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ABSTRACT Food facilities need time- and cost-saving methods during the develop-
ment and optimization of environmental monitoring for pathogens and their surro-
gates. Rapid virtual experimentation through in silico modeling can alleviate the
need for extensive real-world, trial-and-error style program design. Two agent-based
models of fresh-cut produce facilities were developed as a way to simulate the dy-
namics of Listeria in the built environment by modeling the different surfaces of
equipment and employees in a facility as agents. Five sampling schemes at three
time points were evaluated in silico on their ability to locate the presence of Listeria
contamination in a facility with sample sites for each scheme (i.e., scenario, as mod-
eled using scenario analysis) based on the following: the facilities’ current environ-
mental monitoring program (scenario 1), Food and Drug Administration recommen-
dations (scenario 2), random selection (scenario 3), sites exclusively from zone 3 (i.e.,
sites in the production room but not directly adjacent to food contact surfaces) (sce-
nario 4), or model prediction of elevated risk of contamination (scenario 5). Variation
was observed between the scenarios on how well the Listeria prevalence of the virtu-
ally collected samples reflected the true prevalence of contaminated agents in the
modeled operation. The zone 3 only (scenario 4) and model-based (scenario 5) sam-
pling scenarios consistently overestimated true prevalence across time, suggesting
that those scenarios could provide a more sensitive approach for determining if
Listeria is present in the operation. The random sampling scenario (scenario 3) may be
more useful for operations looking for a scheme that is most likely to reflect the true
prevalence. Overall, the developed models allow for rapid virtual experimentation and
evaluation of sampling schemes specific to unique fresh-cut produce facilities.

IMPORTANCE Programs such as environmental monitoring are used to determine the
state of a given food facility with regard to the presence of environmental patho-
gens, such as Listeria monocytogenes, that could potentially cross-contaminate food
product. However, the design of environmental monitoring programs is complex,
and there are infinite ways to conduct the sampling that is required for these pro-
grams. Experimentally evaluating sampling schemes in a food facility is time-con-
suming, costly, and nearly impossible. Therefore, the food industry needs science-
based tools to aid in developing and refining sampling plans that reduce the risk
of harboring contamination. Two agent-based models of two fresh-cut produce
facilities reported here demonstrate a novel way to evaluate how different sam-
pling schemes can be rapidly evaluated across multiple time points as a way to
understand how sampling can be optimized in an effort to locate the presence of
Listeria in a food facility.
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L isteria monocytogenes is a foodborne pathogen of high concern to the ready-to-eat
food sector (1) as it can survive in and move through food facilities over time (2),

potentially contaminating food products that do not undergo a kill step before con-
sumption. Food facilities identify Listeria contamination routes or lapses in sanitation by
using strategies such as environmental monitoring programs (EMPs) (3). EMPs involve the
collection of sponge samples from the facility environment (e.g., equipment, floors, walls),
which are tested for Listeria spp., with a positive test for Listeria spp. indicating that the
pathogenic species L. monocytogenes is potentially, but not necessarily, present. Therefore,
Listeria species testing is considered a more conservative approach for the identification of
potential L. monocytogenes harborage points (4). The EMP samples are collected from sites
that are typically categorized by “zone” (5). Although there are multiple ways for zone cat-
egorization, the zones discussed in this paper represent the following: zone 1, food contact
surfaces such as conveyor belts; zone 2, surfaces in close proximity to food or food contact
surfaces such as equipment frames; zone 3, sites within the production room but not in
close proximity to food contact surfaces such as drains; and zone 4, sites outside of the
production room such as break rooms. Given the complex nature of the food facility envi-
ronment, including the complexity of each individual piece of equipment and the food
product or people that move over or around it, there are significant challenges in identify-
ing the best sampling sites for a sampling program as part of an EMP. There have been
multiple recommendations for where and when to take samples, with recommendations
on the number of samples to collect per zone and the number of hours after the start of
production when samples should be collected (3–5). As it is impractical to sample the
whole environment and nearly impossible to conduct an unbiased (e.g., controlled experi-
ment) “trial and error” strategy of evaluating each of these sampling schemes, there is a
need for science-based tools that can rapidly evaluate various sampling schemes at multi-
ple time points.

Mathematical modeling has been explored over the last several years as an alterna-
tive approach to understanding Listeria in the environment, on foods, and in food retail
and facility environments. For example, the U.S. Department of Agriculture (USDA)
developed a quantitative risk assessment (QRA) model to mathematically simulate
Listeria in a retail deli environment (i.e., “virtual deli”) (6). The USDA has also developed
a risk assessment model that is a dynamic in-plant Monte Carlo model that predicts L.
monocytogenes concentrations at retail (7). This model was used to evaluate the impact
on public health of different scenarios of food contact surface sampling. A compart-
mental mathematical model was used to understand Listeria cross-contamination in a
fish processing environment (8). More recently, agent-based models (ABMs) have been
used as a way to model Listeria in food facilities, as these models have the advantage
of being able to simulate the various interacting elements within these complex sys-
tems (9, 10). All of these models provide valuable insights into the risk of Listeria contami-
nation of food or food contact surfaces. However, none investigate sampling scenarios
associated with EMPs, such as location and timing of sample collection. Additionally, no
models to date are specific to fresh produce facility environments. The produce industry
needs more information on Listeria dynamics in produce operations to better prevent the
occurrence of produce-associated outbreaks (11). There is a lack of science-based tools to
implement responses to Listeria detection that are both appropriate for a specific facility
and its unique processes and effective in reducing risk of contaminated products. The pro-
duce industry needs a way to save time and money in evaluating sampling scenarios by
using science-driven processes for evaluating various sampling schemes instead of evalu-
ating sampling schemes using trial and error. More specifically, there is a need for food
facilities to rapidly evaluate how changes to inputs such as incoming product quality may
change the optimal sampling scheme, across time or across operations. Ultimately, these
models need to provide actionable and practical data to support feasible implementation
of an optimal EMP. The objective of this study was to develop agent-based models specifi-
cally tailored to two fresh-cut produce facilities and use them to evaluate, in silico, multiple
sampling scenarios. Specifically, the goal of such detailed modeling was to generate
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synthetic data via simulation of Listeria dynamics in the two fresh-cut produce facilities to
determine if site-specific attributes impact the likelihood of contamination and therefore
necessitate different sampling and surveillance schemes.

RESULTS

Agent-based models of two fresh-cut produce facilities were developed from code
of a previously developed agent-based model, EnABLe (9) (Fig. 1; Table 1) with model
parameters that were informed by (i) in-person observations, (ii) published literature,
or (iii) an expert elicitation (Table 2; see Table S1 in the supplemental material). Listeria
contamination routes and presence on surfaces during facility operations were simu-
lated using “agents” representing equipment and employees, each having customized
characteristics. The agents operated autonomously with other agents and the environ-
ment, including the floors, walls, and ceiling. Model validation was deemed successful
based on overlap of the model’s predicted Listeria prevalence of contaminated agents
(presented as percentiles, mean, median, and maximum) and observed prevalence in
historical data (presented as the mean and 5% and 95% confidence intervals) (Tables 3
and 4). Sensitivity analysis was used to identify significant input parameters affecting
prevalence in the overall model, while cluster analysis was used to determine the
impact of agent attributes on contamination risk. The developed and validated models
simulated the Listeria dynamics within the facilities of interest over a 2-week period

FIG 1 NetLogo model interface showing a 2D representation of the layout for facility A (A) and facility B (B). In both panels A and B,
the first panel shows the locations of agents (symbols) and links connecting them (lines) in the modeled facility, while the second
and third panels illustrate the traffic density (green) and water density (blue), respectively, on the floor at a particular point in time.
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and were used to evaluate the spread of Listeria and the sampling performance of dif-
ferent sampling scenarios.

The baseline model predictions show that agents in zone 3 and the second
production shift had the greatest Listeria prevalence. Listeria prevalence among
modeled agents (i.e., the proportion of agents contaminated with Listeria out of all
modeled agents) during the second week of a 2-week simulation for the baseline mod-
els for both facilities was evaluated based on the results of 10,000 iterations. The over-
all Listeria prevalence in a given day remained similar throughout the week (Fig. 2A
and B) (for brevity, data are shown only for facility B). However, Listeria prevalence was,
on average, greater at the end of the day (18th hour of production) than at the begin-
ning of the day (first hour of production) (Fig. 2C), regardless of the day of the week.
Agents from zone 3 had a higher Listeria prevalence, on average, than agents in zones
1 and 2 (Fig. 2D and E). This was true for both the start of the day and the end of the
day. Similar trends were observed for both facilities.

Sensitivity analysis revealed key parameters that consistently influenced Listeria
prevalence in all zones within the facilities modeled here. Sensitivity analyses based
on partial rank correlation were performed within each modeled facility to investigate
which parameters had the greatest influence on Listeria prevalence by zone (i.e., num-
ber of agents of a given zone that were positive for Listeria relative to the number of
total agents within that zone) (Fig. 3). The analysis revealed that three input parame-
ters were significant for both facilities in all zones: (i) the probability of zone 4 introduc-
tion (i.e., input parameter pz), (ii) the amount of Listeria introduced per object from
zone 4 (Nz), and (iii) the concentration of Listeria per contaminated incoming produce
(NR). The rate of introduction from random events (pr) and the amount of Listeria intro-
duced during random events (Nr) were significant for all zones in facility B but were
not influential on equipment contamination in any zone in facility A. The probability of
Listeria transfer from zone 2 to zone 1, given contact, had a significant influence on
zone 1 contamination in both modeled facilities.

Cluster analysis provided an alternative to grouping sites by zone and revealed
that groupings differ across the two facilities. A hierarchical cluster analysis was per-
formed to determine how agents across both facilities (i.e., equipment and employees)
grouped with respect to predicted Listeria contamination risk outcomes (e.g., fre-
quency, probability, and duration of contamination) and to determine whether there
were patterns within and across facilities. The results revealed an alternative method
for categorizing sampling sites (Table 5), as opposed to grouping by zones based on

TABLE 1 Summary of agent characteristics by zone and employees in agent-based models of two fresh-cut facilities

Facility and characteristic

Valuea for:

Zone 1b Zone 2 Zone 3 Employees
Facility A
No. of agents 130 120 30 34
Distance from floor (m) 1.2 (0.9, 4.6) 0.9 (0.9, 4.6) 0.9 (0.0, 1.8) 2.1 (1.2, 2.7)
Surface area (cm2) 7,432 (156, 66,147) 15,396 (914, 92,903) 3,871 (625, 15,396) 156 (156, 156)
No. of out-directed links 0 (0.0, 1.0) 0 (0.0, 1.0) 0 (0.0, 0.0) 0 (0.0, 0.0)
No. of in-directed links 0 (0.0, 1.0) 0 (0.0, 0.0) 0 (0.0, 6.6) 0 (0.0, 1.0)
No. of undirected links 1 (1.0, 4.0) 1 (0.0, 2.0) 1 (0.0, 5.2) 1 (1.0, 4.4)
No. (%) uncleanable 3 (2.3) 2 (1.7) 11 (36.7) 0 (0.0)

Facility B
No. of agents 321 219 158 155
Distance from floor (m) 1.2 (0.3, 3.0) 1.2 (0.9, 4.0) 0.3 (0.0, 3.4) 1.2 (1.2, 1.5)
Surface area (cm2) 6,000 (156, 22,296) 15,000 (5,000, 33,445) 5,000 (729, 10,000) 156 (156, 156)
No. of out-directed links 0 (0.0, 2.0) 1 (0.0, 2.0) 0 (0.0, 1.0) 0 (0.0, 0.0)
No. of in-directed links 0 (0.0, 1.0) 0 (0.0, 1.0) 0 (0.0, 4.0) 0 (0.0, 0.0)
No. of undirected links 1 (1.0, 8.0) 1 (0.0, 3.0) 1 (0.0, 2.0) 1 (0.0, 8.0)
No. (%) uncleanable 34 (10.6) 34 (15.5) 41 (25.9) 0 (0.0)

aValues given are median (5th–95th percentile), unless otherwise stated.
bAgents representing employees were considered zone 1 and therefore are also included in the zone 1 agent summary.
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proximity to food. Ultimately, three clusters were identified that were each comprised
of agents from all three zones. Cluster I was the largest of the three clusters. Compared
to clusters II and III, agents in cluster I had, on average, the fewest contacts by a conta-
minated agent, the lowest time contaminated over the course of a 2-week simulation,
and the least amount of consecutive time contaminated (i.e., 11 h). Cluster II was the
second largest cluster. Nearly all agents within this cluster (97%) were considered
cleanable, with all of the uncleanable agents in this cluster being from facility B.
Agents in this cluster were the greatest distance from the floor, compared to the other
two clusters. For cluster II, agents were consecutively contaminated, on average, for
26 h, suggesting that they remain contaminated after cleaning. Cluster III was the

TABLE 2 Input parameters for agent-based models of two fresh-cut produce facilitiesa

Symbol Description Equation/distribution Mean 5th–95th percentile Reference or source
pz Probability that Listeria is introduced into the room

via objects from zone 4 (e.g., trolley, cart, product
bins)

10PERT (22.3, 20.9, 20.2, 4.8) 0.14 0.02, 0.36 Expert opinion

Nz Amt of Listeria introduced per object from zone 4
(CFU)

10PERT (0, 1.9, 3.3, 4.2) 155.79 6.04, 618.79 Expert opinion

Rd Prevalence of Listeria in produce on day d, for d =
Monday, Tuesday, Wednesday, Thursday, Friday

10PERT (22.3, 20.6, 20.6, 5.4) 0.16 0.06, 0.24 Expert opinion

NR Concn of Listeria per contaminated produce (CFU/g) Gamma (0.0019, 0.019) 0.10 0.00, 0.00b 42
a Proportion of Listeria transferred to an equipment

surface upon contact with a contaminated
produce

10Normal (20.28, 0.2) 0.56 0.25, 1.00 43

pr Rate of random event introducing Listeria (e.g., drain
backs up, maintenance, roof leak) (h21)

(1/10)PERT (24.3,20.9, 20.6, 4.6) 0.07 0.00, 0.20 Expert opinion

ps Probability of random introduction to ceiling 0.05 Assumed
Probability of random introduction to floor 0.85 Assumed
Probability of random introduction to equipment 0.10 Assumed

Nr Amt of Listeria introduced per random event (CFU) 10PERT (0.2, 3.3, 3.7, 3.3) 1,233.63 41.56, 3,828.76 Expert opinion
K Environmental carrying capacity of Listeria (CFU/ml) 105 44
GT Generation time (h) of Listeria on environment

surfaces (5–8°C)
Uniform (47, 155) 101.00 52.40, 149.60 33

m Maximum specific growth rate (h21) of Listeria on
environment surfaces (5–8°C)

=ln(2)/GT 0.01 0.00, 0.01 Calculated

pt Probability that contact on floor from foot and
equipment traffic is sufficient to spread Listeria
to adjacent patch

PERT (0.03, 0.25, 0.65, 4) 0.28 0.10, 0.48 45

ci Contact rate between the contaminated patch and
the adjacent patch given the traffic level i = high,
low, negligible

chigh = 60/patch/h,
clow = 12/patch/h,
cneg = 0.2/patch/h

Observed

pw Probability that environmental Listeria is
transported to adjacent patches via (visible) water

Uniform (0.01, 0.05) 0.03 0.01, 0.05 Assumed

b Transfer coefficient for Listeria transmission among
patches via traffic and water

Uniform (0.0, 0.05) 0.03 0.00, 0.05 Assumed

pf Probability that produce falls to the floor during any
given hour of production

Facility A Uniform (0.05, 0.10) 0.08 0.05, 0.10 Observed
Facility B Uniform (0.00, 0.01) 0.00 0.00, 0.01 Observed

pc Probability of a condensation transfer event given
Listeria is present

Uniform (0.01, 0.02) 0.02 0.01, 0.02 Assumed

h d Log10 reduction of Listeria from washing and
sanitation on day d, for d = Monday, Tuesday,
Wednesday, Thursday, Friday

PERT (28,26,21.5, 4) 25.58 27.36,23.47 44

g Probability that a cleanable agent was not properly
cleaned at the end of the shift

Uniform (0.95, 1.00) 0.98 0.95, 1.00 Assumed

t ij Probability of Listeria species transfer from agent i to
j given contact, where i = j = zone 1, zone 2,
zone 3, or employee agent typec

10normal (tc, STD) 43, 46

aParameters were identical between the two facility models, with the exception of pf, which represents the probability that food will fall to the floor. All parameter values
correspond to an hourly time scale, the time scale of the model.

bThis is a highly skewed distribution, as evidenced by a 99th percentile of 0.14 CFU/g and a maximum of 380.82 CFU/g.
ctc, mean transfer coefficient; STD, standard deviation of the transfer coefficient. Complete data are given in Tables S2 and S3 in the supplemental material.
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smallest cluster. The agents within this cluster from zones 1 and 2 were from facility A,
while all of the zone 3 agents were from facility B. All of the cleanable agents from clus-
ter III were from facility A, while all of the uncleanable agents were from facility B. The
facility A agents within cluster III represented packing machines. The facility B agents
within cluster III represented drains, pallet jacks, and trash equipment. Overall, the ma-
jority of the agents in cluster III (88%) were uncleanable. The agents in cluster III had
the greatest average time contaminated and the greatest average consecutive time
contaminated (i.e., 259 h). Cluster III agents also had, on average, the greatest number
of contacts by contaminated agents, the greatest number of transfers of contamina-
tion, and the greatest number of times an uncleanable site becomes contaminated
(Table 5). Overall, all three clusters comprised agents from all three zones, thus provid-
ing an alternative way to categorize agents beyond the traditional zone categorization
that is based on an agent’s proximity to food.

Sampling performance differed throughout production and as true prevalence
increased. Scenario analyses determined how sampling approaches differed based on
five proposed sampling schemes conducted at three different times in a day, resulting

TABLE 3Model output versus historical data for validation of Listeria prevalence in an agent-based model of fresh-cut produce for facility Aa

Equipment category

Model probability of contamination Historical data

Meanb Median
5th
percentile

95th
percentile

99th
percentile Max

No.
tested

No.
positive

Probability of
contamination 5% CIc 95% CIc

Control panel 0.001 0.000 0.000 0.000 0.000 1.000 9 0 0.00 0.00 0.30
Door 0.016 0.000 0.000 0.000 1.000 1.000 10 0 0.00 0.00 0.28
Drain 0.099 0.000 0.000 0.667 1.000 1.000 11 0 0.00 0.00 0.26
Floors 0.004 0.000 0.000 0.000 0.143 0.500 65 0 0.00 0.00 0.06
Frame 0.029 0.000 0.000 0.200 0.333 1.000 39 0 0.00 0.00 0.09
Ladder 0.003 0.000 0.000 0.000 0.000 1.000 10 0 0.00 0.00 0.28
Miscellaneous 0.001 0.000 0.000 0.000 0.000 1.000 15 0 0.00 0.00 0.20
Packing 0.016 0.000 0.000 0.000 1.000 1.000 4 0 0.00 0.00 0.49
Squeegee 0.000 0.000 0.000 0.000 0.000 0.000 12 0 0.00 0.00 0.24
Trash (gray bins) 0.001 0.000 0.000 0.000 0.000 1.000 5 0 0.00 0.00 0.43
Trash (white bins) 0.000 0.000 0.000 0.000 0.000 1.000 4 0 0.00 0.00 0.49
Trash (yellow bins) 0.000 0.000 0.000 0.000 0.000 1.000 5 0 0.00 0.00 0.43
Wall 0.000 0.000 0.000 0.000 0.000 1.000 12 1 0.08 0.01 0.35
Weigher 0.002 0.000 0.000 0.000 0.000 1.000 5 0 0.00 0.00 0.43
Total 0.018 0.000 0.000 0.080 0.125 0.316 206 1 0.00 0.00 0.03
aListeria prevalence is defined as the number of agents within a category that were positive for Listeria relative to the total number of agents within that category.
bProbability of contamination predicted by the model represents the average prevalence for all iterations.
cFive percent and 95% confidence intervals (CI) for historical data were calculated using a Wilson score interval, a binomial proportion confidence interval.

TABLE 4Model output versus historical data for validation of Listeria prevalence in an agent-based model of fresh-cut produce for facility Ba

Equipment category

Model probability of contamination Historical data

Meanb Median
5th
percentile

95th
percentile

99th
percentile Maximum

No.
tested

No.
positive

Probability of
contamination 5% CIc 95% CIc

Chain 0.000 0.000 0.000 0.000 0.000 1.000 1 0 0.00 0.00 0.79
Door 0.063 0.000 0.000 1.000 1.000 1.000 13 1 0.08 0.01 0.33
Drain 0.175 0.000 0.000 1.000 1.000 1.000 18 2 0.11 0.03 0.33
Dryer 0.007 0.000 0.000 0.000 0.253 1.000 17 1 0.06 0.01 0.27
Floor 0.002 0.000 0.000 0.000 0.000 1.000 17 0 0.00 0.00 0.18
Frame 0.035 0.000 0.000 0.333 1.000 1.000 19 0 0.00 0.00 0.17
Mezzanine 0.001 0.000 0.000 0.000 0.000 1.000 2 0 0.00 0.00 0.66
Pallet jack 0.064 0.000 0.000 1.000 1.000 1.000 7 0 0.00 0.00 0.35
Table 0.000 0.000 0.000 0.000 0.000 0.000 1 0 0.00 0.00 0.79
Trash 0.286 0.000 0.000 1.000 1.000 1.000 1 0 0.00 0.00 0.79
Total 0.108 0.125 0.000 0.333 0.444 0.714 96 4 0.04 0.02 0.10
aListeria prevalence is defined as the number of agents within a category that were positive for Listeria relative to the total number of agents within that category.
bProbability of contamination predicted by the model represents the average prevalence for all iterations.
cFive percent and 95% confidence intervals (CI) for historical data were calculated using a Wilson score interval, a binomial proportion confidence interval.
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in 15 scheme-time combinations (i.e., scenarios, as modeled using scenario analysis)
(Table 6). Information provided by each facility about their in-house sampling plan was
used to determine the total number of samples collected for the sample scenarios. The
“diagnostic” accuracy of each sampling scenario was measured by the sampling per-
formance versus the “true prevalence” (i.e., the number of agents contaminated at a
point in time with Listeria out of the total number of agents in the model). Through
this approach, we used the developed models to infer, for the real facilities, how suc-
cessful different sampling scenarios are at capturing the true contamination preva-
lence (across all possible environmental surfaces) in the real facility, which would be
nearly impossible to determine. For example, in a plot of sampling performance versus
true model prevalence, a sampling scenario with Listeria prevalence equal to the true
prevalence would align with y = 0. A sampling scenario that falls below this line would
indicate that the sampling scenario underestimates the Listeria prevalence of the oper-
ation. If the goal of the sampling plan was to find Listeria if it is present, then a positive
sloping line (overestimation of true prevalence on average) would indicate a sampling
scheme that is successful. Scenario analysis results were graphically compared (Fig. 4A
and B) using a line of best fit and the corresponding slope (Table 7) to evaluate the five
different sampling scenarios against true prevalence. For facilities A and B, scenario 1,
which represented the facility’s existing sampling plan, had a positive slope for all
three time points: the first shift (first hour of production), midproduction (hours 3 to 4
of production), and the second shift (hours 9 to 10 of production). Scenario 2, which
represented the draft FDA recommendation, also had a positive slope for all time

FIG 2 Simulation analyses of the baseline model for facility B. Violin plots show the distribution of the Listeria prevalence from
10,000 iterations, with a white circle representing the median and a black rectangle representing the interquartile range. The
model outcomes were compared by day of the week at the beginning of the day (A), day of the week at the end of the day
(B), time of day throughout Wednesday (C), zone at the beginning of the day (D), and zone at the end of the day (E)
(employees are considered zone 1).
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points in both facilities but had a slope close to zero for the second shift time point.
Scenario 3, representing samples collected “randomly” (i.e., all agents had an equal
chance of being sampled), had approximately zero slope for all time points in facility B
and a negative slope for all time points in facility A (although all slopes were close to
zero [i.e., between 0 and 20.1]). Scenario 4 represented samples collected from only
zone 3 agents, which was the zone with the fewest agents. Scenario 4 resulted in a
consistently greater slope across all time points than the previous three scenarios. A

FIG 3 Sensitivity analysis based on partial rank correlation for facility A (top) and facility B (bottom) reveals key parameters significantly affecting Listeria
presence on agents from zones 1, 2, and 3 (employees are considered zone 1) at the end of the shift on Wednesday in week 2. Gray bars indicate
significant parameters (P , 0.05/53 after Bonferroni’s correction), while white bars indicate nonsignificant parameters. NR, concentration of Listeria spp. per
contaminated produce (CFU/g); pr, rate of a random event introducing Listeria spp.; pz, probability that Listeria spp. is introduced into the room via objects
from zone 4; Nr, amount of Listeria spp. introduced per random event (CFU); Nz, amount of Listeria spp. introduced per object from zone 4 (CFU); pij,
probability of contact from contaminated zone i to zone j; tcij, probability of Listeria spp. transfer from zone i to zone j given contact (parameter notations
are defined in Table 2 and Table S1).
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positive slope for the scenario that used only zone 3 agents was not unexpected, as
Listeria prevalence by zone (Fig. 2D and E) showed that zone 3, in addition to being
the zone with the fewest number of agents, had the greatest prevalence on average.
Scenario 5, representing sample selection based on the cluster analysis grouping of
model prediction, had a consistently greater slope across all time points than that of
the previous four scenarios.

DISCUSSION

Two agent-based models were created to simulate Listeria dynamics in fresh-cut
produce facilities. Both models had a user interface with the facility layout, the location
of agents (e.g., equipment, employees), zone designations for nonemployee agents,
connections between agents, and viewing controls for water and traffic maps (Fig. 1).
In addition to visualization of contamination risks and pathways, analyses of the mod-
els produced detailed simulation-based site-specific data on frequency, timing, level,
and transmission of Listeria contamination in each facility (Fig. 2). The customized mod-
els allowed for rapid virtual experimentation and evaluation of a variety of EMP sam-
pling scenarios.

Listeria dynamics in fresh-cut produce facilities can be modeled effectively using
an in silico approach. The model was developed for use in fresh-cut produce opera-
tions to the best of our ability given the available data. Given that there are several
challenges to understanding and predicting Listeria contamination in a food facility, it
is important to understand that our model, as with any model, is a simplification of
reality. It is particularly challenging to model food facilities with low historical preva-
lence detected and low sample numbers, as it is difficult to validate the absence of evi-
dence of contamination or to predict “rare events” (12), as is sometimes the case with
Listeria contamination. Compared to previous studies of similar models where

TABLE 5 Groups of agents in agent-based models of fresh-cut facilities A and B identified by cluster analysis based on several agent Listeria
contamination risk outcomesa

Agent parameter

Value for agent groupings
(n = 978) by cluster

I II III
Total no. of agents 858 103 17

No. of agents by facility
A 236 42 2
B 622 61 15

No. of agents by zone
1 379 71 1
2 317 21 1
3 162 11 15

Representative agent(s)
No. with cleanability
Yes 751 100 2
No 107 3 15

Distance from floor (m)b 4.33 5.10 1.00
No. of out-directed linksb 0.50 0.71 0.06
No. of in-directed linksb 0.51 0.41 1.71
No. of undirected linksb 1.82 1.47 1.59
Probability of Listeria contaminationb 0.01 0.05 0.67
Contacts by contaminated agent (per 2 wks, via link)b 0.93 16.57 68.65
Transfers of contamination (per 2 wks, via link)b 0.93 22.37 42.53
Time contaminated (h)b 0.74 30.92 195.30
Maximum consecutive time contaminated (h)b 11.34 26.10 258.80
No. of times an uncleanable site becomes contaminated (per 2-wk simulation)b 0.03 0.12 6.68
No. of times agents were contaminated from incoming food product (per wk)b 0.02 1.41 0.00
No. of times agents were contaminated from objects coming into the room (i.e., from zone 4) (per wk)b 0.01 1.31 2.47

aAgent Listeria contamination risk outcomes included, e.g., probability, frequency, and duration of contamination.
bMean of cluster.
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prevalence was higher (9, 10), this challenge was unique to the facilities modeled in
our study. The validation done here used robust variable selection, an approach similar
to a previous rare-event study (13). Future further validation of the model with facility-
specific data would be valuable, but more stringent validation than reported here
would likely rely on confidential data and would thus occur by end users. Thus, even
with the limited validation data, the models developed here represent an important
framework and next step in facilitating further development and use of ABMs in food
safety. While future efforts should consider more extensive sample collection to obtain
validation data, we acknowledge that validation of models in real processing facilities
can be challenging due to the dynamic nature of processing operations, including the
need for continuous improvement of operations to address issues that are revealed by
both data collection and modeling efforts. Despite these limitations, ABMs represent
decision support tools that will still need to be used in conjunction with robust real
data in decision-making. Overall, these models illustrate the real-life difficulties in
designing EMPs when the sampling effort is low due to cost and logistic constraints or
if the sampling effort may not be representative of reality (e.g., in cases where the sam-
pling strategy intentionally or unintentionally finds no positives in a facility over a sub-
stantial time frame). For example, for categories where fewer historical data were avail-
able (i.e., only a few samples were collected from sites in a given category), the 95%
confidence intervals were wide, demonstrating a challenge of attempting to validate a
model in parts rather than as a whole, as fewer samples means a higher level of uncer-
tainty described with wider confidence intervals. Importantly, the predicted prevalence
for both models was on the lower end of the confidence intervals of the historical
data, suggesting a potential limitation, as the models may, in general, be underestimating
Listeria prevalence. This indicates that Listeria may be introduced, transferred, or harbored
in a way that the models do not currently consider. For example, one limitation of the
model was that the product flow was based on that of a typical day and the model did
not account for seasonal variations that may result in increased product flow.

Additionally, validation is difficult for a model that represents a real-life facility, as a
facility can change over the time (e.g., addition or removal of equipment) for which his-
torical sampling data are available. For example, facility A underwent construction mid-
way through historical data collection, and there may be other events or changes that
were not known to the modelers and may even be unknown to the facility managers.

TABLE 6 Number of samples collected from each zone for each of four simulated sampling scenarios (1 to 4) and the number of samples
collected from each cluster as determined by the model in an additional simulated sampling scenario (5)a

Model and zone

No. of samples for indicated sampling scenario 5. Model-basedf

1. Baselineb 2. FDAc 3. Randomd 4. Only zone 3e Cluster No. of samples
Model A
Zone 1 0 10 30 (random) 0 I 8
Zone 2 10 10 0 II 20
Zone 3 20 10 30 III 2

Model B
Zone 1 0 35 105 (random) 0 I 29
Zone 2 45 35 0 II 61
Zone 3 60 35 105 III 15

aAll five scenarios were evaluated by the agent-based models for fresh-cut produce facilities A and B through testing them at three time points: first hour of production,
fourth hour of production, and tenth hour of production.

bThe numbers of samples for the baseline scenario were adapted from the facility’s current sampling plans.
cThe numbers of samples for the FDA scenario were based on the recommendation provided by the FDA draft guidance (41), which states “We recommend that even the
smallest processors collect samples from at least 5 sites of FCS and 5 sites of non-FCS on each production line for RTE foods.” Facility A had two lines. Facility B had seven
lines. FCS, food contact surface; RTE, ready to eat.
dThe numbers of samples collected for the random scenario were randomly selected from any of the three zones.
eThe numbers of samples for the “only zone 3” scenario included only samples from zone 3 (i.e., sites in exposed product room but not directly adjacent to food contact
surfaces, such as drains).
fThe model-based scenario was based on cluster analysis, with the majority of sites coming from agents in clusters II and III due to those clusters having greater Listeria
contamination, on average. The number of samples collected from cluster III (and cluster II in the case of model B) was limited by the number of agents that were
categorized into that cluster.

Sullivan et al. Applied and Environmental Microbiology

November 2021 Volume 87 Issue 21 e00799-21 aem.asm.org 10

https://aem.asm.org


Therefore, the model that was developed is reflective of the state of the facility that
existed during the second half of historical data collection, but the validation data
were from both before and after that construction (using data from after the recon-
struction only would have yielded a prohibitively small validation data set). This is a
recurrent limitation of the models, where in-person observations made regarding the
location of employees and equipment and the relationships between them are not
consistent week to week or even day to day. It is impossible to know how these
changes affect Listeria prevalence. Models from previous studies generally used a theo-
retical food facility for the model, rather that modeling a specific operation, which of-
ten requires even further assumptions and simplifications (7, 10). Agent-based model-
ing has been done on a specified facility previously (9) and therefore had assumptions
similar to those of the models discussed here. As is the case with all models, the mod-
els developed for our study have underlying assumptions and limitations. However,

FIG 4 Sample performance relative to true prevalence for five sampling scenarios at three time points
on Wednesday for agent-based models of fresh-cut produce facilities A (A) and B (B). Sampling
scenarios are the following: Baseline, facility’s current environmental monitoring program; FDA, FDA
recommendations; Random, random selection; Zone 3, sites exclusively from zone 3, which are sites in
the production room but not directly adjacent to food contact surfaces; and Model-Based, model
prediction of elevated risk of contamination. Sampling performance was calculated as the proportion of
contaminated agents among all samples minus true prevalence (i.e., the proportion of contaminated
agents among all agents). The line of best fit for each scenario represents the average sampling
performance across 1,000 iterations per scenario-time combination compared to the true prevalence at
that time. A sampling scenario that had a Listeria prevalence representative of the true prevalence
would align with y = 0. Shaded regions represent 95% confidence intervals.
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this does not prevent the use of the models to understand Listeria dynamics in food
facilities and to facilitate discussion on the evaluation of optimal or risk-based sam-
pling schemes. Despite these limitations, the developed models are still a valuable
resource to the food industry as a tool for rapid experimentation to inform discussions
related to development and refinement of sampling plans.

Characteristics such as cleanability, connectivity, and distance from the floor
should be considered during sample site selection. A hierarchical cluster analysis
was performed to evaluate how agents may be grouped together based on multiple
predicted Listeria contamination risk outcomes. Three clusters grouped agents from
both facilities and all zones. Interestingly, this suggests that learnings may be applica-
ble to other facilities, as agents from the same facility did not appear to form their own
clusters and had similar distributions of agents across clusters. Additionally, since
agents from all zones were found in all clusters, zones may not be the ideal way to cat-
egorize sites when building a sampling plan. Instead, our study found that cluster III
was dominated by agents described as uncleanable, suggesting that cleanability may
be a driving factor in clustering rather than zone. Additionally, the agents within clus-
ter III were, on average, at waist height and also had, on average, the greatest number
of in-directed links (i.e., relationships with other agents that would transfer contamina-
tion, such as a trash bin that receives waste off a conveyor belt or a packing machine
that receives product at the end of the line). It therefore may be valuable for an opera-
tion to create a site list of uncleanable sites, at waist height, and those with multiple
in-directed links as a way to routinely sample high-risk sites. The food industry and sci-
entific community have recognized that the hygienic design of equipment is a crucial
part of preventing harborage of Listeria (14). The cluster analysis also revealed that
agents that spent the greatest time contaminated were the agents that were most fre-
quently a source of contamination for other agents. This suggests that agents that are

TABLE 7 Slope for linear regressions fitted to the predicted sampling performance for
different true prevalences in the facility in 1,000 iterations of each scenario-time
combination for agent-based models of two fresh-cut produce facilities

Timea Scenariob,c,d,e,f

Slope

Facility A Facility B
First shift 1. Baseline 0.770 0.667

2. FDA 0.301 0.178
3. Random 20.065 0.008
4. Only zone 3 1.407 1.581
5. Model based 1.480 3.365

Midproduction 1. Baseline 0.430 0.386
2. FDA 0.193 0.121
3. Random 20.067 0.020
4. Only zone 3 0.747 1.068
5. Model based 1.841 3.203

Second shift 1. Baseline 0.123 0.380
2. FDA 0.083 0.101
3. Random 20.046 0.023
4. Only zone 3 0.374 0.939
5. Model based 1.935 2.901

aAll five scenarios were tested at three time points: 1 h into production, 4 h into production, and 10 h into
production.

bThe numbers of samples for the baseline scenario were adapted from the facility’s current sampling plans.
cThe numbers of samples for the FDA scenario were based on the recommendation provided by the FDA draft
guidance (41), which states “We recommend that even the smallest processors collect samples from at least 5
sites of FCS and 5 sites of non-FCS on each production line for RTE foods.” Facility A had two lines. Facility B had
seven lines. FCS, food contact surface; RTE, ready to eat.
dThe numbers of samples collected for the random scenario are randomly selected from any of the three zones.
eThe numbers of samples for the “only zone 3” scenario included only samples from zone 3 (i.e., sites in exposed
product room but not directly adjacent to food contact surfaces, such as drains).
fThe model-based scenario was based on cluster analysis, with the majority of sites coming from agents in
clusters II and III due to those clusters having greater Listeria contamination, on average.
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considered uncleanable should be carefully reviewed for their relationships and prox-
imity with other agents in the facility, when considering risk. Overall, these findings are
consistent with clustering observed with the model developed by Zoellner et al. (9),
who found that zones were not a good predictor of clusters. Although the use of zones
is common in the food industry, alternative groupings similar to the clustering dis-
cussed above can be used to elucidate sampling results, such as was done in a study
by Estrada et al., who used six categories including “drain sites” and “mobile nonfood
contact surfaces” (15). Zone categorization provides information on the likelihood of
contacting food products but does not provide any information on characteristics that
may affect the risk of the site testing positive or becoming a niche (i.e., a site where
Listeria survives over time), such as those characteristics identified in our study (e.g.,
cleanability). Therefore, it is important to consider alternative methods of systemati-
cally categorizing the sites to assist in sample site selection. For example, the facilities
modeled here could create a list of sites that are more frequently sampled based on
the agents identified here as being uncleanable and that have a proportionally high
number of contacts toward the agent. The facilities could also review the list and deter-
mine ways to minimize the contacts that occur with these agents, such as restricting
product or traffic flow patterns, or determine a way to make an uncleanable agent into
a cleanable agent, such as by disassembly for cleaning.

The developed models allow for rapid virtual experimentation and evaluation
of a variety of sampling schemes. Although sampling schemes have been evaluated
in other industries (16, 17), and to a certain extent in the food industry for field testing
(18), finished product testing (19, 20), and food contact surface testing (7), an evalua-
tion of sampling schemes for environmental monitoring of food facilities has, to our
best knowledge, not been previously published. The success of different sampling
schemes currently utilized in the food industry was evaluated by comparing the sam-
pling performance to the true prevalence from simulated production in the modeled
facilities. The sampling performance for the majority of scheme-time combinations
indicated overestimation of the overall contamination level of the facility. Depending
on the definition of a successful sampling plan, this could be valuable. For example, if
the goal of the sampling plan is to detect Listeria control issues as quickly and as soon
as possible, this overestimation of true prevalence can provide a more sensitive approach
for determining if Listeria is present in the operation. Previous studies have shown that
sampling done by an outside expert to validate routine EMP sampling schemes can reveal
significant differences in Listeria prevalence (21, 22). The overestimation of Listeria preva-
lence (as demonstrated by sample performance) was more pronounced at higher values
of true prevalence, highlighting the potential for differences in risk perception among the
scenarios’ sample allocation, particularly demonstrating scenarios 4 and 5 as more tar-
geted approaches. Scenario 4 represents sites only from zone 3, and this finding is there-
fore consistent with the model, which found that Listeria prevalence was highest in zone
3, compared to zones 1 and 2. This makes sense, as zone 3 sites tend to include drains and
other sites that have in-directed links from multiple sites and historically are known to cap-
ture the overall hygienic status of the room. Multiple studies have identified zone 3 sites
such as drains as positive sites during Listeria environmental sampling (15, 21, 23, 24).
Similarly, scenario 5 represented sites selected based on the cluster analysis of model pre-
dictions and thus targeted sites with characteristics conducive to becoming and remaining
contaminated. Therefore, using a sampling scheme that targets sites based on identified
problematic characteristics (which can be identified on new pieces of equipment that are
brought into the operation) may be of greatest value for understanding where Listeria
may be in a food facility.

Some would argue that a successful sampling plan is one that is closest to repre-
senting true prevalence (or true risk), even as true prevalence increases. Whereas the
previous definition of success aimed at finding Listeria if and when present, this
approach aims to provide an estimate of the extent of contamination throughout a fa-
cility. True prevalence is difficult to quantify, especially when the facility environment
is not easily divided into sampling units, and when true prevalence is unknown, it is
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difficult to determine appropriate sampling levels for estimating risk. In other words, it
is difficult to answer the common question “How many samples should I take in my fa-
cility?” In our evaluation of sampling scenarios, those closely representing true risk
were those resulting in a line with a slope close to 0. These types of scenarios appear
to perform uniformly across the range of contamination events that may occur in the
food facility over time, thus providing a snapshot of the overall contamination status
of the operation. This was the trend for the FDA-recommended scheme (scenario 2)
and the random sampling approach (scenario 3) in both modeled facilities. The main
benefit of these scenarios is that true risk was roughly matched by sampling only a
subset of the environment, in fact the current sample numbers the facilities are using
(30 in facility A and 105 in facility B), which is important when considering the time
and resource costs of implementing routine EMPs. Future scenarios could evaluate
how sample number impacts sampling performance.

Overall, these findings suggest that if facility personnel want to find Listeria if it is
present in the operation, then scenario 4 would be most effective, as it more often
identifies contamination among a fixed number of samples (i.e., overestimates the true
prevalence). However, scenario 4 only collects samples from zone 3 (e.g., drains, equip-
ment wheels, door frames, pallet jacks, trash bins, and conveyors, squeegees, ladders)
and therefore does not provide any information about zones 1 and 2, which inherently
have a higher risk of contaminating food. Scenario 2 or 3 would be preferred for facility
personnel that want to have information about the overall operation, therein gaining
information about the risk of Listeria contaminating product as well as an idea of the
true prevalence. Interestingly, scenario 1, representing the facilities’ current sampling
plans, overestimated the true prevalence compared to the FDA recommendation in
scenario 2. However, similar to scenario 4, scenario 1 does not provide any information
about prevalence in zone 1. Even at low prevalence, it is important to detect contami-
nation in zones 1 and 2. In some scenario-time combinations, there was a negative
slope, suggesting that the scheme identified fewer contaminated sites among a fixed
number of samples compared to the overall proportion of contaminated sites in the fa-
cility (i.e., an underestimation of the true prevalence). Although this would provide
confidence in perceived risks, the presence of undetected Listeria could pose a risk to
consumers. As priorities shift, an operation may choose a combination of sampling
schemes for different circumstances.

It is important to understand that “true prevalence” is defined here as the Listeria prev-
alence among the modeled agents in the operation. It does not include Listeria on the
modeled floors, walls, or ceilings. One limitation of the model, and of all agent-based
models, is that the number of agents is based on the discretion of the modeler founded
on the best available understood relevance of the site to environmental monitoring. The
complexity of a food facility complicates the task of defining every possible sampling site
as an agent. This task is nearly impossible, and therefore not every site within the facility
is modeled. Therefore, it is possible that key sites/agents were not included in the model,
potentially resulting in an underestimation or overestimation of Listeria prevalence. This
emphasizes the challenges of calculating true prevalence both in silico and in reality (as
we cannot truly know the denominator). It is nearly impossible for a real (as opposed to
modeled) facility to know the true prevalence and often impractical to estimate it.

Influential parameters can be prioritized targets for corrective actions. The proba-
bility of zone 4 introduction and the amount of Listeria introduced per object entering
from zone 4 (e.g., carts or bins that move in and out of the room) were found to be in-
fluential parameters for the presence of Listeria in all zones in both facilities. Zone 4
sites are typically described as early indicators of the presence of potential food safety
hazards (25). Additionally, several studies have detected Listeria in zone 4 sites and on
movable objects, such as carts and trash bins, that potentially move from zone 4 into
the production room (15, 26, 27). It is important to note that in a given operation, there
is not always a well-defined barrier around the production area (e.g., wall) to truly sep-
arate zones 3 and 4. One study showed that interventions targeted at reducing zone 4
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introduction, including door foamers and controlled movement of people and equip-
ment into and out of finished product areas, had a considerable effect on reducing
Listeria prevalence (23). Therefore, for the two facilities modeled here, these types of
intervention strategies may be worth considering during a review of mechanisms driv-
ing the introduction of Listeria into the production environment.

The concentration of Listeria per contaminated incoming produce item was also
consistently influential on the presence of Listeria across agents in all zones and in
both facilities modeled. This is consistent with findings from a similar model of a cold-
smoked salmon facility (9), which found this parameter (NR) to be influential, but found
overall that the prevalence of Listeria in incoming product (Rd) was the most significant
input parameter for zone 2 Listeria prevalence. Listeria is present in the natural environ-
ment (28) and can therefore contaminate raw food products before entering a food
processing facility. Contamination of raw product has been observed previously, such as
with smoked fish (23, 29). However, limited information is available on Listeria prevalence
in raw produce. Therefore, given the significant influence of contaminated raw product
on the modeled Listeria prevalence in fresh-cut produce facilities, further studies are
needed to better understand the Listeria prevalence of fresh produce entering a facility.

Although the two models had similar significant input parameters, the model for fa-
cility B had more statistically significant input parameters than that for facility A for all
zones. One potential limitation is that some significant input parameters in this study
showed partial rank correlation coefficients of less than 0.4, which may indicate that
although the parameters are statistically significant, the magnitude of influence on the
outcome (e.g., the presence of Listeria at the end of the shift) is likely not meaningful.
Although there is no straightforward interpretation, influential parameters can be used
to inform reviews of good manufacturing practices that affect Listeria prevalence,
potentially helping to prioritize targets for corrective actions.

In closing, synthetic data generated via simulation of Listeria dynamics in two mod-
eled fresh-cut produce facilities showed, through cluster analysis, that site-specific
attributes impact the likelihood of contamination and therefore necessitate different
sampling and surveillance schemes. Thus, models such as those developed here could
be particularly useful as tools to support decision-making for fresh-cut produce facili-
ties during the design and refining of sampling plans as part of EMPs. It is nearly
impossible for facility personnel in the produce industry to try out and compare every
sampling scheme. They need a practical approach that is science based to determine
what approach may be most effective for their specific situation. Modeling can help
with this. Further exploration of model-based approaches is important, as each time a
computer model is created to elucidate a problem, learnings from previous models are
incorporated. As model-based approaches continue to develop, simulations of real-
world situations will improve, therein allowing for rapid scenario testing rather than
spending days, months, or years in trial-and-error field testing. This will ultimately
allow industry to make better decisions, such as how to detect potential issues quicker
and with fewer samples and resources.

MATERIALS ANDMETHODS
Facility description and historical data. Two models were created for this study, each representing

a real fresh-cut produce facility. The facilities were selected from participants in a previous study, where
1 year’s worth of environmental sampling data was available (21). To receive permission to conduct
research in these facilities, we agreed with the participating companies that we would keep the specifics
of what produce commodities were processed in these facilities confidential to protect the company’s
proprietary information.

Facility A has two rooms that are separated by a half wall with a plastic curtain. The product is
brought into a raw receiving room (not modeled) where there is a bin dump area for the product to be
transferred into a flume. The flume moves the product into the main production room through a win-
dow, where it is physically modified in some way (e.g., sliced), washed, dried, weighed, and packed. The
main flume diverges into two washing lines and four weighing and packing lines. After product is
packed into its primary packaging, it is moved to a separate room (not modeled) through windows for
final packaging and storage or shipping. Facility A is a 24-h plant that has two production shifts and one
sanitation shift Monday to Friday. A dry cleaning occurs after Friday’s second shift, and a deep clean
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begins Sunday evening. All three shifts have two 30-min breaks. Facility A processes approximately
4,400 lb of product/h. The temperature of the production rooms is kept between 34 and 60°F, with varia-
tion depending on time of day, seasonality, and number of people working. Facility A has between 30
and 40 people working during the production shifts and 5 to 10 working during sanitation.

Facility B has one production room. Product is brought into a raw receiving room (not modeled)
where there is a bin dump area for the product to be transferred onto belts for presort before being
transferred into flumes. The flumes or belts move the product into the main production room through
doors, where the product is physically modified in some way (e.g., sliced), washed, dried, weighed, and
packed. Facility B has seven flumes and washing lines that diverge into 10 weighing and packing lines.
After the product is packed into its primary and secondary packaging, it is moved to a separate room
(not modeled) for final packing and storage or shipping. There are two production shifts and one sanita-
tion shift daily on Monday to Friday. On Saturday, there is one production shift, followed by dry cleaning.
A deep cleaning shift begins Sunday evening. Three fewer flume and wash lines are used during the sec-
ond shift. Approximately 67,000 and 40,000 lb are processed per hour during the first and second shifts,
respectively. There are between 145 and 155 employees during the first shift, 60 to 70 during the second
shift, and 25 during sanitation. The temperature of the main production room is approximately 36°F,
with variation depending on seasonality and number of people working.

Historical data on microbiological testing for Listeria presence in both facilities were collected as
part of a complementary study (21). Briefly, sites in zones 2 and 3 were sampled using individually
packaged sponges hydrated with 10 ml D/E (Dey and Engley) neutralizing buffer (3M, St. Paul, MN). The
sponge samples were collected at least 3 to 4 h into production. Sponge samples were analyzed to
determine the presence of Listeria by use of the FDA “BAM method” as detailed in chapter 10 of the
Bacteriological Analytic Manual (30).

Modeling approach and implementation. Agent-based models were used to recreate in detail the
processing environments in silico. Modeled components were specific and unique to each facility and
were developed based on in-person observations and information received from facility personnel. The
floorplan of each facility was represented by a grid of squares, scaled to the size of the production area
(3,854 squares for facility A and 8,256 squares for facility B). The modeled production environment
included all walls, doors, mezzanines, and the floor in the facility blueprint (model interface shown in
Fig. 1). The scale of each square (referred to as a patch) was dependent on the size of the operation. For
facility A, each patch represented a 30- by 30-cm area. For facility B, each patch represented a 50- by
50-cm area. An identical grid of ceiling patches was also included and was located in a parallel plane at
the height of the modeled rooms. Patch-specific traffic and water levels were dynamic and were
imported on the floorplan grid during simulated production depending on the current shift or event
(e.g., higher traffic during shift changes and breaks). Based on the shift or event, each patch had desig-
nations for both water and traffic levels of negligible, low, or high. The equipment and employees of
each facility were represented as agents, containing unique and specific information including name, x
and y coordinates in the model’s two-dimensional plane, zone category, distance from the floor, surface
area, and whether or not the site was cleanable during routine sanitation. Zone category was deter-
mined based on a given agent’s proximity to food, with zone 1 being food contact surfaces (e.g., flume),
zone 2 being directly adjacent to food contact surfaces (e.g., equipment frame), and zone 3 being in the
product room where product is exposed but not directly adjacent to a food contact surface (e.g., drains,
equipment wheels, door frames, pallet jacks, trash bins, conveyors, squeegees, ladders). No agents
within these models were considered zone 4, which is outside of the exposed product areas (e.g., break
room). However, introduction of Listeria from zone 4 was a submodel with input parameters specific to
the produce facilities.

Facility A had 280 agents, while facility B had 698 modeled agents (Table 1). The distance from the
floor of each agent represented its vertical location within the facility. Therefore, if an employee or piece
of equipment was located on a mezzanine, then the distance from the floor included the height of the
mezzanine. Mezzanines were represented as a patch layer located between the floor and ceiling patches
at the height of the mezzanine. Therefore, in the two-dimensional (2D) interface that allows for model-
ing of 3D space, there were layers of spatial information for agents and the environment. For example,
at a given x,y coordinate, there could be (from low to high) a floor patch, an agent, a mezzanine patch,
another agent, and a ceiling patch. Connections between agents were represented by links and pro-
vided a network for potential Listeria cross-contamination in the processing facility. There were two
kinds of links: directed and undirected. The directed link between agents represented a relationship
where Listeria could transfer in a single direction between two agents (i.e., in-directed or out-directed).
The undirected link represented a relationship where Listeria transfers in either direction between the
two agents. The determination of links relevant to a given agent was done based on in-person observa-
tions if not already known. Facility-specific hourly events (i.e., empty, preproduction, first shift produc-
tion, second shift production, dry clean, clean, empty) were simulated on an hourly time step according
to each facility’s weekly production schedule.

The model algorithm (code) was written in the open source program NetLogo 6.1.1 (31) and is avail-
able on GitHub (https://github.com/IvanekLab/CPS_2019_OpenData). The code was adapted for this
study from a previously developed agent-based model of a food facility, EnABLe (9), by tailoring the
code to the specifics of each of the two facilities. Briefly, the setup of the in silico facility environment
involved the importing of the agents and agent attributes, links, events, and maps. To initialize the
model world, the initial environment was set to 0% Listeria prevalence among agents and patches. The
start of the 2-week simulation began on Sunday at 12:01 a.m. The simulation start time does not affect
outcomes and can be modified if desired by users. Throughout the week, Listeria was introduced into
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the environment via three ways: (i) contaminated raw product, (ii) zone 4 cross-contamination, and (iii)
random events (i.e., unexpected introductions). The number of employees in the production room was
predetermined and based on the time of day (and therefore the shift). Listeria was spread throughout
the agents and patches in three ways: (i) patch-to-patch spread, (ii) agent-to-agent spread through the
directed or undirected links, and (iii) agent-to-patch spread. Patch-to-patch spread occurred only if water
or traffic levels in the area of patches were greater than negligible (i.e., low or high) at a given hour of
the day. Condensation was also included in the model, with the possibility that Listeria can be trans-
ferred from the mezzanine underside or ceiling to the agents or patches directly below. Listeria growth
and survival were dependent on the water level. Listeria removal from agents and patches occurred via
transfer events and during modeled routine cleaning and sanitation, which resulted in a reduction in
the concentration of any Listeria present in accordance with the sanitation log reduction parameter. The
maximum specific growth rate of Listeria on environmental surfaces was determined using an equation
from Giménez et al. (32) (Table 2). It should be noted that we are modeling growth of Listeria spp. on
equipment and environmental surfaces, not in food products. We use studies of Listeria in produce to
estimate these parameter values, under the assumption that Listeria requires the presence of moisture
and organic matter (e.g., residual product) to grow on a surface. The generation time (GT) was calculated
using values taken from the reported growth over time presented in a report by Ziegler et al. (33). This
parameter was used to calculate the maximum specific growth rate (m) for an iteration. The uniform dis-
tribution with the minimum and maximum GT provided a range of growth rates to evaluate across
model iterations. The values used are in line with data presented in other references (34, 35).

Input parameters. The input parameters for the models were determined using either (i) in-person
observations, (ii) published literature, or (iii) an expert elicitation (Table 2; see Table S1 in the supplemen-
tal material). Input parameters from published literature may be from facilities and commodities similar
to but not identical to those modeled. This represents a pragmatic approach for development of ABMs
that can be used for initial decision-making and sensitivity analyses that will allow for prioritization of
further data collection efforts. For some input parameters, such as the proportion of Listeria transferred
to an equipment surface upon contact with a contaminated product (a), there is an opportunity for
selecting values more likely to align with fresh produce commodities. However, as this parameter was
not found to be significant during sensitivity analysis, better data would not affect conclusions. Similarly,
for the probability of Listeria species transfer (t ij) between surfaces, published literature was used to
understand the potential for Listeria transmission across zones (and therefore not between specific
pieces of equipment), so different surface types and transmission routes were considered. In some
instances, select parameters were assumed when other information was unavailable and was deter-
mined based on prior knowledge and experience. The expert elicitation was used for the estimation of
five of the input parameters as well as the agent contact probabilities. The approach is often used to
support evidence from empirical studies. For example, expert elicitation has been used for that purpose
in risk assessments (36) and modeling (37). A strength of expert elicitation during early stages of novel
modeling framework development, such as in this study, is that it permits rapid evaluation of the system
and parameter uncertainty (37). Additionally, empirical estimation of the contact probability parameters
(Table S2) would have required repeated observation (in person or by video) in the modeled facilities,
which may be considered disruptive or intrusive by the facilities’ management and employees. Thus, a
survey used for the expert elicitation was adapted from a survey used in our previous study (9), with
updates made to include scenarios specific to fresh-cut produce. The survey was sent to and completed
by six people that had expertise on Listeria in food facilities: four experts that work in academia and two
experts that work in the produce industry. Each question in the survey targeted a specific parameter,
with the median, minimum, and maximum result for each parameter being used for the relevant distri-
bution. The reliance on expert opinion for initial parameter estimates represents a possible weakness,
but in line with a report by Russell et al. in 2017 (37), it represents a viable approach, as it allowed us to
use sensitivity analysis to determine for which parameters ground truth input parameters are most im-
portant and should be prioritized for future collection. This approach is essential to facilitate real-world
use and implementation of ABMs in industry, as a priori collection of facility-specific data for all input pa-
rameters will represent an insurmountable hurdle to model implementation for industry.

Verification and validation. Several methods were used in verification steps when building the
models, including syntax checking, visual testing, print statements, spot tests with agent monitors, code
reviews, parameter validity, and different seed generators. Predictive validation was used for model vali-
dation and was done using historical microbiological data collected during a previous study (21). The
predictive validation also included 52 additional samples that were collected most recently as part of
this project with the intention of generating enumeration data. However, all additional samples were
negative for Listeria. Model-simulated environmental sampling during production was consistent with
the sample collection of the historical data by aiming to mimic the sampling site list from historical sam-
pling with sampling sites in simulated sampling. The Listeria prevalence of the historical samples was
compared with the average prevalence of samples collected during the second week of the simulation
from the corresponding in silico sampling sites from 10,000 iterations of 2-week simulations in each facil-
ity model. As zone 1 sites were not sampled in historical data, their contamination status could not be
explicitly validated using predictive validation. However, other modes of model verification described
above were performed to verify that part of the model.

Simulation and sensitivity analysis. To assess the Listeria dynamics within the modeled facilities,
simulation analyses were performed for the validated models. Multiple simulation iterations (i.e., trials)
were completed (n = 10,000), generating simulated data that allowed for characterization of the Listeria
prevalence on each zone during four phases of production: preop (hour prior to production), beginning
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of shift (first hour of production), midproduction (ninth hour of production), and end of day (18th hour
of production).

Sensitivity analysis of validated models was performed using R Studio (version 1.2), using the prcc()
command (38, 39) to determine the partial rank correlation coefficients to identify which of 53 key pa-
rameters (Table 2; Table S1) had a significant effect on Listeria prevalence by zone. Tornado plots of the
significant parameters after Bonferroni’s correction (P , 0.05/53) were used to visualize the extent and
directionality of the parameter influence on the outcome of interest. The code used for these analyses is
available on GitHub (https://github.com/IvanekLab/CPS_2019_OpenData).

Cluster analysis. Hierarchical cluster analysis was used to group agents based on 10 continuous out-
comes related to predicted Listeria contamination status: average Listeria concentration given contami-
nated, median time contaminated, maximum time contaminated, median number of contacts, median
number of transfers, median number of temporary niches, median number of times a niche is contami-
nated, median number of times contaminated from incoming product, median number of times conta-
minated from zone 4 objects, and median number of times contaminated from a random event. A princi-
pal-component analysis (PCA) was performed using the FactoMineR package in R Studio (version 1.2) (40),
with the number of dimensions determined based on a minimum cumulative variance explained of 80%.
Hierarchical clustering on principal components was done using the same package in R Studio. The code
used for these analyses is available on GitHub (https://github.com/IvanekLab/CPS_2019_OpenData).

Scenario analysis. The models were used to conduct scenario analyses to evaluate environmental
monitoring programs and determine how sampling plans differ given five sampling schemes and three
time points (Table 6). Each scenario was repeated for 1,000 iterations with a fixed seed to ensure that
the same combinations of input parameter values were used for each successive iteration across all 15
scheme-time combinations. The first scenario was the baseline and represented the sampling program
currently conducted by the facility during routine sampling. The second scenario represented the FDA
Listeria draft guidance recommendation (41), which specifies that at least 5 samples should be collected
per line on food contact surfaces and 5 samples per line on nonfood contact surfaces. The third scenario
represented a completely random sample collection, where all agents in the facility had an equal chance
of being selected for sampling, regardless of zone category. For the fourth scenario, simulated sampling
was collected only from zone 3 agents. The fifth scenario represented sites selected based on the cluster
analysis of model predictions and thus targeted sites with characteristics conducive to becoming and
remaining contaminated. All scenarios were simulated at three different sample collection times on
Wednesday of the second week of the 2-week simulation: (i) the first hour of production, (ii) the fourth
hour into production (as is recommended by the FDA [41]), and (iii) the tenth hour into production.
Sampling performance was calculated as the proportion of Listeria-contaminated agents detected
among all those sampled minus the true prevalence at the same time point (i.e., the proportion of conta-
minated agents among all modeled agents):

sampling performance ¼ proportion sampled positive 2 true prevalence ¼ x
s
2

y
n

� �
� 100

where s is the number of agents sampled in a given sampling scheme out of n possible sampling sites
(i.e., number of agents in the facility), x is the number of sampled agents that tested positive, and y is
the total number of contaminated agents in the facility. The sampling performance was then plotted
against true prevalence to visualize the stability over a range of contamination levels in the facility. The code
used for these analyses is available on GitHub (https://github.com/IvanekLab/CPS_2019_OpenData).

Data availability. Data files and code used to build the two agent-based models using NetLogo, as
well as data files and R code relevant to the cluster analysis, scenario analysis, and sensitivity analysis,
are available on GitHub at https://github.com/IvanekLab/CPS_2019_OpenData.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 0.1 MB.
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