient production of novel dipeptides. However, it should be noted that the different fusion sites
might play a critical role in the resulting catalytic activities of the fused catalysts.Biomolecules 2019, 9, x 16 of 23 
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Due to the chemical diversity covered by non-ribosomal peptides, rational modification of their
backbones represents a promising strategy for the development of novel products with specific
properties [101]. Therefore, determining how to produce the designed component via catalysis
by an efficient biocatalyst might display great potential. From this perspective, engineering and
reprogramming modular NRPSs to obtain novel catalysts with designed activities would make perfect
sense. GrsA/GrsB1 is a truncated dipeptide synthetase excised from the gramicidin S NRPS [102],
which can catalyze the biosynthesis of the d-Phe-l-Pro diketopiperazine. Based on this finding,
Donald et al. [103] introduced a single W239S mutation in the phenylalanine-specific NRPS A-domain
to enlarge the binding pocket. This modification greatly improved the activation process of unnatural
aromatic amino acids functionalized with azide and alkyne groups. The results showed that the
substrate specificity was increased by 105-fold (for p-azido-l-Phe, Kcat/KM = 9000 (25 for WT)) without
appreciable loss of catalytic efficiency.

3.2. Engineering Modifications of Cephalosporin Acylase

Considering the nature of the similar chemical structures of glutaryl-7-ACA, adipyl-7-ADCA,
and cephalosporin C, attempts have been made to create mutants of cephalosporin acylases with
improved activities toward adipyl-7-ADCA and cephalosporin C. From this perspective, engineering
modifications of cephalosporin acylase would be a feasible strategy to achieve this goal, and significant
progress has been made in addressing the concerns of low substrate specificity, substrate inhibition,
and product inhibition encountered in practice [104,105].

The study by Wim J. Quax [58,106] included a comprehensive mutational analysis of N266 and
F375. The resulting mutations showed a broad spectrum of affinities and activities, which suggests
the flexibility of the glutaryl acylase from Pseudomonas SY-77 at these positions. Moreover, the
SY-77N266Q, SY-77N266H, and SY-77N266M mutants also showed a modest improvement in cephalosporin
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C hydrolysis. In a study carried out by Zhanglin Lin et al. [107], a positive mutation, H57βA/H70βY,
of the CPC acylase acyII from Pseudomonas SE8 with no substrate inhibition was obtained via two
rounds of combinatorial active site saturation testing. Further study with a quick pH indicator assay
designed for real-time monitoring and screening libraries of site-directed saturation mutations led
to the discovery of a new mutation, H57βA/H70βY/I176βN, which showed a Kcat 3.26-fold when
compared to the wild type. In this study, it was suggested that a larger binding pocket might better
accommodate CPC as the optimal substrate. However, the reason that this mutant abrogates substrate
inhibition remains unclear.

In addition to traditional molecular biology methods (such as random mutagenesis methods and
directed evolution), rational protein design is a promising strategy in current enzyme engineering
to improve enzymatic properties. In this field, several important studies carried out by Yu-shan
Zhu et al. have demonstrated the importance of computational protein design [108–112]. In one
study [111], molecular dynamics (MD) simulations and molecular docking were applied to investigate
the dynamic features of active site-transition state complex structures of cephalosporin acylase to
potentially avoid an excess of false positives produced by high-throughput screening. Through this
approach, the limiting step and well-maintained geometrical constraints in the hydrolysis reaction of
cephalosporin C were determined and revealed, which could be further used to improve the activity
of cephalosporin C acylase. In other studies [109,110], computational protein design strategies were
successfully used for enzyme engineering to increase catalytic activities (thermostability or activity).
The cephalosporin C acylase from the Pseudomonas strain N176 was reconstructed and analyzed
via the PROtein Design Algorithmic (PRODA) package [113]. Through this method, rational protein
design for the improvement of stability and activity could be achieved simultaneously by analyzing the
functions of the hydrophobic core regions and the regions surrounding the active sites. This study [110]
revealed that the instability caused by introduced mutations (V68βA) at the active site could be reversed
by repacking the nearby hydrophobic core regions (L154βF and L180βF). One study [112] achieved the
computational redesign of native penicillin acylase active sites for the condensation reaction between
d-dihydrophenylglycine methyl ester (DHME) and 7-ADCA, which produces cephradine in fully
aqueous medium. The great advantage of this method might be the development of a scoring function
based on discounted folding energy instead of the single binding energy or the overall folding energy
(∆Gfold). The results showed not only that the positive mutant (M142αF/F24βA/S67βA) displayed
high substrate specificity but also that the catalytic activity was simultaneously increased by more
than 10-fold. It is believed that this strategy provides a highly efficient and green approach to enzyme
engineering to create novel biocatalysts for transforming a wide variety of substrates—both natural
and unnatural compounds.

It is known that the protein structure determines the function and the structural, chemical, and
physical factors that play important roles in catalytic activity and inevitably affect substrate specificity
or stability [114]. Therefore, computational protein design could provide a promising platform for the
design of novel industrial biocatalysts and for the study of protein structure and function, which has
also become a leading field in the biophysical sciences [115–117].

3.3. Metabolic Engineering of Microorganisms for the Biosynthesis of Desirable Dipeptides

Ala-Gln is a very important compound from both the clinical and nutritional perspectives [118]
and is the most suitable Gln-containing vector for the supply of l-glutamine (Gln). In addition
to chemical synthesis and chemo-enzymatic synthesis, the metabolic engineering of E. coli for the
biosynthesis of Ala-Gln has proven to be a promising strategy. Yoshinori Hirao et al. [42], Wenjie
Yuan et al. [43], and Kino et al. [26] used α-amino acid ester acyltransferase and l-amino acid ligase
as biocatalysts for the bio-catalysis of Ala-Gln. Wenjie Yuan engineered E. coli Origami 2 to produce
Ala-Gln by overexpressing α-amino acid ester acyltransferase with the pET-29a(+) plasmid under
the control of the T7 promoter. The engineered host could use l-alanine methyl ester hydrochloride
(AlaOMe) and l-glutamine (Gln) as the substrates to synthesize Ala-Gln. The maximum molar yield
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and productivity were determined to be 94.7% and 1.89 g·(L·min)−1, respectively. Moreover, the high
SsAet activity of α-amino acid ester acyltransferase maintained during the repeated cycle experiments
could guarantee a high Ala-Gln yield.

An l-amino acid ligase, BL00235, was used and engineered for the selective synthesis of the salt
taste enhancer Met-Gly [30]. Via site-directed mutagenesis of the P85 residue, the resulting P85F and
P85Y mutants achieved selective Met-Gly synthesis without the synthesis of Met-Met. It was found
that the key residues in the binding pockets (e.g., P85 of BL00235) play a critical role in substrate
reorganization similar to that of BacD (Trp332). Therefore, rational modification of these sites would
alter the substrate binding pockets, which leads to a restricted cavity for substrate binding. However,
as seen from the abovementioned studies, a foreseeable result is that the obtained mutants showed
lower yields but higher substrate specificities than the wild type. In our view, this difference arises
because the catalytic performance of a specific catalyst is affected by various factors. Therefore, the
simultaneous enhancement of multiple catalytic factors of L-amino acid ligase would be a feasible
alternative for further studies.

4. Conclusions

Due to their specific structures and functionality, polypeptides often show remarkable chemical and
biological properties. Therefore, they have been widely employed in various fields, such as biomedicine.
Compared with conventional solid-phase peptide synthesis, the widely used chemo-enzymatic
synthesis might be advantageous, especially for the biosynthesis of dipeptides or tripeptides, due to
its environmental-friendliness and increased yields. However, critical challenges might be posed by
the lack of insight into the detailed enzymatic mechanisms and difficulties in determining the optical
reaction conditions.

In addition, the fermentative production of oligopeptides might potentially become the ultimate
strategy. It is likely the most cost-efficient and environmentally-friendly approach. Thus, different
types of key biocatalysts would be first used and engineered. Furthermore, the intracellular metabolic
pathways of specific hosts would also be modified to redirect the metabolic flow of the substrate
amino acids in order to suppress undesired pathways. As discussed above, the enzymes used (e.g.,
Lals) usually show broad substrate specificity. Therefore, the resulting spectrum of possible products
would greatly affect the practical biosynthesis of oligopeptides. Protein engineering through directed
evolution, rational design, and structure-based site-directed mutagenesis would help improve both the
substrate specificity profiles and catalytic performance. Moreover, the use of engineered biocatalysts
with improved catalytic performance would undoubtedly expand the scope of fermentative production
of oligopeptides.

Funding: The authors are supported by Shandong Provincial Natural Science Foundation, China (no.
ZR2019BB062), the project supported by Shandong Provincial Natural Science Foundation, China (no.
ZR2017BC044), the National Natural Science Foundation cultivation project of Jining Medical University (grant no.
JYP201704), the Supporting Fund for Teachers’ Research of Jining Medical University (grant no. JYFC2018KJ031),
the Supporting Fund for Teachers’ Research of Jining Medical University (grant no. JYFC2018KJ020), and the
Startup Fund of Jining Medical University. The authors have no other relevant affiliations or financial involvement
with any organization or entity with a financial interest in or financial conflict with the subject matter or materials
discussed in the manuscript apart from the one mentioned above.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Santos, S.; Torcato, I.; Castanho, M.A. Biomedical applications of dipeptides and tripeptides. Biopolymers
2012, 98, 288–293. [CrossRef]

2. Bera, B.K.; Ray, S.; Mondal, S.; Karmakar, P.; Mandal, A.; Mallick, S.; Ghosh, A.K. Kinetic and
mechanistic studies on the interaction of Glycyl-L-alanine, Glycyl-L-asparagine, and Glycyl-L-tyrosine with
hydroxopentaaquarhodium(III) Ion. J. Chem. 2013, 2013. [CrossRef]

http://dx.doi.org/10.1002/bip.22067
http://dx.doi.org/10.1155/2013/801362


Biomolecules 2019, 9, 733 18 of 23

3. Mccormack, W.P.; Hoffman, J.R.; Pruna, G.J.; Jajtner, A.R.; Townsend, J.R.; Stout, J.R.; Fragala, M.S.;
Fukuda, D.H. Effects of l-Alanyl-l-Glutamine ingestion on one-hour run performance. J. Am. Coll. Nutr.
2015, 34, 488–496. [CrossRef]

4. Magnuson, B.A.; Burdock, G.A.; Doull, J.; Kroes, R.M.; Marsh, G.M.; Pariza, M.W.; Spencer, P.S.; Waddell, W.J.;
Walker, R.; Williams, G.M. Aspartame: A safety evaluation based on current use levels, regulations, and
toxicological and epidemiological studies. Crit. Rev. Toxicol. 2007, 37, 629–727. [CrossRef]

5. Kino, H.; Nakajima, S.; Arai, T.; Kino, K. Effective production of Pro-Gly by mutagenesis of l-amino acid
ligase. J. Biosci. Bioeng. 2016, 122, 155–159. [CrossRef]

6. Davis, C.K.; Laud, P.J.; Zsanett, B.; Rajanikant, G.K.; Arshad, M. Systematic review and stratified meta-analysis
of the efficacy of carnosine in animal models of ischemic stroke. J. Cereb. Blood Flow Metab. 2016, 36, 1686–1694.
[CrossRef]

7. Babizhayev, M.A.; Deyev, A.I.; Yermakova, V.N.; Semiletov, Y.A.; Davydova, N.G.; Kurysheva, N.I.;
Zhukotskii, A.V.; Goldman, I.M. N-Acetylcarnosine, a natural histidine-containing dipeptide, as a potent
ophthalmic drug in treatment of human cataracts. Peptides 2001, 22, 979–994. [CrossRef]

8. Perazzo, J.; Castanho, M.A.; Sá, S.S. Pharmacological potential of the endogenous dipeptide kyotorphin and
selected derivatives. Front. Pharm. 2016, 7, 530–540. [CrossRef]

9. Khavinson, V.K.; Morozov, V.G.; Malinin, V.V.; Kazakova, T.B.; Korneva, E.A. Effect of peptide Lys-Glu on
interleukin-2 gene expression in lymphocytes. Bull. Exp. Biol. Med. 2000, 130, 898–899. [CrossRef]

10. Nakatani, M.; Shinohara, Y.; Takii, M.; Mori, H.; Asai, N.; Nishimura, S.; Furukawa-Hibi, Y.; Miyamoto, Y.;
Nitta, A. Periocular injection of in situ hydrogels containing Leu-Ile, an inducer for neurotrophic factors,
promotes retinal ganglion cell survival after optic nerve injury. Exp. Eye Res. 2011, 93, 873–879. [CrossRef]

11. Wang, T.; Wu, M.B.; Chen, Z.J.; Lin, J.P.; Yang, L.R. Separation, determination and antifungal activity test of
the products from a new Bacillus amyloliquefaciens. Nat. Prod. Res. 2015, 30, 1215–1218. [CrossRef]

12. Gahungu, M.; Arguellesarias, A.; Fickers, P.; Zervosen, A.; Joris, B.; Damblon, C.; Luxen, A. Synthesis and
biological evaluation of potential threonine synthase inhibitors: Rhizocticin A and Plumbemycin A. Bioorg.
Med. Chem. 2013, 21, 4958–4967. [CrossRef]

13. Turner, J.G.; Taha, R.R.; Jill, D. Effects of tabtoxin on nitrogen metabolism. Physiol.Plant. 2010, 67, 649–653.
[CrossRef]

14. Yagasaki, M.; Hashimoto, S. Synthesis and application of dipeptides; current status and perspectives. Appl.
Microbiol. Biotechnol. 2008, 81, 13–22. [CrossRef]

15. Mandity, I.M.; Olasz, B.; Otvos, S.B.; Fulop, F. Continuous-flow solid-phase peptide synthesis: A revolutionary
reduction of the amino acid excess. ChemSusChem 2014, 7, 3172–3176. [CrossRef]

16. Lawrenson, S.; Arav, R.; North, M. The peptide synthesis. Green Chem. 2017, 19, 1685–1691. [CrossRef]
17. Goswami, A.; Van Lanen, S.G. Enzymatic strategies and biocatalysts for amide bond formation: Tricks of the

trade outside of the ribosome. Mol. Biosyst. 2015, 11, 338–353. [CrossRef]
18. Hashimoto, S.I. Occurrence, biosynthesis, and biotechnological production of dipeptides. In Amino Acid

Biosynthesis ~ Pathways, Regulation and Metabolic Engineering; Wendisch, V.F., Ed.; Springer: Berlin/Heidelberg,
Germany, 2007; Volume 5, pp. 327–348.

19. Süssmuth, R.D.; Mainz, A. Nonribosomal peptide synthesis-principles and prospects. Angew. Chem. Int. Ed.
Engl. 2017, 56, 3770–3821. [CrossRef]

20. Wang, T.; Liang, Y.; Wu, M.; Chen, Z.; Lin, J.; Yang, L. Natural products from Bacillus subtilis with
antimicrobial properties. Chinese J. Chem. Eng. 2015, 23, 744–754. [CrossRef]

21. Strieker, M.; Tanović, A.; Marahiel, M.A. Nonribosomal peptide synthetases: Structures and dynamics. Curr.
Opin. Struc. Biol. 2010, 20, 234–240. [CrossRef]

22. Candela, T.; Fouet, A. Poly-gamma-glutamate in bacteria. Mol. Microbiol. Y 2006, 60, 1091–1098. [CrossRef]
23. Ogasawara, Y.; Dairi, T. Biosynthesis of Oligopeptides using ATP-grasp Enzymes. Chemistry 2017, 23,

10714–10724. [CrossRef]
24. Galperin, M.Y.; Koonin, E.V. A diverse superfamily of enzymes with ATP-dependent carboxylate-amine/thiol

ligase activity. Protein Sci. 1997, 6, 2639–2643. [CrossRef]
25. Tsuda, T.; Suzuki, T.; Kojima, S. Crystallization and preliminary X-ray diffraction analysis of Bacillus subtilis

YwfE, an l -amino-acid ligase. Acta Cryst. A 2012, 68, 203–206.
26. Tsuda, T.; Asami, M.; Koguchi, Y.; Kojima, S. Single mutation alters the substrate specificity of L-amino acid

ligase. Biochemistry 2014, 53, 2650–2660. [CrossRef]

http://dx.doi.org/10.1080/07315724.2015.1009193
http://dx.doi.org/10.1080/10408440701516184
http://dx.doi.org/10.1016/j.jbiosc.2016.01.014
http://dx.doi.org/10.1177/0271678X16658302
http://dx.doi.org/10.1016/S0196-9781(01)00407-7
http://dx.doi.org/10.3389/fphar.2016.00530
http://dx.doi.org/10.1007/BF02682264
http://dx.doi.org/10.1016/j.exer.2011.09.024
http://dx.doi.org/10.1080/14786419.2015.1048246
http://dx.doi.org/10.1016/j.bmc.2013.06.064
http://dx.doi.org/10.1111/j.1399-3054.1986.tb05072.x
http://dx.doi.org/10.1007/s00253-008-1590-3
http://dx.doi.org/10.1002/cssc.201402436
http://dx.doi.org/10.1039/C7GC00247E
http://dx.doi.org/10.1039/C4MB00627E
http://dx.doi.org/10.1002/anie.201609079
http://dx.doi.org/10.1016/j.cjche.2014.05.020
http://dx.doi.org/10.1016/j.sbi.2010.01.009
http://dx.doi.org/10.1111/j.1365-2958.2006.05179.x
http://dx.doi.org/10.1002/chem.201700674
http://dx.doi.org/10.1002/pro.5560061218
http://dx.doi.org/10.1021/bi500292b


Biomolecules 2019, 9, 733 19 of 23

27. Arai, T.; Arimura, Y.; Ishikura, S.; Kino, K. L-amino acid ligase from Pseudomonas syringae producing tabtoxin
can be used for enzymatic synthesis of various functional peptides. Appl. Env. Microbiol. 2013, 79, 5023–5029.
[CrossRef]

28. Kino, K.; Noguchi, A.; Arai, T.; Yagasaki, M. Identification and characterization of a novel L-amino acid
ligase from Photorhabdus luminescens subsp. laumondii TT01. J. Biosci. Bioeng. 2010, 110, 39–41. [CrossRef]

29. Kino, K.; Nakazawa, Y.; Yagasaki, M. Dipeptide synthesis by L-amino acid ligase from Ralstonia solanacearum.
Biochem. Biophys. Res. Commun. 2008, 371, 536–540. [CrossRef]

30. Kino, H.; Kino, K. Alteration of the substrate specificity of l-amino acid ligase and selective synthesis of
Met-Gly as a salt taste enhancer. Biosci. Biotechnol. Biochem. 2015, 79, 1827–1832. [CrossRef]

31. Kagawa, W.; Arai, T.; Ishikura, S.; Kino, K.; Kurumizaka, H. Structure of RizA, an L-amino-acid ligase from
Bacillus subtilis. Acta Cryst. A 2015, 71, 1125–1130.

32. Arai, T.; Kino, K. A novel -amino acid ligase is encoded by a gene in the Phaseolotoxin biosynthetic gene
cluster from pv. 1448A. Biosci. E Biotechnol. Biochem. 2014, 72, 3048–3050. [CrossRef]

33. Blasiak, L.C.; Clardy, J. Discovery of 3-formyl-tyrosine metabolites from Pseudoalteromonas tunicata through
heterologous expression. J. Am. Chem. Soc. 2010, 132, 926–927. [CrossRef]

34. Kino, K.; Noguchi, A.; Nakazawa, Y.; Yagasaki, M. A novel l -amino acid ligase from Bacillus licheniformis. J.
Biosci. Bioeng. 2008, 106, 313–315. [CrossRef]

35. Nishanth Kumar, S.; Dileep, C.; Mohandas, C.; Nambisan, B.; Ca, J. Cyclo(D-Tyr-D-Phe): A new antibacterial,
anticancer, and antioxidant cyclic dipeptide from Bacillus sp. N strain associated with a rhabditid
entomopathogenic nematode. J. Pept. Sci. 2014, 20, 173–185. [CrossRef]

36. Dai, X.; Zhou, E.; Yang, W.; Zhang, X.; Zhang, W.; Rao, Y. D-Serine made by serine racemase in Drosophila
intestine plays a physiological role in sleep. Nat. Commun. 2019, 10, 1986–1996.

37. Al-Bar, O.A.; O’Connor, C.D.; Giles, I.G.; Akhtar, M. D-alanine: D-alanine ligase of Escherichia coli. Expression,
purification and inhibitory studies on the cloned enzyme. Biochem. J. 1992, 282, 747–752. [CrossRef]

38. Prosser, G.A.; de Carvalho, L.P. Metabolomics reveal D-Alanine: D-Alanine ligase as the target of D-cycloserine
in Mycobacterium tuberculosis. ACS Med. Chem. Lett. 2013, 4, 1233–1237. [CrossRef]

39. Kino, K.; Arai, T.; Arimura, Y. Poly-alpha-glutamic acid synthesis using a novel catalytic activity of RimK
from Escherichia coli K-12. Appl. Env. Microbiol. 2011, 77, 2019–2025. [CrossRef]

40. Yokozeki, K.; Hara, S. A novel and efficient enzymatic method for the production of peptides from unprotected
starting materials. J. Biotechnol. 2005, 115, 211–220. [CrossRef]

41. Abe, I.; Hara, S.; Yokozeki, K. Gene cloning and characterization of α-amino acid ester acyl transferase in
Empedobacter brevis ATCC14234 and Sphingobacterium siyangensis AJ2458. Biosci. Biotechnol. Biochem.
2011, 75, 2087–2892. [CrossRef]

42. Hirao, Y.; Mihara, Y.; Kira, I.; Abe, I.; Yokozeki, K. Enzymatic production of L-alanyl-L-glutamine by
recombinant E. coli expressing alpha-amino acid ester acyltransferase from Sphingobacterium siyangensis.
Biosci. Biotechnol. Biochem. 2013, 77, 618–623. [CrossRef]

43. Li, Y.; Yuan, W.; Gao, J.; Fan, C.; Wu, W.; Bai, F. Production of l-alanyl-l-glutamine by recycling E. coli
expressing α-amino acid ester acyltransferase. Bioresour. Technol. 2017, 245, 1603–1609. [CrossRef]

44. Srirangan, K.; Orr, V.; Akawi, L.; Westbrook, A.; Moo-Young, M.; Chou, C.P. Biotechnological advances on
Penicillin G acylase: Pharmaceutical implications, unique expression mechanism and production strategies.
Biotechnol. Adv. 2013, 31, 1319–1332. [CrossRef]

45. Sklyarenko, A.V.; El’Darov, M.A.; Kurochkina, V.B.; Yarotsky, S.V. Enzymatic synthesis of β-lactam acids
(review). App. Biochem. Micro. 2015, 51, 627–640. [CrossRef]

46. Gaudelli, N.M.; Long, D.H.; Townsend, C.A. β-Lactam formation by a non-ribosomal peptide synthetase
during antibiotic biosynthesis. Nature 2015, 520, 383–387. [CrossRef]

47. Helena, M.O.; Martina, P.K.; Michal, G.; Pavel, K. Current state and perspectives of penicillin G acylase-based
biocatalyses. Appl. Microbiol. Biotechnol. 2014, 98, 2867–2879.

48. Arroyo, M.; De la Mata, I.; Acebal, C.; Castillón, M.P. Biotechnological applications of penicillin acylases:
State-of-the-art. Appl. Microbiol. Biotechnol. 2003, 60, 507–514. [CrossRef]
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