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A B S T R A C T

The governing laws mandate animal testing guidelines (TG) to assess the developmental and reproductive 
toxicity (DART) potential of new and current chemical compounds for the categorization, hazard identification, 
and labeling. In silico modeling has evolved as a promising, economical, and animal-friendly technique for 
assessing a chemical’s potential for DART testing. The complexity of the endpoint has presented a problem for 
Quantitative Structure-Activity Relationship (QSAR) model developers as various facets of the chemical have to 
be appropriately analyzed to predict the DART. For the next-generation risk assessment (NGRA) studies, re-
searchers and governing bodies are exploring various new approach methodologies (NAMs) integrated to address 
complex endpoints like repeated dose toxicity and DART. We have developed four hybrid computational models 
for DART studies of rodents and rabbits for their adult and fetal life stages separately. The hybrid models were 
created by integrating QSAR features with similarities-derived features (obtained from read-across hypotheses). 
This analysis has identified that this integrated method gives a better statistical quality compared to the tradi-
tional QSAR models, and the predictivity and transferability of the model are also enhanced in this new 
approach.

1. Introduction

In human toxicology, the reproductive and developmental toxicities 
(DART) are comparatively poorly characterized endpoints. This is so 
because a wide range of distinct endpoints are referred to by these 
common terms. The general phrase "reproductive toxicity," consists of a 
range of adverse or detrimental effects on adult male and female fertility 
and sexual functions. In contrast, developmental toxicity includes the 
impact on offspring, including the impact on or mediated by lactation. 
As a result, a wide spectrum of endpoints, such as gestational length, 
sperm quality, neonatal growth, litter size, and functional toxicities, are 
pertinent [1,2]. According to the United States Environmental Protec-
tion Agency(USEPA) [3] and the European Union’s registration, evalu-
ation, authorization, and restriction of chemicals (EU REACH) [4]
standards, it is one of the most significant toxicological endpoints; there 
are strict requirements for DART testing of industrial and consumer 
chemicals under the EU REACH legislation [5,6]. Regulatory bodies use 

the findings of animal studies to establish standards for human exposure 
[7]. Generally, in vivo animal testing is the standard method for the 
toxicological evaluation of chemicals. The experimental techniques for 
assessing a chemical’s potential for DART in rats, mice, and rabbits have 
been described by the USEPA and the Organization for Economic 
Cooperation and Development (OECD) [3,8]. DART testing accounted 
for 90 % of animal use and 70 % of chemical toxicity testing costs 
connected with finishing the phase one of the REACH regulation. Indi-
vidual testing methodologies occasionally require up to 3200 animals 
per chemical [9]. The application of alternative techniques to forecast 
this kind of toxicity garners much interest [9,10].

It has become widely acknowledged that New Approach Methodol-
ogies (NAMs) are viable substitutes for animal testing in chemical safety 
assessment [11–14]. NAMs are in vitro, in chemico, or in silico tech-
niques that enable hazard assessment, enhance knowledge of harmful 
effects, and either partially or completely replace animal testing with 
cutting-edge animal-free testing procedures. Several authorities have 
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proposed guidelines, frameworks, and work plans that guarantee trust, 
consistency, and suitability for generating NAM hazard data for different 
purposes to promote their development and deployment [15–18]. There 
are currently OECD test guidelines (TG) available for a variety of NAMs 
that can be used to assess local toxicity, such as skin irritation, sensitivity 
and corrosion, and ocular irritation and corrosion [19–24]. The need to 
develop a rational NAM workflow for the toxicological assessment of 
cosmetic chemicals is crucial as animal testing was banned by the EU in 
2013 for these chemicals [25]. The use of NAMs in an integrated manner 
for the Next Generation Risk Assessment (NGRA) is guided by major 
principles defined by the International Cooperation on Cosmetics 
Regulation (ICCR) [26]. Additional guidelines on certain NAMs have 
also been released. These guidelines can be used in a tiered way to assess 
the risk of cosmetic constituents in line with the various tiers of the 
SEURAT-1 (Safety Evaluation Ultimately Replacing Animal Testing) ab 
initio workflow for systemic repeat-dose toxicity [27,28]. Case studies 
are being prepared to demonstrate how these concepts can be used 
practically in assessing the safety of cosmetic items and to demonstrate 
how NAMs can provide meaningful information on non-animal safety 
evaluation [27]; in the future, these frameworks can be utilized for 
complex endpoints like DART testing. Numerous research studies have 
assessed the predictive efficacy of a range of various techniques for 
DART. The creation of NAMs for DART testing has advanced recently 
due to cooperative initiatives like the ReProTect project [29,30] and the 
DART committee of the Health and Environmental Sciences Institute 
(HESI). An in-silico pre-screening module was also used to minimize the 
requirement for testing, and toxicokinetic modeling was used to validate 
the in vitro to in vivo dose comparisons [31,32]. The researchers are also 
focusing on developing a transparent and reliable database (DB) for 
NAM development and constructing a rational framework for DART 
testing. The in-silico modeling NAMs are considered a promising first 
step towards addressing the current gaps in DART testing among various 
alternative non-testing methodologies for the safety evaluation of sub-
stances. These computer-assisted techniques include read-across, 
grouping, structural alerts, and quantitative structure-activity relation-
ship (QSAR) tools. Currently, read-across is one of the most advanced in 
silico techniques for forecasting systemic toxicity regarding regulatory 
approval. According to Ball et al., [33] read-across for at least one 
endpoint is present in over 75 % of REACH dossiers submitted between 
2010 and 2013. Other regulatory bodies worldwide, like the Interna-
tional Council of Chemical Associations (ICCA) and USEPA’s high pro-
duction volume challenge program, also support the read-across 
procedure. Several case studies on repeated dose toxicity have offered 
some illustrations of read-across protocols in recent years. Nevertheless, 
these procedures are limited to compounds with simple structures with 
readily available analogs. Furthermore, very few reports of read-across 
studies try to make quantitative predictions like NOAEL values [34], 
particularly when DART testing fills data gaps.

This work presents a fresh approach to read-across (RA)-based pre-
dictions that are reproducible, thorough, systematic, and applicable to a 
broad variety of chemicals. We apply an integrated approach covering 
QSAR and RA studies. In this novel method, initially, important features 
were extracted by the QSAR modeling technique, and these modeled 
features were again utilized for RA predictions. To address the associ-
ated uncertainties, we have computed the RA-derived features based on 
their similarity measures computed using different methods like the 
Laplacian kernel, Gaussian kernel, and Euclidean distance). Hence, we 
have used the RA-derived similarity measures of a defined number of 
close source chemicals to compute features of a query chemical in the 
form of error and similarity functions. Based on this, we have developed 
a final regression model (hybrid model) utilizing both QSAR features 
and similarity-derived features [35,36]. Few investigations have been 
conducted since introducing this hybrid methodology, and those have 
demonstrated that it performs better for both quantitative and qualita-
tive predictions than the traditional QSAR and read-across methodolo-
gies for blood-brain barrier permeability, skin sensitization, acute 

contact toxicity in bees, mutagenicity, and aquatic toxicity [37–41]. In 
the future, this strategy may prove to be a useful method for creating 
models that accurately predict other chronic toxicity endpoints.

Our current investigation retrieved high-quality prenatal develop-
mental toxicity data from OECD TG 414 studies (specifically lowest 
observed effect levels (LOELs). We have prepared four datasets based on 
species and life stages to reduce prediction uncertainty. We have 
developed four hybrid partial least squares regression (PLS) models 
containing physicochemical features (from the corresponding QSAR 
models) and similarity-based features (from RA predictions). Based on 
the investigation, we have determined that this integrated method has 
produced superior statistical quality than the conventional QSAR model, 
and this innovative approach has also boosted the model’s predictivity 
and transferability. Additionally, we have tried to provide a mechanistic 
interpretation when feasible. This novel approach utilizes the physico-
chemical as well as the similarity measures that have the potential to 
precisely categorize chemicals according to their physical, chemical, or 
structural pattern of the query chemical from the source chemicals that 
can further be used for regulatory decision-making for complex apical 
endpoints.

2. Materials and methods

2.1. Collection of database for in vivo prenatal developmental toxicity

To address the demand for curated data and relevant tools to facili-
tate the development of novel methods for evaluating chemical safety, 
the US National Toxicology Program Interagency Center for the Evalu-
ation of Alternative Toxicological Methods (NICEATM) created the In-
tegrated Chemical Environment (ICE) (https://ice.ntp.niehs.nih.gov/). 
ICE provides unrestricted, free access to a wide range of carefully chosen 
in vivo, in vitro, and in silico data as well as computational tools to aid in 
developing and evaluating NAMs [42]. A variety of toxicity endpoint 
data (e.g., acute oral dermal and inhalational toxicity, cancer DART, 
endocrine, eye irritation, ADME properties, etc) have been provided by 
the ICE in the form of different in vitro, in vivo, and curated High 
Throughput Screening (cHTS) assay data with the description of their 
testing methods. In the present investigation, we have collected the 
prenatal developmental toxicity (or DART) data of a diverse set of 
organic chemicals from the data set page of the ICE (https://ice.ntp.nieh 
s.nih.gov/DATASETDESCRIPTION).

2.2. Preparation of in vivo database for prenatal developmental toxicity

From the initial analysis of the ICE DART database, we have iden-
tified that the dataset mainly contains pharmaceutical drugs and ex-
cipients, chemicals of agricultural importance, and a few miscellaneous 
categories of compounds. This database has provided numerous in vitro 
and in vivo assay results for several endpoints related to DART analysis. 
Assay results are provided for different life stages (adult, fetal, and ju-
venile) of rodents (rat and mouse) and rabbits. For both rodents and 
rabbits, juvenile data has fewer data points that cannot be used for 
modeling purposes. Therefore, we have removed juvenile data from our 
study. For 387 molecules,3629 testing results having in vivo ToxRefDB 
curated LOEL (Lowest Observed Effect Level) data were retrieved from 
the initial file of 628 molecules having more than 0.1 million test results 
(in vivo and in vitro). For our study, we have focused on these 3629 
LOEL results since other assay methods or endpoints have not provided a 
definite value for modeling purposes. After thoroughly analyzing the 
data, we have identified that the LOEL data for adults and fetal life 
stages of rodents and rabbits provided by ICE strictly follows the OECD 
regulatory animal test guideline 414. The TG 414 [8] is an in vivo reg-
ulatory guideline assay used to evaluate toxic and teratogenic effects 
that occur when a substance is administered to an animal during 
gestation. In this guideline, pregnant animals are dosed during the 
gestation period after implantation to observe the toxic effect on both 
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the mother (adult) and the fetus. For more precise investigation, we have 
manually divided our data (3629 LOEL data of 387 molecules). In this 
step, we have segregated the LOEL data based on species where we have 
divided the data into two parts rodents (rat and mouse) and non-rodent 
(rabbit). For a more specific study, we have again separated the LOEL 
data based on the life stages (adult and fetal) of the rodent and rabbit 
species individually. Finally, four datasets—adult rodent (Dataset 1), 
fetal rodent (Dataset 2), adult non-rodent/rabbit (Dataset 3), and fetal 
non-rodent/rabbit (Dataset 4) have been prepared for our investigation. 
We have manually eliminated the inorganic chemicals from each data-
set. A single representative value for each compound was necessary to 
facilitate the modeling efforts because several chemicals had multiple 
LOEL values. The representative LOEL values for every molecule were 
the mean of all observations with response values that deviated less than 
log scale 1. In summary, we have 236 molecules for Dataset 1, 218 
molecules for Dataset 2, 175 molecules for Dataset 3, and 132 molecules 
for Dataset 4 to facilitate further studies on individual adult and fetal 
rodent and non-rodent species. We have collected the LOEL data with 
similar units in mg/kg/day (a small number of studies reporting doses in 
ppm and mg/m3 implying dietary and inhalation exposure were 
excluded to ensure the consistency of response data). After this step, the 
LOEL values for each dataset were converted into a negative logarithmic 
scale (i.e., -log (LOEL/MW) or pLOEL). The details of the datasets are 
provided in Supplementary Material 1.

2.3. Representation of structures and descriptors computation

For each of the four DART datasets, the canonical SMILES notions 
were obtained separately from the PubChem database (https://pubchem 
.ncbi.nlm.nih.gov/), as the ICE database only included the chemical’s 
IUPAC name and CAS number. The retrieved SMILES notions were used 
for drawing the chemical structure of the molecules by using the Marvin 
Sketch software (https://chemaxon.com/products/marvin) and trans-
formed into a single.sdf file for each dataset. Before translation into the. 
sdf file, structures were re-evaluated, and the salt form was removed for 
required chemicals individually for Dataset 1, Dataset 2, Dataset 3, and 
Dataset 4. We have calculated 9 classes of 0D-2D molecular descriptors 
(constitutional indices, ring descriptors, connectivity index, electro- 
topochemical atom indices, functional group counts, atom-centered 
fragments, atom-type E-state indices, 2D atom pairs, and molecular 
properties) and MACCS structural key descriptors by utilizing the 
“alvaDesc” software [43]. We have computed only these 9 classes of 
molecular descriptors for the ease of their interpretability and their 
satisfactory performance in modeling toxicological endpoints based on 
our experience. Consequently, the initial descriptor pool for each dataset 
was generated and redundant descriptors were eliminated using the 
built-in methods of the "alvaDesc" software. The pre-treatment of the 
computed set of data matrix was carried out for each of the four DART 
datasets to eliminate the highly inter-correlated descriptors. For that, 
DataPreTreatmentGUI 1.2 (http://teqip.jdvu.ac.in/QSAR_Tool 
s/DTCLab/), a Java-based tool that is publicly available, was utilized. 
For data pre-processing, we have selected the variance cut-off of 0.1 and 
the intercorrelation cut-off of 0.95.

2.4. Random splitting of the training and testing set

One of the most important components of the QSAR modeling 
technique is the splitting of the data into training and testing sets. For 
each set of data (Datasets 1,2,3 and, 4), we employed several methods, 
including random splitting, Euclidean distance-based splitting, Kennard- 
Stone splitting, response-based Sorted activity-based splitting, and K- 
medoid clustering algorithm, to derive an optimal splitting of our 
datasets into training and testing sets. Each of the datasets has been 
divided into distinct percentages to achieve the best possible division to 
determine the parameters of machine learning models that best fit the 
training data for each dataset separately since each data set is different. 

Varying the splits will help the analysts eventually decide which of the 
ratios best fits the size of the datasets and produces the highest accuracy. 
However, we have maintained a standard range of approximately 20–30 
percent chemicals in the test set for different datasets. In this rigorous 
analysis, we identified that random division produced the best statistical 
outcomes in this study compared to other splitting methods we have 
performed for each dataset. Therefore, we have taken the randomly 
divided datasets (training and testing sets) in each case for this study. 
Finally, for Datasets 1, 2, 3, and 4, we had 194, 168, 133, and 108 
compounds in the training sets and 42, 50, 42, and 24 in the testing sets, 
respectively. A training set was used to develop a model, and a test set 
was used to validate the model.

2.5. Variable selection and traditional regression-based QSAR model 
development

Choosing features is a crucial step towards developing a QSAR 
model. Feature selection allows us to exclude the noisy and unimportant 
input variables from the original variable spaces and to identify the 
important feature for the targeted endpoint. For the identification of the 
best descriptors pool, we have performed feature selection for 0–2D 
molecular descriptors, MACCS fingerprints, and the combination of 
(0–2Dmolecular+MACCS) individually. From the initial analysis, we 
have identified that the 0–2D molecular descriptors perform better 
compared to the other two descriptor matrix i.e. (0–2D molec-
ular+MACCS) and MACCS fingerprint descriptors. Therefore, we have 
focused on 0–2D molecular features only for QSAR model generation in 
this study. Before the model development, we performed the feature 
selection using different linear regression analysis methods for the DART 
datasets. Several techniques were used to do the linear regression 
analysis, including multiple linear regression (MLR) [44,45] utilizing 
the stepwise selection or the Best Subset Selection tool (http://teqip. 
jdvu.ac.in/QSAR_Tools/DTCLab) followed by partial least squares 
regression (PLS) [46]. We have developed a stepwise regression model 
of 18, 13, and 14 descriptors from the initial set of pre-treated de-
scriptors for Datasets 1, 2, and 4 respectively using MINITAB” software 
(version 14) [47]. In the case of Dataset 3, a different strategy of 
regression analysis has been adopted where we have performed the 
multilayered stepwise regression for feature selection using “MINITAB” 
software. The multi-layered selection is carried out in several iterations 
to extract the important features. To execute this, stepwise regression 
was performed for the pre-treated set of descriptor matrices (421 de-
scriptors) to develop the stepwise regression model. After this, the 
selected set of descriptors was removed from the initial set of 421 de-
scriptors, and again, stepwise regression was performed by using a 
remaining pool of descriptors and so on. In this way, 22 features were 
selected for further processing. Then, MLR best subset selection was 
performed using the reduced pool of descriptors (22 descriptors). This 
model development tool was used to get all the possible subset regres-
sion (MLR) models employing software developed in our laboratory and 
available at http://teqip.jdvu.ac.in/QSAR_Tools/DTCLab. From 22 de-
scriptors (features) obtained by multi-layered stepwise regression, 12 
descriptor MLR models of different combinations were generated by 
using the best subset selection regression analysis from which the best 
model was selected according to the low mean absolute error (MAE) 
value [48]. The PLS regression technique (http://www.minitab.com 
/en-US/default.aspx) was used to develop the final models from the 
selected descriptors of each dataset. PLS is a generalized version of the 
multiple linear regression (MLR) method that is applied to obviate 
multicollinearity and inter-correlation among the descriptors [46]. 
Therefore, we have reported the PLS model as our final model to remove 
noise and intercorrelation.
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2.6. Quantitative read-across(qRA) predictions and similarity-based 
descriptor calculation

From a scientific perspective, physicochemical properties alone 
cannot predict the variety of adverse effects in repeated dose toxicity 
and DART testing. More scientific evidence is needed for the regulatory 
acceptance of these complex databases for the most commonly used 
chemicals to which we are readily exposed. Currently, researchers are 
looking to identify the correct pattern of similarity of query chemicals. 
Therefore, the categorization or grouping of chemicals based on the 
identification of significant similarity patterns of chemicals is now more 
accepted in terms of regulatory acceptance, and different governing 
bodies all over the globe are trying to develop new approaches for the 
categorization of chemicals in a rational way. Driven by this similarity 
pattern analysis hypothesis and the requirement for an appropriate 
query chemical classification for complicated endpoints, we have 
explored a novel methodology that combines the significant physico-
chemical properties (obtained from QSAR analysis) with the knowledge 
of the RA-based hypothesis (based on the similarity of chemical struc-
tures). Therefore, after the development of the traditional QSAR model 
for all datasets, the modeled descriptors of each dataset were used for 
the quantitative read-across (qRA) predictions. The qRA study was 
performed for query chemicals based on the weighted average predic-
tion of the defined number of closely structure-related chemicals from 
the training set termed as close source chemicals. The qRA predictions 
aimed to identify the best similarity algorithm in terms of Q2F1 and 
mean absolute error (MAE) values for the query set chemicals from a 
defined number of close source chemicals, which we have further uti-
lized in novel similarity-based descriptor computation. Therefore, qRA 
predictions were performed using Read-Across-v4.2 (https://sites.googl 
e.com/jadavpuruniversity.in/dtc-lab-software/home). Similarities were 
calculated based on three different similarity or distance-based algo-
rithms (Euclidean distance, Gaussian kernel (σ), and Laplacian kernel (γ) 
approach) [36]. The read-across tool utilizes a set of hyperparameters 
(σ, γ, and the number of close source compounds) for the optimal 
read-across-based predictions. Finding the most appropriate 
similarity-based strategy and optimizing the related hyperparameters 
using an internal validation set—which is distinct from the test set—is 
crucial for the ideal computation of similarity functions. Each member 
of the internal validation set from the training compounds was used as a 
query compound based on the read-across-based hypotheses. Its pre-
diction was made using its "close" source compounds from the remaining 
training compounds, and the similarity function that produced the best 
"predictions" for the internal validation set in terms of MAE or Q2F1 was 
found [49]. In the current work, we have opted to execute 
read-across-based predictions with no further optimization using the 
basic settings to retain homogeneity in all models. Therefore, the soft-
ware was used in its default setting i.e. σ = 1, γ = 1, and the number of 
close source compounds (n) = 10). From the analysis, we have identified 
that for the first three datasets (Datasets 1, 2, and 3), the Laplacian 
kernel (LK) approach gives the best prediction results based on the Q2F1 
MAE values of the validation set chemicals. On the other hand, for 
Dataset 4, Euclidean distance (ED) showed better results (based on MAE) 
than the other two similarity calculation methods. The similarity mea-
sures that give the optimum RA prediction results were used to compute 
different similarity-derived features in the form of concordance, error, 
and similarity measures of chemicals. For the similarity-based descriptor 
calculation of the training sets, the training set itself served as both 
source and target data; in contrast, for the similarity-based descriptor 
computation of test sets, the training and test sets served as source and 
target data, respectively. Using the same training set as both source and 
target data increases the likelihood of overfitting when calculating the 
similarity measures of the training set. The identical training data point 
was eliminated from the list of nearby training compounds using the 
"leave-same-out" technique to prevent this. For the computation of 
similarity-derived features (LK for Dataset 1,2 and 3 and ED for Dataset 

4), we have used the freely available java based tool 
RASAR-Desc-Calc-v3.0.1 (available from https://sites.google.com/jada 
vpuruniversity.in/dtc-lab-software/home). We obtained 18 RA-derived 
features that were combined with the modeled QSAR descriptors for 
each dataset for further analysis [49,50] (the list and the definitions of 
the novel similarity-derived features were provided in Table S1 of 
Supplementary material 2).

2.7. Combining features, selection of features, and final hybrid PLS model 
development from the “fused” data sets

After computing the novel similarity features based on qRA pre-
dictions, they were combined with the modeled physicochemical fea-
tures to create a comprehensive pool of descriptors for each dataset. 
Furthermore, it was essential to recognize the core set of attributes 
needed to create a hybrid model from the entire pool of descriptors. The 
best subset selection was performed for each dataset using this new 
descriptor matrix. We have taken the same number of descriptors as in 
the QSAR model for better comparison. Therefore, different combina-
tions of MLR models were generated for each dataset. We have selected 
the best MLR model based on MAE (Train) and Q2 (LOO) values for each 
dataset. Finally, the PLS model (final modeled descriptors with their 
response values were provided in Supplementary Material 3) was 
developed for the selected MLR model from each data set (now con-
taining similarity-based descriptors and QSAR descriptors in the model) 
to compare with the traditional QSAR model fairly. Therefore, in our 
study, we have developed hybrid models where the non-linear RA pre-
dictions (based on similarity measures) were used in the QSAR frame-
work to construct a linear QSAR model for better analysis and prediction 
of the data. The description of feature selection and model development 
from the initial descriptor matrix is provided in Table S2 of Supple-
mentary Material 2.

2.8. Development of non-linear models using machine learning (ML) 
approaches

We have also developed conventional non-linear ML models for all 
datasets to check the performance of our linear PLS models compared to 
the ML models for this complex endpoint. Therefore, we have developed 
Random Forest (RF), AdaBoost, Gradient AdaBoost, Extreme Gradient 
Boost, and Support Vector Machine (SVM) models for each dataset in the 
default setting of their respective hyperparameters in Scikit learn 
package in Python. The conventional non-linear ML models were 
developed using ML regressor software available at (https://sites.google 
.com/jadavpuruniversity.in/dtc-lab-software/home/machine-lear 
ning-model-development-guis). From this analysis, we have identified 
that the hybrid PLS model which is the blended form of linear (QSAR) 
and nonlinear (RA hypothesis) analysis performs better than other 
conventional nonlinearML models. The ML results were provided in 
Supplementary Material 4. We have also investigated the importance of 
variables by using random forest (provided in Supplementary Material 
4), which also confirms the significance of 0–2D features.

2.9. Statistical model validation

Any predictive technique must be thoroughly evaluated to ensure 
that the generated model is robust and relevant [51]. It is important to 
precisely measure the goodness of fit, robustness, and predictability of 
QSAR models according to the OECD principles [52,53]. Extensive in-
ternal and external validation tests are carried out utilizing the training 
and testing datasets to evaluate the model’s performance. To determine 
whether or not the developed models meet the acceptability criteria, we 
computed various internal quality and validation metrics in this study, 
including determination coefficient (R2), leave-one-out (LOO) 
cross-validated correlation coefficient (Q2

LOO), mean absolute error of 
training set predictions (MAETrain), etc. External validation metrics, such 
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as external correlation coefficients (Q2
F1, Q2

F2), and mean absolute error 
of test set predictions (MAETest), were used to assess the predictability of 
the resulting models [48,54].

The overall workflow of this study is displayed in Fig. 1.

2.10. Development of PLS Plots using Simca-P software

Simca-P v10.0 (https://www.sartorius.com/en/products/process 
-analytical-technology/data-analytics-software/mvda-software/simca) 
was used to create the characteristic plots associated with the final PLS 
models [55] The importance of each descriptor concerning the response 
value, which is reflected in the height of the descriptor bars, is shown by 
the variable importance plot (VIP) (Shown in Fig. 2).The influence of the 
descriptors, either positively or negatively, on the response is shown by 
the color of the bar where the green bar represents a positive and the red 
bar represents a negative contribution (Shown in Fig. 2). The loading 
plot (Fig. S1. in Supplementary Material 2), which shows the loading of a 
specific descriptor in a 2D latent variable space, uses the response and 
the descriptor’s distance from the origin to illustrate how important the 
descriptor is. The Applicability Domain (AD) Plot DModX distance of the 
model in X-space) shows the AD status of the compounds considering the 
X space depicted using bar graphs, where X represents the dimensions 
(Fig. S2. and Fig. S3. for training and test set, respectively, in Supple-
mentary material 2). An additional graph that shows the AD status of the 
training set compounds is the score plot (Fig. S4. in Supplementary 
material 2). Outliers are compounds that are located outside the score 
plot’s ellipse. The DModX and the score plot analysis are different. The 
former uses all latent variables for outlier identification, while the latter 
uses only the first two. The Y-randomization graphic provides 

information on whether the model was developed by chance (Fig. S4. in 
Supplementary Material 2). To assess the prediction ability of the final 
hybrid model, a scatter plot of the Predicted pLOEL values v/s the 
Observed pLOEL values for the training and test set compounds was 
created (shown in Fig. 3).

3. Result and discussion

In this investigation, we have developed 4 PLS models using each 
dataset’s pooled set of features (structural and similarity-based fea-
tures). The equation for the developed traditional QSAR and hybrid 
models is provided in Table 1. Table 2 provides the various external and 
internal validation metrics for traditional QSAR, qRA, and hybrid 
models for individual datasets. The validation results of qRA were given 
for the best similarity algorithm, which we have used for novel 
similarity-based feature calculation (discussed in an earlier section). We 
have reported the hybrid models as our final models for all 4 Datasets 
because of their better statistical quality than the corresponding QSAR 
models (as shown in Table 2). All the models’ internal and external 
measures pass the cut-off points (R2 = 0.6, Q2

LOO = 0.5, and Q2
F1 = 0.5), 

demonstrating the models’ reliability and predictive ability. The cross- 
validation (Leave-One-Out (LOO) statistics) is used to determine the 
number of components (LVs) in a PLS model throughout the model’s 
development. The hybrid models may perform somewhat inferior on 
training data than testing set data due to the combined effect of leave- 
same-out descriptor computation (during similarity-based descriptors 
computation discussed in an earlier section) and LOO cross-validation. 
From the DModX plots (Fig. S2. and Fig. S3. for training and testing 
sets respectively in Supplementary Material 2), we have identified 9, 7, 

Fig. 1. Generalized workflow for the hybridPLS model generation for the DART toxicity.

S.K. Pandey and K. Roy                                                                                                                                                                                                                       Toxicology Reports 13 (2024) 101822 

5 

https://www.sartorius.com/en/products/process-analytical-technology/data-analytics-software/mvda-software/simca
https://www.sartorius.com/en/products/process-analytical-technology/data-analytics-software/mvda-software/simca


2, and 3 molecules as structural outliers for the training sets for Datasets 
1, 2, 3, and 4 respectively. For the test sets, on the other hand, the 
molecules 3, 4, 1, and 0 were outside AD for the respective datasets (i.e. 
Datasets 1, 2, 3, and 4). From the score plot (Fig. S4. in Supplementary 
Material 2) analysis, we have found that 5 molecules are present as 
structural outliers for Datasets 1, 2, and 3 (for training set chemicals) 
each. However,2 outlier molecules are identified in the case of the 
Dataset 4. Table 1 describes the developed models for all datasets with 

their statistical quality for both QSAR and hybrid models. We have also 
generated various ML models for each dataset using MACCS fingerprints 
and 2D molecular+MACCS fingerprint descriptors individually before 
selecting only 0–2D descriptors in this study (results provided in Sup-
plementary Material 4).

Fig. 2. Variable importance plots of the final models. Color coding: Green = positive contribution, Red = negative contribution).

Fig. 3. Scatter plots of observed vs predicted pLOEL values of the final hybrid models for the DART toxicity.
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3.1. Insights of modeled descriptors identified in the read-across derived 
models

Table S3 of Supplementary Material 2 presents the identified de-
scriptors for all datasets along with their class and description. The 
variable importance plots (VIP) and coefficient plots of the developed 
pooled descriptor PLS models were obtained using "SIMCA-P" software 
[55] for additional investigation of the modeled descriptors. The bar 
height has been used to symbolize the VIP scores of the modeled de-
scriptors, and the color of the bar (green for a positive contribution and 
red for a negative one) indicates the sort of contribution—positive or 
negative—to the DART toxicity (depicted in Fig. 2.). The VIP score is a 
measure of the relative importance of descriptors. In usual practice, 
descriptors with VIP scores > 1 demonstrate higher importance to the 
response [56]. Our study has four models with 18, 13, 12, and 14 fea-
tures. We have focused on the descriptors that contributed the most 
toward the DART, as indicated by the VIP statistic (VIP score >1), for 
easy interpretation. Descriptors with a VIP score of less than one are 
relatively less significant. Our analysis of these less important de-
scriptors has revealed that they either complement or influence the ef-
fects of the more significant descriptors in each model. Therefore, for 
each dataset, we have concentrated on the features that contribute most 
to DART endpoints (VIP score >1), and we have attempted to present a 
mechanistic interpretation only for those features in this work.

3.1.1. Features responsible for DART in adult rodents (dataset 1)
There are 18 descriptors in the final equation of the adult rodent 

model. The VIP statistic (VIP score >1) indicates that six of the descr-
iptors—SAscore, gm*SD Similarity, F01[S-P], nROH, nCIR, F03[C-N]— 
contributed the most against the DART of adult rodents (shown in 
Fig. 2.). In our study, we interpreted the significant descriptors with VIP 
score >1 as discussed earlier in this section. From the VIP plot, SAscore 
is the most important descriptor against DART for adult rodents. It is a 
molecular property descriptor that indicates the synthetic accessibility 
score of the chemical. A molecule’s SAscore is between 1 (easy to syn-
thesize) to 10 (difficult to synthesize) and is calculated from a mole-
cule’s complexity and rarity of natural compounds in its fragment 
contributions [57]. The reference SAscore values are calculated using a 
precise method that combines the complexity-based score, which pe-
nalizes the presence of ring systems like multiple stereo centers, spiro 
and fused rings, and macrocycles, with the fragment-based score, which 
represents the "historical synthetic knowledge". The positive contribu-
tion of this descriptor shows that the presence of complex structures and 
unnatural fragments in a molecule has a toxic effect on adult rodents 
[58–60]. For instance, compounds nos.182 and 22 have higher DART 
toxicity for adult rodents due to their high SAscore or complexity. 
Conversely, when a molecule’s complexity decreases (simpler structure 
of the molecule), its DART toxicity decreases, as compounds nos.120 
and 167 of adult rodents demonstrate.

The second most significant descriptor is gm*SD Similarity, a 
similarity-derived feature extracted from physicochemical descriptors 
based on ten near-source compounds. For a given query chemical, the 
descriptor gm*SD_Similarity, which contributes positively to the toxicity 
value, is the product of the values of gm and the standard deviation of the 
similarity (SD_Similarity) values of the close source compounds. The 
concordance measure, Banerjee-Roy coefficient (gm), determines the 
reliability of the predictions of a query chemical based on the weight of 
evidence of the toxicity values/response values, i.e. toxic and non-toxic 
pattern of close source chemicals. The mathematical expression of gm is 

Table 1 
The equations of developed QSAR and Hybrid models.

Datasets Models Equation

Dataset 1 
(adult 
rodents)

QSAR model (alva 
descriptors)

pLOEL = − 0.994 + 0.295× (nCsp) +
0.107× (nCIR) − 0.345× (nROH) +

0.182× (C − 005) + 0.268× (minaasN) −

0.112× (MaxaaCH) + 0.002×

(T(F..F) ) + 0.610× (B03[C − Cl] ) −
0.207× (B04[O − O] ) − 0.330×

(B05[N − Cl] ) + 0.990× (F01[S − P] ) −
0.288× (F02[O − F] ) − 0.067×

(FO3[C − N] ) − 0.243× (F04[O − Cl] ) −
0.538× (F05[O − P] ) + 0.114×

(F06[N − F] ) − 0.098× (F06[O − Cl] ) +
0.357× (SAscore)

Hybrid model 
(alva+similarity- 
based descriptors)

pLOEL = − 0.664+ 0.284× (nCsp)+
0.116× (nCIR) − 0.348× (nROH)+

0.179× (C − 005)+ 0.240× (minaasN) −

0.110× (MaxaaCH)+ 0.002× (T(F..
F) )+ 0.474× (B03[C − Cl] ) − 0.265×

(B04[O − O] ) − 0.321× (B05[N − Cl] ) +
0.886× (F01[S − P] ) − 0.279× (F02[O −

F] ) − 0.063× (FO3[C − N] ) − 0.225×

(F04[O − Cl] ) − 0.451× (F05[O − P] ) +
0.129× (F06[N − F] ) + 0.278×

(SAscore)+ 1.823×

(gm ∗ SD Similarity(LK)
Dataset 2 

(Fetal 
rodents)

QSAR model (alva 
descriptors)

pLOEL = − 3.313 + 0.081× (C − 026) +
0.080× (minsNH2) + 0.232× (mindS) +
0.363× (B03[C − Cl] ) − 0.168×

(F02[N − S] ) − 0.287× (F04[O − Cl] ) −
0.052× (F05[C − O] ) − 0.147×

(F05[C − Cl] ) + 0.164× (F07[O − O] ) +

0.066× (F10[C − F] ) + 0.132×

(LOGPcons) − 0.005× (SAdon) +
0.840× (SAscore)

Hybrid model 
(alva+similarity- 
based descriptors)

pLOEL = − 3.000+ 0.095×

(minsNH2)+ 0.230× (mindS)+ 0.379×

(B03[C − Cl] ) − 0.167× (F02[N − S] ) −
0.264× (F04[O − Cl] ) − 0.043×

(F05[C − O] ) − 0.125× (F05[C − Cl] ) +
0.188× (F07[O − O] ) + 0.073×

(F10[C − F] ) + 0.150× (LOGPcons) −
0.005× (SAdon)+ 0.790× (SAscore)+
0.389× (SD Similarity(LK)

Dataset 3 
(adult 
rabbits)

QSAR model (alva 
descriptors)

pLOEL = − 0.560 − 0.615× (nROR) −
0.353× (C − 011) − 0.311× (C − 028) +
0.379× (O − 059) + 0.104× (NssssC) +
0.285× (minsssCH) − 0.462×

(B04[O − O] ) + 0.305× (B08[C − N] ) −

0.032× (F02[C − N] ) + 0.242×

(F03[C − P] ) + 0.036× (F10[C − F] ) +
0.304× (SAscore)

Hybrid model 
(alva+similarity- 
based descriptors)

pLOEL = − 0.845 − 0.605× (nROR) −
0.291× (C − 011) − 0.346× (C − 028)+
0.373× (O − 059)+ 0.312×

(minsssCH) − 0.484× (B04[O − O] ) +

0.324× (B08[C − N] ) − 0.037×

(F02[C − N] ) + 0.229× (F03[C − P] ) +
0.050× (F10[C − F] ) + 0.374×

(SAscore)+ 0.180× (SD Activity(LK))
Dataset 4 

(fetal 
rabbits)

QSAR model (alva 
descriptors)

pLOEL = − 1.162 + 0.025× (H − 046) +
0.531× (B08[C − N] ) − 0.427×

(B09[C − O] ) − 0.058× (F02[C − N] ) +

0.071× (F02[C − P] ) − 0.213×

(F03[O − Cl] ) − 0.079× (F04[N − O] ) +

0.500× (F05[O − S] ) + 0.210×

(F06[O − O] ) − 0.152× (F07[N − N] ) +

0.388× (F07[S − S] ) + 0.138×

(F09[N − F] ) + 0.417× (SAscore) −
0.367× (nR = Ct)

Hybrid model 
(alva+similarity- 
based descriptors)

pLOEL = − 1.185+ 0.024× (H − 046)+
0.550× (B08[C − N] ) − 0.401×

(B09[C − O] ) − 0.061× (F02[C − N] ) +

0.098× (F02[C − P] ) − 0.170× (F03[O −

Cl] ) − 0.085× (F04[N − O] ) + 0.439×

(F05[O − S] ) + 0.226× (F06[O − O] ) +

Table 1 (continued )

Datasets Models Equation

0.395× (F07[S − S] ) + 0.146× (F09[N −

F] ) + 0.463× (SAscore) − 0.310× (nR =

Ct) − 4.380× (SD similarity(ED)
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given in Eq. 1. 

gm = (− 1)n
× 2|PosFrac − 0.5| (1) 

Here, PosFrac (positive fraction) represents the fraction of close source 
chemicals with a toxicity value more than the training set mean value. 
By this analysis, we can predict the toxicity of query chemicals based on 
the toxicity pattern of the close source chemicals. n is an integer whose 
value is 1 when MaxPos<MaxNeg and 2 when MaxPos ≥ MaxNeg. Here, 
MaxPos and MaxNeg represent the number of selected close source 
congeners having a toxicity value greater and less than the training set 
mean value of toxicity, respectively

Conversely, the descriptor SD_Similarity indicates the standard de-
viation of the similarity values of the close source chemicals [49]. This 
feature can be calculated by using the Eq. 2. 

SD_Similarity =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(f − f)2

n − 1

√

(2) 

Here, f = Similarity value of the selected number of close source 
congener molecule

f = average similarity of the selected number of close source 
congener molecules

n = number of selected close source congener molecules
The rationale behind the multiplication of gm and SD_Similarity is to 

assign negative or positive signs to SD_Similarity values to better cate-
gorize toxic and non-toxic chemicals (based on the low and high toxicity 
value of source molecules from the training set mean response value). A 
high SD_Similarity value and a positive gm suggest significant dispersion 
among the close source compounds. It is also likely that as the dispersion 
among the close source molecules increases, the prediction reliability for 
the query chemical decreases. So, this feature demonstrates that as the 
standard deviation of the similarity values of close source chemicals 
increases, the reliability of predictions decreases for the query chem-
icals. This is seen in compounds 42 and 46, where the prediction reli-
ability for these query chemicals is reduced due to the higher standard 
deviation in the similarity values of source chemicals. In contrast, 
compound nos. 76 and 65 accurately anticipate the query chemical 
based on a smaller standard deviation of the similarity values for nearby 
source chemicals.

F01[S-P] is the third most important descriptor for the adult rodent 
species based on the VIP score. The 2D atom pair descriptor F01[S-P] 
represents the frequency of phosphorus and sulfur at the topological 

distance 1. This descriptor has a positive contribution, meaning that the 
DART toxicity increases with an increase in the frequency of phospho-
rous and sulfur atoms at topological distance 1 for adult rodents. From 
the study of organophosphate (OP) compounds (present in our dataset) 
used as agricultural chemicals, lubricant additives, and softening agents 
in technology and industry [61], we can see that P––S (thion) bonds are 
present in the majority of OP chemicals. In vivo, they transform into the 
equivalent oxon derivatives (P––O) and become acetylcholinesterase 
(AChE) enzyme inhibitors. In this manner, the chemical raises the 
Acetylcholine (Ach) level, which results in convulsions, depression of 
respiration, circulation muscular paralysis, and death [62,63]. For 
example, the frequency of phosphorus and sulfur or the thion group is 
higher in compounds 26 and 46; as a result, these chemicals are highly 
toxic for adult rodent species due to AChE inhibition. However, com-
pounds 49 and 50 have no thion group in their structure, showing 
reduced DART toxicity due to the very low tendency to interact with the 
binding site of the AChE enzyme.

nROH, the functional group count descriptor, is the next significant 
feature. This feature indicates the number of hydroxyl groups in a 
molecule. The DART toxicity of adult rodent species is negatively 
impacted by this characteristic, indicating that the toxicity of DART 
decreases in adult rodents as the amount of hydroxyl groups in a 
molecule increases. An increase in the number of hydroxyl groups in a 
molecule can make it more polar, thereby facilitating their excretion 
from the body, making them less harmful to adult rodents [64]. In 
particular, compounds 61 and 54 show decreased toxicity to DART as 
the number of hydroxyl groups rises, potentially leading to an increase 
in the molecule’s polarity. Again, compounds 42 and 46 exhibit a high 
DART value for adult rodents because they lack hydroxyl groups in their 
structure.

Based on the VIP score, the next most influential descriptor is CIR. 
This ring descriptor shows the number of circuits (nCIR), a complex 
descriptor that measures rigidity and is correlated with molecular flex-
ibility. A higher number of circuits indicates a lower degree of flexibility. 
This descriptor’s positive coefficient value implies a rise in the propor-
tion of circuits, which is mainly caused by the presence of more fused 
aromatic rings [65]. This descriptor positively contributes to the SAscore 
descriptor, which indicates that a higher level of complexity will result 
in a higher level of DART toxicity for adult rodents. In this respect, 
compounds 182 and 3 are more complex and rigid due to an increased 
fused ring structure, which increases the molecule’s toxicity in adult 
rodents. However, compounds 67 and 36 have a more flexible structure 

Table 2 
Various internal and external validation metrics for traditional QSAR, qRA, and hybrid models of all datasets.

Data 
sets

Models Training Set Testing Set

LVs Train R2 Q2 MAE (train) Test Q2F1 Q2F2 MAE (Test)

Adult rodents Traditional QSAR Model 7 194 0.683 0.596 0.353 42 0.526 0.512 0.426

RA Model 
(LK)

- - - - - 42 0.481 0.465 0.461

Hybrid Model 8 194 0.682 0.605 0.345 42 0.572 0.559 0.393
Fetal rodents Traditional QSAR Model 5 168 0.681 0.608 0.368 50 0.567 0.567 0.412

RA Model 
(LK)

- - - - - 50 0.475 0.475 0.439

Hybrid 
Model

5 168 0.668 0.600 0.372 50 0.594 0.594 0.398

Adult rabbits Traditional QSAR Model 8 133 0.681 0.608 0.284 42 0.642 0.641 0.274

RA Model 
(LK)

- - - - - 42 0.582 0.580 0.307

Hybrid Model 8 133 0.664 0.579 0.291 42 0.653 0.652 0.271
Fetal rabbits Traditional QSAR Model 8 108 0.753 0.651 0.270 24 0.633 0.620 0.287

RA Model 
(ED)

- - - - - 24 0.441 0.421 0.354

Hybrid Model 9 108 0.756 0.659 0.266 24 0.670 0.659 0.283
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resulting in reduced DART toxicity.
The 2D atom pair descriptor F03[C-N] is another important 

descriptor based on the VIP score. The frequency of carbon and nitrogen 
at the topological distance 3 is represented by the symbol F03[C-N]. The 
polarity of the molecule may also increase with an increase in nitrogen 
frequency (a strongly electronegative atom). The descriptor’s negative 
contribution suggests that when the frequency of nitrogen increases at 
the topological distance 3, the molecule’s toxicity decreases because of 
its increased polarity, making it easier for rodent species to eliminate the 
molecule from their bodies [66]. In this regard, the high frequencies of 
nitrogen in compounds 94 and 123 make them less detrimental, having 
lower DART toxicity values. Conversely, compounds 42 and 46 have 
higher DART toxicity values due to the absence of nitrogen atoms in 
organic chemicals, which reduces the polarity of the chemical. The other 
descriptors present in this model are less significant and indirectly in-
fluence the effect of the important descriptors. The definitions and 
classes are provided in Table S3 of Supplementary Material 2.

3.1.2. Features responsible for DART testing in fetal rodents (Dataset 2)
In the case of fetal rodents, we have constructed a 13-descriptor 

model. The features of model 2 were also interpreted according to the 
significance of descriptors based on the VIP score of the features (VIP 
score >1). In this model, four features SAscore, LOGPcons, mindS, and 
SAdon are the most significant descriptors according to their VIP scores 
(shown in Fig. 2). Among them, three features, SAscore, LOGPcons, and 
mindS, contribute positively, whereas SAdon contributes negatively to 
the DART toxicity of fetal rodents. Similar to the adult rodent endpoint, 
SAscore [57–60] is the most important feature of DART toxicity for fetal 
rodents. The positive contribution of this descriptor suggests that the 
DART toxicity of a chemical will increase with the increase in the 
complexity of the molecule, as discussed earlier in Dataset 1. As exem-
plified in compounds 169 and 7, as the SAscore of the molecule in-
creases, so does their DART toxicity value. On the other hand, in 
compounds 49 and 113, relatively low SAscore values may also reduce 
the DART toxicity of these chemicals.

The next influential descriptor is LOGPcons which represents the 
consensus octanol-water partition coefficient (LogP). This descriptor is a 
measure of the lipophilicity of a molecule, and lipophilicity is directly 
related to the toxicity of the chemical as a highly lipophilic molecule is 
not easily excreted from the body. Lipophilicity was found to be one of 
the key toxicity factors in several investigations, as it aids in the mea-
surement of the chemicals’ tissue distribution. cellular absorption, 
persistence, and bioavailability—thus their cumulative behavior [67]. A 
substance with a larger lipophilicity is more quickly absorbed by the 
body and will thus be more harmful to the organism [68]. In a recent 
study of the human placenta barrier, it is evident that an increase in the 
lipophilicity of a molecule may be associated with the tendency to cross 
the placental barrier showing a detrimental effect on the body of a 
developing fetus [69]. Therefore, the positive contribution of this 
descriptor indicates that the DART toxicity of fetal rodent species may 
rise in parallel with an increase in the lipophilicity of a molecule. As 
evident from compounds 7 and 135, a rise in LOGPcons value raises the 
DART toxicity of the concerned chemical. Conversely, a decrease in the 
LOGPcons value will lessen the DART toxicity, as shown in compounds 
59 and 29.

The next important descriptor for fetal rodents is mindS, which in-
dicates the presence of sulfur atoms in the double-bonded form (=S). 
This descriptor contributes positively which means that an increase in 
the number of double-bonded sulfurs may increase the DART toxicity of 
the molecules. This descriptor represents the presence thion group in a 
molecule (P––S) in our database. The thion group is present in the ma-
jority of OP chemicals that are in use currently. As discussed earlier in 
Dataset 1, in vivo, they transform into the equivalent oxon derivatives 
(P––O) and become inhibitors of the AChE enzyme. In this manner, the 
chemical raises the ACh level, resulting in convulsions, depression of 
respiration and circulation, muscular paralysis, and death [62,63]. For 

example, in compounds 24 and 39, the presence of the thion group may 
increase the toxicity in fetal rodent species. In contrast, in compounds 
29 and 59, the absence of these groups may decrease the DART toxicity 
due to less susceptibility of the molecules to interact with the binding 
site of Ach esterase inhibitors.

Another significant descriptor according to the VIP score is SAdon, 
which is a molecular property descriptor that represents the “surface 
area of donor atoms from P_VSA-like descriptors”. According to Labute 
(2000), [70] these molecular descriptors are the percentage of van der 
Waals surface area (VSA) of the donor atoms. The negative contribution 
of this descriptor indicates that an increase in the polar surface area of 
the donor atom may reduce the toxicity value for DART endpoints [71]. 
In our study, the donor atoms are the hydrogen bond donor atoms. The 
hydrogen donor in a molecule is the abstractable hydrogen presented 
adjacent to the highly polar or electronegative atoms (N, O, and F). So, 
these molecules may tend to form intermolecular hydrogen bonds when 
present in a close vicinity of water. This might increase the solubility of 
these chemicals in water thereby increasing the excretion rate of these 
chemicals. So, we can say that an increase in the polar surface area of the 
hydrogen bond donor atoms will increase the solubility of the chemical 
in the water therefore that may be easily excreted from the fetal rodent 
body. Compounds 59 and 49, for example, have a higher polar surface 
area for hydrogen bond donor atoms, which may reduce the molecule’s 
toxicity due to stronger intermolecular hydrogen bonding. However, in 
compounds 39 and 44, the presence of a smaller polar surface area of 
hydrogen bond donor atoms may increase the toxicity profile of rodent 
fetuses. The remaining model descriptors are less important and indi-
rectly affect or contribute to the toxicity of rodent fetuses (descriptions 
of these descriptors are provided in Table S3 of Supplementary Material 
2).

3.1.3. Features responsible for DART testing in adult rabbits (Dataset 3)
In the case of Dataset 3, F03[C-P], O-059, SD activity, B04 [O-O], and 

SAscore are the significant descriptors according to the VIP scores of the 
modeled descriptors (12 descriptors). The most significant descriptor is 
F03 [C-P], which indicates the frequency of carbon and phosphorus 
atoms at the topological distance 3. The positive contribution of this 
descriptor suggests that an increase in the frequency of carbon and 
phosphorus atoms at the topological distance three will increase the 
DART toxicity of adult rabbits. Organophosphorus compounds are 
characterized by a stable carbon-to-phosphorus (C-P) bond, which 
usually resists biochemical, thermal, and photochemical decomposition, 
showing the chemical’s persistent nature [72]. The positive contribution 
of this descriptor represents an increase in the frequency of carbon and 
phosphorus atoms (as organophosphates), which may enhance the 
accumulative or persistent nature of the chemicals (since degradation of 
these chemicals is difficult), thereby increasing the DART toxicity in 
adult rabbits. For instance, in compound nos. 58 and 60, high carbon 
and phosphorus frequencies might increase the compounds’ DART 
toxicity (that may be because of the persistent nature of these chem-
icals). However, in compounds nos. 1, and 142, the absence of this 
fragment (carbon or phosphorus fragments) may reduce the DART 
toxicity of adult rabbits.

The second most important descriptor according to the VIP scores is 
O-059. This is an atom-centered fragment descriptor that indicates the 
presence of a specific type of atom in a molecule and the connectivity of 
the atom. This descriptor represents the presence of an aliphatic group 
on both sides of the oxygen atom i.e. aliphatic ether (representing the 
local atomic environments) [73]. The molecular descriptor O-059 is 
related to the phosphorus-group properties by contributing to reducing 
the electron density of the phosphorus atom, which means that the 
phosphorus-containing molecules with substructures containing oxygen 
show a strong electron-withdrawing effect. This makes 
phosphorus-containing compounds more capable of attacking nucleo-
philes of biomembranes, hence increasing the toxicity [74]. In com-
pound nos. 104 and 2, as the frequency of this fragment increases, the 
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DART toxicity of the molecules also increases. In contrary in compound 
nos. 1 and 27, the absence of this fragment reduces the DART toxicity.

The 3rd important descriptor is SD activity [49], a similarity-based 
feature that represents the standard deviation of the response value of 
the close source molecules. This descriptor represents the weighted 
standard deviation of the observed response values of the close source 
compounds. The mathematical expression for computing this feature is 
represented in Eq. 3. 

SD activity =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
i=1(xi − xwtd)

2

∑n
i− 1wi

√

×
n

n − 1
(3) 

xwtd =

∑n

i=1
wixi

∑n
i=1wi

(4) 

Here, n is the number of close source congeners, wiis the weightage of 
selected individual close source congeners, xi is the observed response 
value of individual close source congeners, xwtdis the weighted average 
prediction value of the query chemical.

In our dataset, this descriptor contributes positively, indicating that 
as the standard deviation increases in the response value of the close 
source chemicals, the reliability of prediction is reduced. For example, in 
compounds 60 and 104, as the standard deviation of the activities of the 
close source molecules increases, the reliability of predictions for the 
query chemicals may decrease. On the other hand, in compounds 54 and 
110, the close source molecules have low values for the DART toxicity 
(have a lower standard deviation for the response values); so the reli-
ability of predictions will increase for the query molecule.

Another important descriptor is B04 [O-O], which is a 2D atom pair 
descriptor that represents the presence or absence of O-O atoms at the 
topological distance 4. This descriptor contributes negatively indicating 
that the presence of an electronegative oxygen atom in a molecule will 
increase the polarity of the molecule and therefore tends to reduce the 
toxicity profile of the molecules [75]. For example, in compounds 1 and 
54, the presence of O-O atoms at the topological distance 4 may increase 
the polarity thereby decreasing the toxicity profile of the molecule. On 
the other hand, in molecules 36 and 58, the absence of this fragment 
shows high DART toxicity in adult rabbits.

The next important descriptor is SAscore [57–60] which contributes 
positively. As discussed earlier in the case of Datasets 1 and 2, the 
positive contribution of this descriptor may increase the DART toxicity 
for adult rabbits with increased complexity of the molecule as well. This 
can be seen in compound nos. 117 and 114. In contrast, in compound 
nos. 132 and 89, comparatively less complexity of the molecule shows 
less toxicity in adult rabbits. The descriptions of other less modeled 
descriptors are provided in Table S3 of Supplementary Material 2.

3.1.4. Features responsible for DART testing in fetal rabbits (Dataset 4)
Based on the VIP scores, the most important descriptors for fetal 

rabbits among the 14 descriptors are F02 [C-P], F05 [O-S], SAscore, and 
F06 [O-O]. As determined by the VIP score, the most important 
descriptor is F02 [C-P], which represents the frequency of phosphorus 
and carbon atoms at the topological distance 2. As discussed earlier for 
Dataset 3, the positive contribution of this descriptor represents that an 
increase in the frequency of this feature may reduce the in vivo biode-
gradability of these chemicals and, therefore, increase the DART toxicity 
of these chemicals in fetal rabbits, as evident in compounds 26 and 46 
[72]. On the other hand, in compounds 55 and 129, an absence of this 
fragment may reduce the DART toxicity of these chemicals.

The next important descriptor, according to the VIP plot, is the F05 
[O-S]. This descriptor represents the frequency of oxygen and sulfur 
atoms at the topological distance 5. These descriptors contribute posi-
tively. In the case of phosphate esters (in the form of thiophosphates), 
the occurrence of an electronegative sulfur atom at a certain distance 
from oxygen may increase the toxicity profile [76]. As exemplified in 

compounds 26 and 46, an increase in this fragment’s frequency will 
increase the chemicals’ toxicity. On the other hand, in compounds 129 
and 101, the absence of this fragment may reduce systemic toxicity in 
fetal rabbits.

The 3rd most important descriptor is SAscore [57–60]. Like the other 
3 models, this descriptor contributes positively which shows that as the 
complexity of the molecule increases, the DART toxicity of fetal rabbits 
will also increase. As evident from compounds 90 and 26, an increase in 
the complexity of the structure may increase the DART toxicity. On the 
other hand, in compounds 5 and 10, the DART toxicity of the compound 
reduces as the SAscore or the complexity of the molecule decreases.

According to the VIP score, the next important descriptor is the F06 
[O-O] descriptor. This descriptor represents the frequency of oxygen 
atom pair at a topological distance 6. This descriptor also contributes 
positively, signifying that an increase in the occurrence of this fragment 
in a molecule will increase the DART toxicity of the molecules [77,78]. 
This descriptor complements the effect of F05 [O-S] descriptors where 
the increase in electronegative atoms (in the presence of organophos-
phates) in a molecule will enhance the DART toxicity to produce a 
detrimental effect on the developing rabbits (as a fetus). For example, in 
compounds 83 and 12, the increase in the electronegative oxygen atom 
pair will increase the DART toxicity to fetal rabbits. On the other hand, 
in compounds 129 and 101, the decreased frequency of the fragment 
will reduce the DART toxicity of the molecules. The effect of this 
descriptor is also influenced by the presence of other less significant 
descriptors in the model. Table S3 in Supplementary Material 2 
contains the definitions and classes of all the descriptors present in the 
models since here we have only discussed the most significant features.

3.2. Summary of the combined knowledge from each of the individual 
hybrid models

To keep the discussion simple, we have grouped different contrib-
uting features of the models into discrete functional nature according to 
the physicochemical characteristics that increase or decrease the DART 
toxicity. In general, from our analysis, the chemical features can be 
briefly categorized into the following classes: 1. Complexity of struc-
tures; 2. Presence of Oxophosphates or Thiophosphates; 3. Intermolec-
ular Hydrogen bonding characters (with water molecules); and 4. 
Lipophilicity is the crucial factor contributing to the DART toxicity of a 
chemical. Further, the significant similarity measures (descriptors) show 
the confidence of correctly predicting the query chemicals. Fig. 4 illus-
trates the contributions of all the influential descriptors for our rodents 
and rabbit species datasets.

Fig. 4. The overall contribution of the most influential descriptors for 
all datasets.
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4. Conclusion

There are not enough assay results for DART while employing con-
ventional techniques to close these gaps would require many test ani-
mals. Developing in silico NAMs that accurately depict the intricate 
reproductive cycle at the many crucial junctures is a significant task 
because the reproductive cycle involves many intricate procedures. We 
need to understand the similarity pattern of the chemical with its 
physical or chemical characteristics for a more refined evaluation of the 
toxicological parameters of a chemical for complex studies (like DART) 
as suggested by the regulatory bodies. The regulatory bodies are 
currently focusing on properly categorizing chemicals into their toxicity 
class, with the prediction of their toxicity based on the pattern analysis 
of source chemicals. To address this issue, firstly, we have prepared or 
categorized the LOEL data (extracted from the ICE database) for adult 
and fetal life stages of rodents and rabbits separately and explored the 
potential of a novel in silico approach as an alternative method to assess 
this complicated endpoint rationally. This new approach integrates the 
two widely accepted in silico techniques (QSAR and RA) used by regu-
latory authorities to primarily screen chemicals for their toxicological 
profiles. Therefore, in our study, we have tried to incorporate the in-
formation from both QSAR and RA studies to understand the physico-
chemical and the confidence of prediction for the query chemical (based 
on the similarity analysis in the form of similarity-based features) for 
DART testing of rodents and rabbits. The main objective of our study was 
to check the statistical quality of our developed hybrid models with the 
traditional QSAR models along with ease of interpretation and trans-
ferability for addressing complex endpoints like DART testing by using 
the knowledge of molecular features and similarity-based features. From 
the results obtained from this study, we can infer that the hybrid 
modeling strategy is a viable algorithm for filling the data gap of new 
chemicals for their DART toxicity assessment in the future. Furthermore, 
given the different regulatory frameworks and guidelines released in the 
EU, USA, Canada, Japan, and Australia, and the ongoing and impending 
efforts to develop alternative testing strategies, the proposed method 
provides a valuable option for assessing this complex endpoint.
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