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Abstract: In X-ray tomography image reconstruction, one of the most successful approaches involves
a statistical approach with l2 norm for fidelity function and some regularization function with lp

norm, 1 < p < 2. Among them stands out, both for its results and the computational performance,
a technique that involves the alternating minimization of an objective function with l2 norm for
fidelity and a regularization term that uses discrete gradient transform (DGT) sparse transformation
minimized by total variation (TV). This work proposes an improvement to the reconstruction process
by adding a bilateral edge-preserving (BEP) regularization term to the objective function. BEP is a
noise reduction method and has the purpose of adaptively eliminating noise in the initial phase of
reconstruction. The addition of BEP improves optimization of the fidelity term and, as a consequence,
improves the result of DGT minimization by total variation. For reconstructions with a limited
number of projections (low-dose reconstruction), the proposed method can achieve higher peak
signal-to-noise ratio (PSNR) and structural similarity index measurement (SSIM) results because it
can better control the noise in the initial processing phase.

Keywords: signal processing; tomography; image reconstruction; X-ray imaging; Bayesian statistics

1. Introduction

X-ray computer tomography (CT) measures the attenuation of X-ray beams passing through
an object, generating projections. Such projections are processed, resulting in an image (slice)
of the examined object. This is known as a CT image reconstruction. The CT scan, formed by
concatenating a large number of adjacent reconstructed images, has been proven to have great
value in delivering rapid and accurate diagnoses for many cases in modern medicine. Although
CT scanning has evolved considerably since its creation in 1972 by Godfrey Hounsfield, only recently
has the concern with radiation levels in radiological examinations become important, leading to the
“as-low-as-reasonably-achievable principle”, known as the ALARA principle. The ALARA principle
states that only the minimum amount of radiation must be applied to the patient. For this reason,
ALARA is widely accepted in the medical CT community [1]. To reduce the X-ray dose of the patient
during the CT scan, there are two possibilities: (1) reduce the amount of projection (the quantity of
X-rays emitted) during the CT scan or (2) reduce the power of the X-ray source during image acquisition.
Both cases generally lead to low-quality reconstructed CT images. Then, a state-of-the-art problem is
to propose a method that allows good-quality CT image reconstruction with a low-dose X-ray source.
The central theme of this work is the reconstruction of images from the signal of the CT process, where
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the X-ray dosage is a concern. Before discussing CT image reconstruction approaches with low-dose
X-rays, the next sections will present the most important classical, iterative, and statistical techniques
to enable the reader to understand how CT image reconstruction has evolved to the current state of
the art.

1.1. Classical, Iterative, and Statistical CT Image Reconstruction Approaches

The first approach to become popular, especially for its performance, was the filtered
backprojection (FBP) reconstruction technique [2,3]. FBP is a classic method based on the Fourier
central slice theorem and is implemented with the fast Fourier transform (FFT). Although it exhibits
good performance, FBP has difficulty in being adapted to new CT scanner architectures. FBP requires
high-dose radiation (in comparison to modern methods) and is not consistent with the ALARA
(as-low-as-reasonably-achievable) principle [1].

The classical approaches, while successful, do not favor the incorporation of physical-statistical
phenomena in the CT framework. For example, photon emission is a rare event and may be well
described by the Poisson distribution [4]; beam behavior is best described by a response function
that models the shadows cast onto detectors using a Gaussian model [5]; the beam hardening
phenomenon (lines and shadows adjacent to high-density reconstructed areas) that appears due
to the polyenergetic nature of X-ray emissions can be statistically corrected [6]; the loss of photons
by sensors, known as photon read-out, is a Gaussian phenomenon [7]; data acquisition electronic
noise and energy-dependent signals can be modeled as compound Poisson plus Gaussian noise [8];
etc. In this context, a statistical approach means adding to the mathematical model elements that
describe physical-statistical phenomena present in the CT image reconstruction process. Therefore, the
incorporation of detailed statistical models into CT reconstruction is not straightforward. In this sense,
many solutions for the CT image reconstruction problem use some form of statistical approach [9–20].
Adaptive statistical iterative reconstruction techniques have shown significant results compared
to non-adaptive techniques [17,18,21,22]. In general, although the models incorporate part of the
statistical phenomena, most of these phenomena are not modeled since the practical effects are
relatively insignificant and/or result in high-cost computational solutions.

An important method is proposed by Clark et al. [23], which consists of using rank-sparse kernel
regression filtration with bilateral total variation (BTV) to map the reconstructed image into spectral
and temporal contrast images. In this work, the authors strictly constrain the regularization problem
while separating temporal and spectral dimensions, resulting in a highly compressed representation
and enabling substantial undersampling of acquired signals. The method (5D CT data acquisition
and reconstruction protocol) efficiently exploits the rank-sparse nature of spectral and temporal CT
data to provide high-fidelity reconstruction results without increased radiation dose or sampling
time. However, a remark should be made regarding the use of BTV (regularization based on l1 norm).
This often leads to the piecewise constant result and hence tends to produce artificial edges on the
smooth areas. In order to mitigate this counterpoint of l1 norm regularization, Charbonnier et al. [24]
developed an edge-preserving regularization scheme known as bilateral edge preservation (BEP),
which allows the used of an lp norm, 1 < p < 2, and is applied in this work. Sreehari et al. [25]
proposed a plug-and-play (P&P) priors framework with a maximum a posteriori (MAP) estimate
approach used to design an algorithm for electron tomographic reconstruction and sparse image
interpolation that exploits the non-local redundancy in images. The power of the P&P approach is that
it allows a wide array of modern denoising algorithms to be used as a prior model for tomography
and image interpolation. Pirelli et al. [26] propose the denoising CT generalized approximate message
passing algorithm (DCT-GAMP), an adaptation of approximate message passing (AMP) techniques that
represents the state of the art for solving undersampling compressed sensing problems with random
linear measurements. In contrast, this approach uses minimum mean square error (MMSE) instead
of MAP, and the authors show that using MMSE favors decoupling between the noise conditioning
effects and the system models.
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The Bayesian statistical approach is widely applied to the reconstruction of X-ray tomographies,
with some variations, [14–16,18,27,28], and makes it possible to insert prior knowledge into the CT
system model. This approach promises two advantages. First, it provides the search with more
satisfactory solutions (noiseless ones) through the limitation of the searchable set of solutions using
an a priori function (known as restriction). This restriction may mean that, for example, very high
variations (high frequencies) between neighboring pixels will be considered as noise (and therefore
must be discarded), and moderate frequencies will be considered as edges (and therefore must be
preserved). In the context of computed tomography, this means that large differences in intensity
between neighboring pixels tend to be interpreted as noise, and therefore, such a solution should
be disregarded [5]. Moreover, solving the CT reconstruction system, y = Ax + e, is an inverse
and ill-posed problem, and prior knowledge often ensures the stability of the solution. Second, we
can adopt a simplified mathematical model for tomographic image reconstruction and compensate
its inefficiency (instability, noisy reconstruction, etc.) by adding the statistical component (prior
knowledge) to the objective function. However, the model simplification has its limitations and should
be used restrictively [5]. As a consequence of prior knowledge introduction, more satisfactory solutions
(low noise level) can be found. Maximum a posteriori (MAP) is a useful statistical framework for
CT reconstruction [12,15,16,27,28] and favors the incorporation of the regularization term with prior
knowledge into the model. The MAP strategy provides an objective function composed by the sum of
the probability (also known as fidelity) and the regularization function that establishes the optimization
restriction criteria, also known as a prior.

1.2. Signal Modeling and Error Considerations in CT Image Reconstruction

As previously discussed, the statistical approaches can reduce deficiencies caused by classical
mathematical modeling without having to literally incorporate the complexity of a real-world model.
However, before proposing a statistical (non-deterministic) model that results in a lower noise
reconstruction, it is necessary to establish the process as a whole. As shown in Figure 1, the process
begins with a synthetic image, µ.

Figure 1. From acquisition to reconstruction and measurement of error.

In this work, we use different synthetic images, namely Shepp–Logan head phantom and
FORBILD head and abdomen phantom definitions [2,29]. The synthetic image is submitted to the
Radon transform,R (.), generating the ideal (free of noise) signal of the CT scan. The acquisition of
data in the CT equipment depends on the amount of photons that reaches each detector. Once this
problem is a particle countable process, well described by Poisson statistics [8], it is used in the model
in Figure 1, represented by the Np random variable. However, due to the high number of photons,
the acquisition process can be modeled as Gaussian due to the central limit theorem. In addition,
the Gaussian model leads to additive algorithms, whereas the Poisson model leads to multiplicative,
and therefore less efficient, algorithms [24]. In this work, we assume the signal arriving at the CT
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equipment detectors is influenced by Gaussian additive noise and, from among the dosage reduction
methods presented in Section 1, we chose to emulate the low radiation dosage by reducing the number
of projection angles processed. This means we assume that each detector absorbs an amount of photons
that allows modeling the noise as a Gaussian additive, and the low dosage occurs by reducing the
number of projections captured by the detectors (by reducing scanning angles). Accordingly, even
with the process having a Poissonian nature, Gaussian additive noise can be added to the process, as

yN = R (µ) +Ng, (1)

where yN is the resulting signal that approximates a tomography signal,R (µ) is the result of applying
the Radon transform on the synthetic image, µ, and Ng is the Gaussian additive noise.

The remainder of this work is dedicated to the reconstruction of the CT image, µN , from the
signal, yN , and the reduction of the global error, i.e., the reduction of the difference between synthetic
and reconstructed images. As a criterion for measuring the quality of image reconstruction, we use
peak signal-to-noise ratio (PSNR) and structural similarity, known as SSIM [30].

1.3. The Contribution of This Work

This work proposes a MAP solution with adaptive regularization term modeled by a bilateral
edge-preserving (BEP) function [31,32] to regularize the fidelity term (l2 norm). The result of BEP
regularization is then subject to regulation by the total variation (TV) of the discrete gradient transform
(DGT) function. The results of reconstruction with an adaptive norm, la, using BEP are compared
via structural similarity (SSIM) and peak signal-to-noise ratio (PSNR) with a simultaneous algebraic
reconstruction technique (SART) reconstruction regularized via the TV minimization of the discrete
gradient transform (DGT) function. The image reconstruction is an iterative process, and SSIM
is calculated for each step, making it possible to objectively compare the methods step by step.
The assumption is that the better the reconstruction method, the higher the SSIM value associated
with the reconstructed image. We also use the well-known PSNR metric to compare the process of
image reconstruction step by step. The proposal is to determine if both SSIM and PSNR present
consistent results in comparison to each other. Both approaches use synthetic images (the same used
to generate the input signal, yN ) as a reference (for comparison). The rest of this work is organized as
follows. In Section 2, the MAP model is developed, resulting in the objective function. In Section 3,
the optimization technique of the objective function is developed. In Section 4, experiments are
performed, and the results are presented and analyzed. Finally, in Section 5, we present the conclusions
and final considerations.

2. Modeling the Objective Function

Most modern CT scanners use energy integration detectors whose photon counts are proportional
to the total energy incident on them. Energy, in turn, is proportional to the number of X-ray photons
that affect the detectors (sensors) of the tomograph. The denser the region traversed by X-ray photons,
the lower the count Ii of detected photons over integral line Li, i = 1, ..., NI , where NI is the maximum
number of projections acquired by the CT scanner. This is known as the Beer–Lambert law, defined as

Ii = I0exp

− ∫
Li

µ (x, y) dL

 , i = 1, ..., NI , (2)

where I0 is the number of detected photons when the beam finds no obstacle, and the exponential
term is the integral of all linear attenuation coefficients µ (x, y) on the line Li (with (x, y) being 2-D
coordinates following Li), which is the path of the beam. Equation (2) assumes that every X-ray
emission has the same energy level, meaning that the process is monoenergetic. This approach is
adopted in many works such as [9–11,15,16,27,28,33–35], with the advantage of avoiding the beam
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hardening problem. Moreover, the monoenergetic approach leads to a more tractable mathematical
model. However, the emission of X-rays is, by nature, polyenergetic. As a consequence, the same object
reacts differently when subjected to X-rays of different energy levels, generating unwanted artifacts in
the reconstructed image. These defects can be avoided, but with the adoption of complex models as
in [12,13,36] and at a high computational cost. This topic is complex and still subject to change because
CT scanners using monoenergetic X-ray sources are beginning to emerge [37].

In favor of a better understanding of the purpose of this work, we first present a base solution
that uses SART reconstruction regularized via TV minimization of the DGT function (SART+DGT),
highlighting the relevant parts, and then we present our approach. This strategy is trustworthy because
makes it clear the value of the contribution in this work. The proposed method is abbreviated as
SART+BEP+DGT.

2.1. Objective Function Modeling Using Soft-threshold Filtering for CT Image Reconstruction

This method consists of modeling an objective function with a l2 norm fidelity function added and
a DGT prior function regularized by a l1 norm with TV minimization. Optimization of the objective
function (Section 3) is performed using alternating minimization. The fidelity term is minimized by
SART. The regularization (prior minimization) is performed by constructing a pseudo-inverse of the
DGT and adapting a soft-threshold filtering algorithm whose convergence and efficiency have been
theoretically proven by [38].

The key aspect of the modeling process is that reconstruction estimates the discrete attenuation,
µ (x, y) for each j pixel of the image, with j = 1, ..., NJ . Thus, the integral over the line, pi =

∫
Li

µ (x, y) dL,

can be discretized as

pi ≈
NJ

∑
j=1

aijµj = [Aµ]i , i = 1, ..., NI , (3)

where A =
{

aij
}

NI×NJ
is the matrix representing the system geometry, µ =

(
µ1, ..., µNJ

)T
is the linear

attenuation coefficient vector with µj representing the j-th pixel, and the symbol T is the transpose of
the matrix. In this model, every aij is defined as the normalized length of the intersection between the
i-th projection beam and j-th rectangular pixel centered in (x, y). The emission of X-ray photons is a
rare event, so a Poisson distribution is usually adopted to describe the probabilistic model, expressed as

yi ∼ Poisson
{

ȳi = I0e−pi
}

, i = 1, ..., NI , (4)

where yi is the projection (measurement) along the i-th X-ray beam, and ȳi is the expected value.
Because the X-ray beams are independent from each other, taking into account Equation (4), the
joint probability of y =

{
y1, y2, ..., yNI

}
given µ, P (y|µ) and observing yi countable events may be

expressed as

P (y|µ) =
NI

∏
i=1

P (yi|µ) =
NI

∏
i=1

(
(ȳi)

yi

yi!
e−ȳi

)
. (5)

Using the MAP approach, as in [9,15,16,27], we have the objective function as follows:

Φ (µ) =
NI

∑
i=1

yi
2
([Aµ]i − p̂i)

2 + RDGT (µ) , (6)

where
NI
∑

i=1

yi
2 ([Aµ]i − p̂i)

2 is the fidelity term, with p̂i being an estimate of pi, and RDGT (µ) (multiplied

by a factor β = 1 ignored in Equation (6)) is the regularization term with l1 norm based on DGT,
defined as
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Djµ = Dm,nµ =
√
(µm,n − µm+1,n)

2 + (µm,n − µm,n+1)
2, (7)

where j = (m− 1)×W + n, m = 1, 2, ..., H, n = 1, 2, ..., W, with W and H being, respectively, the width
and height of the matrix representing the image with NJ = W × H pixels. By definition, TV is the sum
of DGT for all pixels of the image:

TV (µ) = ‖Dµ‖1 = RDGT (µ) , (8)

with Dµ =
(

D1µ, ..., DNJµ
)T . Thus, introducing the auxiliary variable ν = Dµ and applying the

transformation
AΛ = ΛA =

{
aΛi j

}
, p̂Λ = Λp̂, p̂ = ( p̂1, p̂2, ..., p̂NI) , (9)

with Λ = diag(
√

yi/2) ∈ RNI ×RNI being a diagonal matrix, the objective function in Equation (6)
can be rewritten as

Φ (µ) = ‖AΛµ− p̂Λ‖
2
2 + β‖ν‖1, ν = Dµ, (10)

where β is a positive adjustment parameter to balance the terms of fidelity and TV and is usually set to
1 [12,16]. The ultimate goal is to minimize the objective function Φ (µ), obtaining µ̂, as shown below:

µ̂ = argmin
µ
{F (µ)− βR (µ)} , (11)

where the fidelity term, F (µ), represented both in the expanded version, as in Equation (6), and in the
compact version, as in Equation (10), is shown below as

F (µ) =
NI

∑
i=1

yi
2
([Aµ]i − p̂i)

2 = ‖AΛµ− p̂Λ‖
2
2, (12)

and R (µ) is the restriction that drives the solution according to certain criteria (l1 norm in this case).
The optimization of F (µ), although simple, is an important concept and can be defined as follows:

µ̃ = argmin
µ
{F (µ)} . (13)

Inspired by the model in Equation (10), we propose in what follows a method for CT image
reconstruction using adaptive soft-threshold filtering, which means, in brief, that the proposed method
is intended to balance edge preservation and noise mitigation.

2.2. Objective Function Modeling by Using Bilateral Edge Preservation for CT Image Reconstruction

Regularization using the DGT (l1 norm) works well for the CT reconstruction problem because it
searches among the solutions of fidelity (l2 norm) optimization looking for the one with a lower TV.
However, it is common sense that the regularization based on the l1 norm often introduces artificial
edges in smooth transition areas. Moreover, a good regularization strategy must simultaneously
perform noise suppression and edge preservation. With this motivation, Charbonnier et al. [24]
proposed the bilateral edge preserving (BEP) regularization function, inspired by the bilateral total
variation (BTV) regularization technique [39]. BTV regularization is defined by

RBTV (X) =
q

∑
l=−q

q

∑
m=0︸ ︷︷ ︸

l+m≥0

α|l|+|m|‖X− Sl
xSm

y X‖1, (14)

where q is a positive number, Sl
x and Sm

y are displacements by l and m pixels in the horizontal and
vertical directions, respectively, X is the image in reconstruction/regularization, and α, 0 < α < 1,



Sensors 2019, 19, 2346 7 of 20

is applied to create a spatial decay effect for the sum of terms in BTV regularization. The BEP regulation
uses the same principle as BTV but with an adaptive norm (instead of the l1 norm) defined by

ρ (s, a) = a
√

a2 + s2 − a2, (15)

where a is a positive value and s is the difference that one wants to minimize. This function was
initially proposed by [24] to preserve edges in the image regularization process. The parameter a is
used to specify the error value for which the regularization becomes linear (growing with the error)
to constant (saturated, regardless of the error). The same adaptive norm definition is also used in
super-resolution problems [32]. The ρ (s, a) function is an M-estimator since it corresponds to the
maximum likelihood (LM) type estimation [40], and has its influence function given by

ψ (s, a) =
∂ρ (s, a)

∂s
=

as√
a2 + s2

. (16)

The influence function indicates how much a particular measure contributes to the solution [32].
We illustrate in the graphs of Figure 2a the behavior of ρ (s, a) (the error norm function), and in
Figure 2b, its influence function. It can be observed that as parameter a evolves from 0 to 1, the function
changes its behavior from l1 to l2 norm. Thus, as mentioned by [31] and [32], Equation (15) behaves
adaptively with respect to the norm that it implements.

Figure 2. (a) Error norm function, Equation (15), and (b) influence function, Equation (16).

Therefore, combining Equations (14) and (15) for the particular case of tomography reconstruction,
we propose an adaptive operator defined as

RBEP (µ̃) =
q

∑
l=−q

q

∑
m=0︸ ︷︷ ︸

l+m≥0

Nj

∑
j=1

α|l|+|m|ρa

(
µ̃j − Sl

xSm
y µ̃j

)
, (17)

where q, α, Sl
x, and Sm

y are the same as in Equation (14); µ̃, defined in Equation (13), is the estimated
image obtained in the i-th iteration by l2 minimization of the objective function in Equation (12); and µ̃j
is the j-th pixel of image µ̃, with j = 1, ..., Nj. It is noteworthy that the term RBEP (µ̃) imposes an
la regularization norm, 1 < a < 2, on the image µ̃. Thus, we can rewrite the objective function of
Equation (10), Φ (µ), so that a new regularization term, RBEP (µ̃), is introduced between the l2 norm
minimization and TV minimization. As a consequence, the objective function proposed in this paper
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incorporates adaptive regularization to the objective function, and defining an auxiliary variable
σ = RBEP (µ̃), we have

Φ (µ) = ‖AΛµ− p̂Λ‖
2
2 + γ‖σ‖η + β‖ν‖1, (18)

where γ is a positive adjustment parameter to balance the terms of fidelity and adaptive regularization.
The other parameters are the same as in Equation (10), and η, 1 ≤ η ≤ 2, is the norm BEP method
imposed on the regularization process.

3. Objective Function Optimization

The alternating minimization technique makes the simultaneous optimization of two or more
terms of an objective function possible. Thus, for the proposed method, three steps are necessary:
(1) minimizing F (µ) with SART, (2) applying the gradient descent (GD) method to the result of the
first stage, using RBEP (µ) = γ‖σ‖η as a regularization term, and (3) applying DGT regularization to
the previous result, minimizing β‖ν‖1 with soft-threshold filtration. The three stages are repeated
iteratively until a satisfactory result is obtained or a certain number of steps is reached. For the purpose
of better understanding, each of the three stages is presented in sequence.

3.1. First Stage: Minimization of the Fidelity Term with SART

The first step is to solve the optimization problem described by Equation (13). A popular solution
was proposed by Ge and Ming [33], and it can be computationally expressed by the iterative equation

µ̃k
j = µ̃k−1

j + λk 1
a+j

NI
∑

i=1

ai,j
a+i

(
p̂i −Aiµ

k−1
)

, (19)

where a+j = ∑NI
i=1 aij > 0, a+i = ∑

NJ
j=1 aij > 0, Ai is the i-th line of A, k is the iteration index, and

0 < λk < 2 is an arbitrary relaxation parameter [15,41]. To simplify the notation, one can establish
Λ+NJ ∈ RNJ ×RNJ as a diagonal matrix with Λ

+NJ
jj = 1

a+j
, and Λ+NI ∈ RNI ×RNI also as a diagonal

matrix with Λ+NI
ii = 1

a+i
. Then, Equation (19) can be rewritten as

µ̃k = µ̃k−1 + λkΛ+NJ AT
ΛΛNI+

(
pΛ −AΛµ̃k−1

)
, (20)

where the term λk is usually constant and equal to 1. The method described in Equation (19) is
commonly known as SART. This method produces a relatively noisy reconstruction, as can be observed
in Section 4. We reinforce here that µ̃ is the input of the second stage in the reconstruction process.

3.2. Second Stage: Bilateral Edge-Preserving with a Gradient Descent Method

In the second stage, the goal is to solve the optimization problem defined by

µ̂ = argmin
µ
{µ̃− γRBEP (µ̃)} , (21)

where γ is a parameter that weights the contribution of the constraint RBEP (Equation (17)). The
gradient descent method can be applied to solve this problem as

µk = µk−1 − γ5 RBEP

(
µk−1

)
, (22)
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resulting in an optimization problem written as follows (see Appendix A for details):

µ̂ = argmin
µ


ρa (µ̃) +

q

∑
l=−q

q

∑
m=0︸ ︷︷ ︸

l+m≥0

α|l|+|m|ρc

(
µ̃− Sl

xSm
y µ̃
)


, (23)

where µ̃, as defined in Equation (13), is the result of first-stage minimization; ρa = ρ (s, a) is as in
Equation (15) but with s = µ̃; and ρc = ρ (s, c) is the same as in Equation (15) but with a constant
c instead of a constant a and s = µ̃ − Sl

xSm
y µ̃, where Sl

x and Sm
y are the same as in Equation (14).

A computable matrix form was derived from Equation (23), and the result is shown below as

µ̂k = µ̃k − γk

(
Ha

(
µ̃k
)
� µ̃k + ϕ

q

∑
l=−q

q

∑
m=0︸ ︷︷ ︸

l+m≥0

α|l|+|m|
[

I − Sl
xSm

y

]
� Hc (M)�M

)
, (24)

where γk is an adjustment parameter to balance the k-th value of µ̃k with the gradient descent
contribution,5RBEP

(
µ̃k−1

)
; ϕ is also an adjustment parameter, but it balances terms inside gradient

descent; � is the element-by-element product of two matrices of compatible dimensions; and I is the
identity matrix. The matrix M = µ̃k − Sl

xSm
y µ̃k is the difference between µ̃k and its version shifted by

Sl
xSm

y , and the operators Ha (.) and Hc (.) are defined, respectively, as

Ha (x) =
a√

a2 + x2
, Hc (x) =

c√
c2 + x2

. (25)

Ha

(
µ̃k
)
� µ̃k and Hc (M)�M are influence functions (as defined in Equation (16)) resulting from the

application of the gradient descent method.
It is important to clarify that in Equation (22), µ appears with the upper index k− 1 instead of k

because the previous result of the gradient descent, µk−1, feeds the calculation of the current value, µk,
and this is the manner in which gradient descent works. In contrast, Equation (24) shows µ̃ with upper
index k (as in µ̂) rather than k− 1 because µ̃ is obtained in the same interaction step, k, as µ̂, but in a
previous stage denoted by the upper mark “tilde” (.̃), while the current stage is denoted by the upper
mark “hat” (.̂).

3.3. Third Stage: TV Minimization by Soft-threshold Filtering

The third stage (TV optimization, RDGT) is to solve the problem ν = Dµ, where D is not invertible,
as proposed by Yu and Wang [15] and shown below:

µk
m,n =

1
4

(
2µk,a

m,n + µk,b
m,n + µk,c

m,n

)
, (26)

with

µk,a
m,n =


2µ̃k

m,n+µ̃k
m+1,n+µ̃k

m,n+1
4 , Dm,nµ̃k < ω

µ̃k
m,n −

ω(2µ̃k
m,n−µ̃k

m+1,n−µ̃k
m,n+1)

4Dm,nµ̃k , Dm,nµ̃k ≥ ω,
(27)

µk,b
m,n =


µ̃k

m,n+µ̃k
m−1,n

2 , Dm−1,nµ̃k < ω

µ̃k
m,n −

ω(µ̃k
m,n−µ̃k

m−1,n)
2Dm−1,nµ̃k , Dm−1,nµ̃k ≥ ω,

(28)
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µk,c
m,n =


µ̃k

m,n+µ̃k
m,n−1

2 , Dm,n−1µ̃k < ω

µ̃k
m,n −

ω(µ̃k
m,n−µ̃k

m,n−1)
2Dm,n−1µ̃k , Dm,n−1µ̃k ≥ ω,

(29)

where ω is a pre-established threshold; µ̃k =
[
µ̃k
]

mn
, with m = 1, 2, ..., H and n = 1, 2, ..., W, with W

and H being the width and height of the reconstructed image, respectively. Dm,nµ̃k is the DGT matrix
as defined in Equation (7).

As explained in detail by [15] and observing Equation (27), when Dm,nµ̃k < ω, the values of
µ̃k

m,n, µ̃k
m+1,n, and µ̃k

m,n+1 must be adjusted so that Dm,nµ̃k = 0. This means that if neighboring pixels
in the reconstructed image are very close in value, it is likely that they have equal (or very close)
values in the real image. Then, the method smooths the region around the pixel so that they look alike.

Alternately, when Dm,nµ̃k ≥ ω, the goal is to reduce
(

µ̃k
m,n − µ̃k

m+1,n

)2
and

(
µ̃k

m,n − µ̃k
m,n+1

)2
but not

cancel them. In this case, the method recognizes the differences between values of neighboring pixels
as too significant to be totally eliminated. Instead, the differences are just softened.

3.4. Convergence and Convexity Considerations

The model proposed in this work, represented by Equation 18, gives an important initial gain in
terms of PSNR to the reconstruction of CT images, as reported in Section 4. However, it is important
to know how this model behaves in long-term processing. It is therefore necessary to investigate its
convergence. We do this empirically by comparing the PSNR values of the cost function between
the iterations k and k − 1, with 1 < k ≤ 5000. We present in Figure 3 a chart for each image used
in the simulations of Section 4, and more specifically for the graphs and images of Figures 5 and 6
(Shepp–Logan head phantom), 7 and 8 (FORBILD head phantom), 9 and 10 (FORBILD abdomen
phantom). It is worth noting that in all cases shown in Figure 3, the SART+BEP+DGT method is
consistent with respect to convergence and presents better error reduction in terms of the PSNR metric.
This simulation uses the same initial values defined in Section 4. The same situation applies when we
graphically analyze the convergence of the proposed method using the SSIM metric, as can be seen in
Figure 4.

Figure 3. Peak signal-to-noise ratio (PSNR) difference along k iterations, 1 < k ≤ 5000, for the pure
simultaneous algebraic reconstruction technique (SART), SART+discrete gradient transform (DGT),
and SART+bilateral edge-preserving (BEP)+DGT reconstructions for (a) Shepp–Logan head phantom,
(b) FORBILD head phantom, and (c) FORBILD abdomen phantom.

It is noteworthy that, according to Charbonnier et al. [24], the function described in Equation (15)
is convex, and therefore, it would be possible to apply an iTV-style minimization procedure [42] to
assure data consistency and regularization term improvement in each iteration step.
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Figure 4. Sructural similarity (SSIM) difference along k iterations, 1 < k ≤ 5000, for pure SART,
SART+DGT, and SART+BEP+DGT reconstructions for (a) Shepp–Logan head phantom, (b) FORBILD
head phantom, and (c) FORBILD abdomen phantom.

4. Experiments and Results

In the experiments, we used the synthetic images presented in Section 1.2, that is, Shepp–Logan
head phantom, FORBILD head phantom, and FORBILD abdomen phantom. The signal from the CT
equipment is simulated according to the model in Equation (1) addressing the low dosage scenario,
considering a limited number of projections (meaning a limited number of scanning angles). On the
image reconstruction side, we use the model y = Ax + e, which, as discussed in Section 1.1, denotes
an inverse and ill-posed problem, where A (NI × NJ) is the matrix that describes the capture system,
x (NJ × 1) is the phantom represented lexicographically, and e (NJ × 1) is the error, whose features
were presented in Section 1.2. It is worth remembering that x is the image we intend to reconstruct
from the noise signal y and, in the modeling process presented in Sections 2 and 3, we use the variable
µ to represent it. By improving the system description, NI = nlnθ is the number of projections, where
nl is the number of projection lines (i.e., the number of detectors) for each scan angle, and nθ is the
total number of scan angles. nθ is the parameter whose value should be changed when the intention
is to set a new dosage value, i.e., when we want to define a different (lower) number of projections,
NI . The image has dimensions d× d, where d =

√
NJ = 2R, R ∈ N+ (positive natural). In this work,

we use R = 9 (d = 512), and therefore, NJ
(
= d2) = 262, 144, and NI (= nlnθ) = 300nθ , with nl = 300

detectors. Thus, A has dimensions 300nθ × 262, 144, which are compatible with the dimensions of y
and µ, respectively, i.e., 300nθ × 1 and 262, 144× 1. It is important to note that the NI dimension of A
(and y) is related to the number of scan angles, nθ , and this number of angles is what determines if
the signal is of low (or regular) dosage, as discussed in Section 1, according to the ALARA principle.
For a low dosage, we consider subsets of Θ, i.e., equally spaced sets of integer values between 0 and
179 degrees named Θg. For example, Θg=5 = {0, 44, 88, 132, 176} would be a possible subset, in which
the g = 5 angles are equally spaced at 44 degrees. Using this notation, Θ is equivalent to Θ180, meaning
that there are g = 180 scan angles equally spaced by 1 degree (which represents a regular dosage).
In the experiments with low dosage, the sets Θg, with g in {15, 30}, will be used. A was obtained for a
parallel architecture scanner.

By observing the objective function optimization process detailed in Section 3, and in alignment
with the proposal in Section 1.3, we design a test framework that involves (1) the execution of the first
stage (Section 3.1) alternating with the third stage (Section 3.3), which we will call here SART+DGT,
and (2) execution of the first, second (Section 3.2), and third stages alternately and in this sequence,
named SART+BEP+DGT. Simulations are shown in Table 1.
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Table 1. Comparison of computer tomography (CT) reconstruction methods A (SART+BEP+DGT), B (SART+DGT), and C (pure SART) for the Shepp–Logan (SL),
FORBILD abdomen (FA), and FORBILD head (FH) phantom images using PSNR and SSIM metrics for 15 and 30 projections and signal-to-noise ratio (SNR) of 32, 46,
and 60 dB. Each result is the mean of 101 executions of a particular testing case. The values in bold represent the highest value comparing methods A, B and C for each
metric (PSNR or SSIM), number of projections (15 or 30) and iterations (350, 700 or 1000).

Image Noise (dB) Method
PSNR Metric SSIM Metric

30 projections 15 Projections 30 Projections 15 Projections

k = 350 700 1000 k = 350 700 1000 k = 350 700 1000 k = 350 700 1000

FA

32
A 75.9859 75.8311 75.5142 74.4987 74.502 73.8998 0.8522 0.8568 0.8548 0.8424 0.8506 0.8480
B 76.1405 76.2478 76.2701 74.4034 74.5392 74.587 0.8389 0.8452 0.8470 0.8277 0.8368 0.8403
C 67.9001 67.9001 67.9001 66.0238 66.0238 66.0238 0.1281 0.1281 0.1281 0.0905 0.0905 0.0905

46
A 79.7397 79.7947 79.1235 76.7531 77.7001 76.634 0.9589 0.9625 0.9572 0.9278 0.9418 0.9318
B 79.5257 80.759 81.2113 76.2466 77.2650 77.8593 0.9506 0.9630 0.9662 0.9147 0.9334 0.9412
C 68.1199 68.1199 68.1199 66.0941 66.0941 66.0941 0.1418 0.1418 0.1418 0.0942 0.0942 0.0942

60
A 80.0246 80.0840 79.3894 76.9335 77.951 76.7656 0.9634 0.9665 0.9615 0.9328 0.9468 0.9356
B 79.7982 81.2432 81.8295 76.3869 77.5277 78.2139 0.9564 0.9692 0.9727 0.9194 0.9390 0.9473
C 68.1290 68.1290 68.1290 66.0973 66.0973 66.0973 0.1424 0.1424 0.1424 0.0947 0.0947 0.0947

FH

32
A 68.8491 68.7420 68.5457 67.4093 67.0085 66.2663 0.753 0.7624 0.7607 0.7292 0.7313 0.7203
B 68.8981 69.0161 69.043 67.3406 67.4181 67.4202 0.7236 0.7340 0.7368 0.6998 0.7112 0.7143
C 62.6576 62.6576 62.6576 61.3241 61.3241 61.3241 0.1096 0.1096 0.1096 0.1013 0.1013 0.1013

46
A 70.5681 70.7268 70.5159 68.3913 68.4761 68.1521 0.8852 0.9028 0.898 0.8288 0.8394 0.8361
B 70.3511 70.9038 71.0856 68.0724 68.4681 68.6376 0.8605 0.8815 0.8876 0.7985 0.8216 0.8292
C 62.8480 62.8480 62.8480 61.3975 61.3975 61.3975 0.1327 0.1327 0.1327 0.1130 0.1130 0.1130

60
A 70.6733 70.8539 70.6321 68.4433 68.5563 68.2407 0.8919 0.9100 0.9049 0.8337 0.8450 0.8420
B 70.4422 71.0466 71.2518 68.1110 68.5327 68.7161 0.8679 0.8899 0.8964 0.8033 0.8274 0.8356
C 62.8551 62.8551 62.8551 61.4002 61.4002 61.4002 0.1342 0.1342 0.1342 0.1136 0.1136 0.1136

SL

32
A 74.0945 74.0583 73.8128 71.9549 72.1447 71.5547 0.9325 0.9358 0.9350 0.8938 0.9066 0.8989
B 73.5586 74.3921 74.6588 70.7452 71.812 72.2027 0.9036 0.9151 0.9174 0.8433 0.8740 0.8831
C 64.5268 64.5268 64.5268 63.4489 63.4489 63.4489 0.1800 0.1800 0.1800 0.1604 0.1604 0.1604

46
A 74.6383 74.6475 74.3422 72.2586 72.5832 72.0034 0.9542 0.9579 0.9572 0.9093 0.9251 0.9186
B 73.9486 75.1170 75.5809 70.8990 72.1570 72.6781 0.9298 0.9444 0.9477 0.8575 0.8917 0.9026
C 64.5592 64.5592 64.5592 63.4619 63.4619 63.4619 0.1940 0.1940 0.1940 0.1661 0.1661 0.1661

60
A 74.6588 74.6647 74.3552 72.2741 72.6033 72.0213 0.955 0.9587 0.9581 0.9099 0.9257 0.9193
B 73.9636 75.1504 75.6263 70.9047 72.1699 72.6975 0.9309 0.9458 0.9491 0.8580 0.8925 0.9036
C 64.5606 64.5606 64.5606 63.4625 63.4625 63.4625 0.1946 0.1946 0.1946 0.1663 0.1663 0.1663
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For both arrangements (SART+BEP and SART+BEP+DGT), the first stage is mandatory because
it is the core of the reconstruction process. That is, it represents the optimization of the fidelity term
in Equation (13). Because of its omnipresence, we also show simulations with SART only, which
serve as a basis for comparing how much constraint terms actually contribute to the reconstruction
process. The subsequent stages represent the application of constraint terms as described in Sections 3.2
and 3.3, respectively, Equations (24) and (26). For each of these test arrangements, it was arbitrarily
established that the iterator, k, ranges from 1 to L, with 350 ≤ L < 1500, approximately. Because
Gaussian noise and the Poisson process are random, each experiment is performed a considerable
number of times, defined arbitrarily as 101 executions by experiment, and each result in Table 1 is
the mean of the 101 SSIM and PSNR values. It is important to note that the result presented for each
experiment (with a particular additive Gaussian noise or a certain number of projections) is the mean
of 101 executions performed. Each execution produces a particular SSIM and PSNR result. We do
not average pixels in any reconstructed image, but rather the SSIM and PSNR of the 101 executions
performed for each testing case. The idea of using the average of a considerable number of iterations is
based on the central limit theorem, which states that the arithmetic mean of a sufficiently large number
of iterates of independent random variables will be approximately normally distributed, regardless of
the underlying distribution, provided that each iteration has a finite expected value.

Low Dosage Tests and Results

As recommended by the ALARA principle, an alternative to reduce the total amount of radiation
applied to a patient is decreasing the number of projections in the acquisition of the CT signal.
According to the signal model proposed in Equation (1), we will consider the projections as individually
influenced by Gaussian additive noise, and the low dosage signal is provided by reducing the number
of scanning angles. In the batch of tests with low dosage projections, we consider using the sets of
angles Θg, with g in {15, 30}, where g is the amount of angles in Θg (remember that in a regular
dosage, we have 180 angles, from 0o, ..., 179o). In our model, these values represent a reduced amount
of photon emission, which can be understood as a low radiation dosage. All low dosage presented in
this section is performed with signal-to-noise ratio (SNR) = 32, 46, and 60 dB. The SART stage used
λ = 1, according [15] and [41]. The DGT stage maintained β = 1, as discussed in Section 2.1, and used
as a threshold, ω, the average of the DGT for each k iteration. The BEP stage used γ = 0.001, ϕ = 0.150
(Section 3.2), a = 0.5, q = 3, α = 0.6, and c = 0.1 (Section 2.2). All parameters were empirically set.

A batch of experiments using the set Θg, with g in {15, 30}, of projections for SART+BEP+DGT
(named here as method A), SART+DGT (named here as B), and pure SART (named here as method C)
methods are shown in Table 1 for PSNR and SSIM metrics, using the FORBILD abdomen phantom (FA),
FORBILD head phantom (FH), and Shepp–Logan head phantom (SL) synthetic images. Analyzing the
results for the PSNR metric with 15 and 30 projections, it is observed that for k = 350 steps, the results
of the proposed method present a higher PSNR value in general. The exceptions are the FA and FH
images, with an SNR of 32 dB. However, for k = 700 and 1000 steps and 30 projections, the results
favor the SART+DGT method according to the PSNR metric. For 15 projections, results for k = 700
steps favor the proposed method in most tests performed with PSNR metrics. For the SSIM metric,
the proposed method presents interesting results when compared to the SART+DGT method.

For the reconstruction of Shepp–Logan head phantom with 15 angles of projection, Figure 5
shows the evolution of the SSIM and PSNR values for SART+BEP+DGT (proposed), SART+DGT,
and pure SART methods for SNR = 60 dB. In this particular experiment, marker 1 in Figure 5a indicates
the highest SSIM value, 0.9240, reached by the proposed method and corresponding to the highest
PSNR value, 72.7103, indicated by marker 1 in Figure 5b. Marker 2 shows in Figure 5a,b, respectively,
the SSIM (0.8819 ) and PSNR ( 71.7521 ) values obtained in step k = 551. Marker 3 in Figure 5b
highlights the point at which the SART+DGT method reaches the same PSNR value as the proposed
method, in step k = 1015, approximately, and the graphs in Figure 5 agree with Table 1.
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Figure 5. Evolution of (a) SSIM and (b) PSNR values for the reconstruction of the Shepp–Logan
phantom with 15 projections for pure SART, SART+DGT, and SART+BEP+DGT.

Looking closely at Figure 6b,c, it is possible to note the presence of random noise (indicated by
the white arrows) that manifests as small white dots in Figure 6c, while in Figure 6b this phenomenon
is not easily perceived. This is because the BEP regularization used in the proposed method (Figure 6b)
tends to eliminate noise faster. However, the reconstruction performed by the SART+DGT method
produces a more homogeneous image, as shown in Figure 6c. This is also related to the elimination
of random noise by the introduction of BEP regularization in the reconstruction process. Figure 6d
presents the result of the image reconstruction using the pure SART method.

Figure 6. (a) The original Shepp–Logan head phantom and particular reconstructions for 15 projections
(b) from SART+BEP+DGT with k = 553 steps, PSNR: 72.7103, SSIM: 0.9240, (c) from SART+DGT with
k = 1015 steps, PSNR: 72.7103, SSIM: 0.8920, and (d) from pure SART with k = 553 steps, PSNR:
63.4625, SSIM: 0.1662. All with SNR = 60 dB.

For the reconstruction of the FORBILD head phantom with 30 projections with SNR = 46 dB,
shown in Figure 7, we observe that the best PSNR (70.7700) obtained by the proposed method in
step k = 520 (Figure 7b, marker 1) is reached by the SART+DGT method in step k = 570 (marker 3).
Marker 2 shows, in Figure 7a,b, respectively, the SSIM (0.8728) and PSNR (70.6901) values obtained
in step k = 685. The SSIM values remain higher for the proposed method, according the graph of
Figure 7a. We show the evolution of the pure SART method in terms of SSIM and PSNR for comparison
purposes only. Observing the reconstructions shown in Figure 8b (with k = 520 steps, PSNR = 70.7700,
SSIM = 0.9015) and Figure 8c (with k = 570 steps, PSNR = 70.7706, SSIM = 0.8774), the results are
low in quality due to the number of projections, and the images practically do not present a difference,
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except for a better contrast level presented by Figure 8b. The pure SART reconstruction is shown in
Figure 8d.

Figure 7. Evolution of (a) SSIM and (b) PSNR values for a particular reconstruction of the FORBILD
head phantom with 30 projections using the pure SART, SART+DGT, and SART+BEP+DGT methods.

Figure 8. (a) The original FORBILD head phantom and particular reconstructions for 30 projections
(b) from SART+BEP+DGT with k = 520 steps, PSNR: 70.7700, SSIM: 0.9015, (c) from SART+DGT with
k = 570 steps, PSNR: 70.7706, SSIM: 0.8774, and (d) from pure SART with k = 520 steps, PSNR: 62.8476,
SSIM: 0.1332. All with SNR = 46 dB.

Figure 9 shows the evolution of the SSIM and PSNR values for the reconstruction with 15 angles
of projection with SNR = 60 dB for the FORBILD abdomen phantom using the SART+BEP+DGT,
SART+DGT, and pure SART methods. In this particular experiment, marker 1 in Figure 9a indicates
the highest SSIM value, 0.9419, reached by the proposed method and corresponding to the highest
PSNR value, 77.7180, indicated by marker 1 in Figure 9b, both obtained in step k = 685. Marker 2
shows, in Figure 9a,b, respectively, the SSIM (0.9327) and PSNR (77.2279) values obtained in step
k = 685. Marker 3 in Figure 9b highlights the point at which the SART+DGT method reaches the
same PSNR value of the proposed method, in step k = 920, approximately. The image of Figure 10b
shows a tendency to eliminate the characteristic lines and bands of the reconstruction process with few
scanning angles.

Each of the examples of reconstructed images shown in Figures 6, 8 and 10, and their SSIM and
PSNR graphs in Figures 5, 7, and 9, respectively, result from a single execution test pinched from a
set of 101 executions. Figure 11 shows box plot graphs for various situations, combining image to be
reconstructed, SNR dB value, number of projections, method used, and step k of the execution. As an
example, for the reconstruction of Shepp–Logan with 15 projections, method A and SNR = 32 dB using
the column (step) k = 600 of the processing matrix 101× 1000 is highlighted in the graph of Figure 11a.
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Table 2 shows the details of each element of the box plot graphs in Figure 11, and it is straightforward
to note that the standard deviation (Table 2) increases with noise (Figure 11).

Figure 9. Evolution of (a) SSIM and (b) PSNR values for a particular reconstruction of the FORBILD
abdomen phantom with 15 projections for pure SART, SART+DGT, and SART+BEP+DGT methods.

Figure 10. (a) The original FORBILD abdomen phantom and particular reconstructions for 15
projections (b) from SART+BEP+DGT with k = 685 steps, PSNR: 77.7180, SSIM: 0.9419, (c) from
SART+DGT with k = 920 steps, PSNR: 77.7197, SSIM: 0.9397, and (d) pure SART with k = 685 steps,
PSNR: 66.0972, SSIM: 0.0946.

Figure 11. (a) Box plot graph for the Shepp–Logan head reconstruction with 15 projections and k = 600,
(b) box plot graph for the FORBILD head phantom with 30 projections and k = 400, and (c) box plot
graph for the FORBILD abdomen phantom with 15 projections and k = 320.
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Table 2. Mean, median, maximum, minimum, standard deviation, and number of outliers of box plot
element in Figure 11a.

Image Method SNR dB Mean Median Max Min Standard
Deviation

SL

B
32 71.60589 71.60400 71.67289 71.55672 0.03613
46 71.90013 71.89770 71.91010 71.88857 0.00725
60 71.91110 71.91103 71.91474 71.90779 0.00199

A
32 72.25797 72.26654 72.30637 72.19037 0.04360
46 72.68626 72.68664 72.70573 72.66494 0.01435
60 72.70719 72.70709 72.71359 72.70282 0.00356

5. Conclusions and Final Comments

The proposed method, composed by the steps (1) SART reconstruction, (2) BEP adaptive
minimization, and (3) TV minimization via DGT, synthesized in Equation (18), presents, in the first
steps of the processing, a more pronounced reduction in the noise level of the reconstructed image
both for SSIM and PSNR metrics, as can be seen in Section 4. It is important to emphasize that
the tests were done with 15 and 30 projections, as shown in Table 1. At some point, the proposed
method reaches its maximum PSNR value. It can be observed that at this point (maximum PSNR),
the images are reasonably intelligible. From this point forward, the SART+DGT method gives higher
values of PSNR and, consequently, a less noisy reconstruction. Even after the apex of the proposed
method with regard to the value of PSNR, the value of SSIM remains above in many of the cases
studied, when compared to the result of the SART+DGT method. The best values for SSIM generally
result in images with better contrast, and this is very important for artifact viewing and contour
distinction in the reconstructed image. Structural similarity works considering morphological features
in the evaluation of reconstruction results and for this reason presents results more suitable to human
standards, when compared with the PSNR metric. However, the main disadvantage of this method is
that in a practical application, we cannot know the maximum PSNR since we do not have an original
image for comparison. On the other hand, the advantage of the proposed method is that it delivers
results earlier in the reconstruction process.

The use of BEP minimization soon after the SART reconstruction, as explained in Section 3,
is intended to promote image noise reduction in the reconstruction process, delivering a less noisy
image to the later stage (of minimization by TV using DGT). In fact, the noise reduction occurs up to
a certain point, and although it is not possible in a practical application to define the ideal stopping
point (maximum PSNR), it may be possible to estimate this point based on the type of image and the
number of projections used.
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Abbreviations

The following abbreviations are used in this manuscript:
ALARA As-low-as-reasonably-achievable
AMP Approximate message passing
ART Algebraic reconstruction technique
BEP Bilateral edge preserving
CT Computer tomography
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DCT-GAMP Denoising CT generalized Approximate message passing
DGT Discrete gradient transform
FBP Filtered backprojection
FFT Fast Fourier transform
MAP Maximum a posteriori
MMSE Minimum mean square error
OS-SART Ordered subset simultaneous algebraic reconstruction technique
PSNR Peak signal-to-noise ratio
TV Total variation
SART Simultaneous algebraic reconstruction technique
SSIM] Structural similarity
VW-SART Variable weighted simultaneous algebraic reconstruction technique

Appendix A

With Equation (22) in mind and substituting Equation (15) into the core (within the braces) of
Equation (23), we have

5 RBEP (µ̃) =
∂

∂µ̃

a
√

a2 + µ̃2 + ϕ
q

∑
l=−q

q

∑
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l+m≥0

α|l|+|m|c

√
c2 +

(
µ̃− Sl

xSm
y µ̃
)2

 , (A1)

and performing the derivative in relation to µ̃ results in

5 RBEP (µ̃) =
aµ̃√

a2 + µ̃2
+ ϕ

q
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q
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) (
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xSm
y

)
√

c2 +
(

µ̃− Sl
xSm

y µ̃
)2

. (A2)

Assuming the same considerations and notation presented in Section 3.2, Equation (A1) can be
rewritten as

5 RBEP (µ̃) = Ha (µ̃)� µ̃ + ϕ
q

∑
l=−q

q

∑
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l+m≥0

α|l|+|m|
[

I − S−l
x S−m

y

]
(M) Hc (M) , (A3)

and Equation (23) can be written in compact form as

µ̂k = µ̃k − γ5 RBEP

(
µ̃k
)

(A4)

and in its expanded form as

µ̂k = µ̃k − γk

(
Ha

(
µ̃k
)
� µ̃k + ϕ

q

∑
l=−q

q

∑
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