
Bioinformatics and Biology Insights 2010:4 33–42

This article is available from http://www.la-press.com.

© the author(s), publisher and licensee Libertas Academica Ltd.

This is an open access article. Unrestricted non-commercial use is permitted provided the original work is properly cited.

Open Access
Full open access to this and 
thousands of other papers at 

http://www.la-press.com.

Bioinformatics and Biology Insights 2010:4	 33

Bioinformatics and Biology Insights

 O r i g i n al   R e s e a r c h

Insights into Protein Sequence and Structure-Derived Features 
Mediating 3D Domain Swapping Mechanism using Support 
Vector Machine Based Approach

Khader Shameer1, Ganesan Pugalenthi2, Krishna Kumar Kandaswamy3,4,  
Ponnuthurai N. Suganthan2, Govindaraju Archunan5 and Ramanathan Sowdhamini1
1National Centre for Biological Sciences (TIFR), GKVK Campus, Bellary Road, Bangalore, 560065, India. 2School 
of Electrical and Electronic Engineering, Nanyang Technological University, Singapore. 3Institute for Neuro- and 
Bioinformatics, University of Lübeck, 23538 Lübeck, Germany. 4Graduate School for Computing in Medicine and Life 
Sciences, University of Lübeck, 23538 Lübeck, Germany. 5Department of Animal Science, Center for Pheromone 
Technology, Bharathidasan University, Tiruchirappalli, Tamilnadu, 620 024, India. Email: mini@ncbs.res.in

Abstract: 3-dimensional domain swapping is a mechanism where two or more protein molecules form higher order oligomers by 
exchanging identical or similar subunits. Recently, this phenomenon has received much attention in the context of prions and neuro-
degenerative diseases, due to its role in the functional regulation, formation of higher oligomers, protein misfolding, aggregation etc. 
While 3-dimensional domain swap mechanism can be detected from three-dimensional structures, it remains a formidable challenge to 
derive common sequence or structural patterns from proteins involved in swapping. We have developed a SVM-based classifier to pre-
dict domain swapping events using a set of features derived from sequence and structural data. The SVM classifier was trained on fea-
tures derived from 150 proteins reported to be involved in 3D domain swapping and 150 proteins not known to be involved in swapped 
conformation or related to proteins involved in swapping phenomenon. The testing was performed using 63 proteins from the positive 
dataset and 63 proteins from the negative dataset. We obtained 76.33% accuracy from training and 73.81% accuracy from testing. Due 
to high diversity in the sequence, structure and functions of proteins involved in domain swapping, availability of such an algorithm 
to predict swapping events from sequence and structure-derived features will be an initial step towards identification of more putative 
proteins that may be involved in swapping or proteins involved in deposition disease. Further, the top features emerging in our feature 
selection method may be analysed further to understand their roles in the mechanism of domain swapping.
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Introduction
Many cellular functions rely on interactions between 
protein pairs and are mediated by proteins in oli-
gomeric conformations. Although there are many 
possible mechanisms for oligomer formation, 3D 
domain swapping has been proposed as an important 
mechanism that explains the evolution from mono-
meric to oligomeric proteins.1–4 3D domain swapping 
can be defined as a mechanism for forming oligomeric 
proteins from their monomers by exchanging identi-
cal or similar subunits. The swapped region can be an 
entire domain or a helix or β-strand or loop regions.5,6 
Protein structures reported to be engaged in 3D domain 
swapping are distinct from the rest of the oligomers 
due to the signature-swapping phenomenon. Yet, they 
are extremely diverse based on their primary sequence 
and secondary structures and belong to different pro-
tein domain families and structural classes. Although 
domain swapping is an important mechanism for con-
trolling multi-protein assembly, it has also been sug-
gested as a possible mechanism for protein misfolding 
and aggregation.5–8 Protein structures in swapped con-
formations are reported to initiate pathological confor-
mations in prion proteins and human cystatin C. They 
are reported to aggregate same type of proteins to 
generate aberrant structures.6,7,9–13 For example, amy-
loidogenic proteins like cystatin C and prion proteins 
have been shown to form dimers by exchange of sub-
domains of the monomeric proteins.3,6,14 3D domain 
swapping phenomenon is interesting not only due to 
its pathological conformation factor; it is also impor-
tant due to a wide range of functions mediated by the 
proteins in swapped conformation.7,12,13 It has been 
reported as a mechanism for dimer formation in odor-
ant binding proteins6,15,16 and has also been proposed as 
a possible mechanism for fibril formation.7,14 Several 
well-studied examples for domain swapping events 
have been reported. For example, bovine seminal 
ribonuclease is a natural domain-swapped dimer that 
has special biological properties, such as cytotoxicity 
to tumor cells.17 Barnase, a domain swapped trimer, is 
an enzyme that acquires enzymatic activity by cyclic 
domain swapping.18 For example, Diptheria toxin, 
RNase, Cro (DNA repressor), Spectrin (cytoskeleton), 
antibody fragments, human prion protein (implicated 
in various types of transmissible neurodegenerative 
spongiform encephalopathy), human cystatin C (impli-

cated in amyloidosis and Alzheimer’s disease) and 
SH3 domains (important molecule in signal transduc-
tion) are shown to be having 3D domain swapped seg-
ments with crucial functional roles.12 The functional 
diversity of proteins reported with 3-dimensional 
domain swapping is reflected in a diverse set of Gene 
Ontology (GO) annotations19 obtained from PDB ID 
to GO annotation mapping. Table 1 is provided with 
the GO annotations (Molecular Function), SCOP fold 
and Pfam domain IDs of 10 different proteins reported 
with 3D domain swap mechanism along with their 
diverse function annotations. The study of 3D domain 
swapping events in proteins will be an important step 
towards understanding the molecular basis of the vari-
ous factors that control this phenomenon and its crucial 
role in deposition diseases and evolution of swapping 
in oligomers. As 3D domain swapping is observed in 
different structures belong to different structural super-
families (as an example, a set of 3 structures involved 
in 3D domain swapping is provided in Figure 1) with 
no common structural, sequence or functional pat-
terns, identification of domain swapping events from 
features derived from combination of sequence and 
structural properties provides interesting insights into 
the patterns that could differentiate between the oli-
gomers in swapped conformation and normal oligom-
ers. In this manuscript, we report the details of a new 
Support Vector Machine (SVM) based classifier devel-
oped to differentiate between swapped oligomers or 
normal protein structures with a reliable accuracy of 
73.81%. Further, the manuscript also discusses the top 
features emerging from the information-gain-based 
feature-selection method of the prediction model and 
its implication in large-scale analysis of 3D domain 
swapping in proteins. 

Materials and Methods
Curation of the datasets
We have performed extensive database and litera-
ture curation to collect sequence and structural 
data for proteins with the structural features of 
domain swapping. We have collected a set of PDB 
structures from Protein Data Bank (PDB)20 using 
a combination of integrative database searches 
and extensive literature curation of the existence 
and extent of 3D domain swapping. These entries 
were further manually analyzed using combination 
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of macromolecular visualization tools PyMol,21 
Rasmol22 and literature reports. The structural 
entries were further processed using Domain Iden-
tification ALgorithm (DIAL) server23 to identify 
probable swapped segments from the structural 
data. PDB ID to PubMed ID mapping and PDBSum 
database24 were used to obtain primary literature 
reports. Since many structures are not available 
in quaternary state from the PDB, Protein Qua-
ternary Structure server (PQS)25 was consulted to 

obtain the quaternary assembly of the structures. 
From the extensive curation, 3Dswap: Knowledge-
base of 3D domain swapping in Proteins, unpub-
lished data, 315 PDB entries with 344 chains were 
obtained for the positive dataset. These chains 
were further mapped to their respective SCOP26 
folds. To curate the negative dataset, we scanned 
different databases (PDB, PQS, and PDBSum) 
for dimers or higher order oligomers that are not 
included in positive dataset. PDB was scanned for 

Table 1. List of 10 structures with GO annotation, SCOP fold and Pfam domain ID.

PDB ID GO annotation (Molecular function) SCOP fold Pfam domain ID
1A6457 antigen binding, protein binding, protein homodimerization 

activity, protein self-association
Immunoglobulin-like  
beta-sandwich

V-set

1OQF58 catalytic activity, lyase activity, methylisocitrate lyase activity TIM beta/alpha-barrel ICL
1K6 W59 cytosine deaminase activity, iron ion binding, hydrolase  

activity, hydrolase activity, acting on carbon-nitrogen  
(but not peptide) bond, metal ion binding

Composite domain of  
metallo-dependent  
hydrolases

Amidohydro_3

11BA60 nucleic acid binding, nuclease activity, endonuclease activity,  
pancreatic ribonuclease activity, hydrolase activity 

RNase A-like Rnase A

1EK161 magnesium ion binding, catalytic activity, epoxide hydrolase  
activity, hydrolase activity, metal ion binding

alpha/beta-Hydrolases,  
HAD-like

Abhydrolase_1,  
Hydrolase

1I2162 glucosamine 6-phosphate N-acetyltransferase activity,  
N-acetyltransferase activity, acyltransferase activity,  
transferase activity

Acyl-CoA  
N-acyltransferases (Nat)

Acetyltransf_1

1M5M63 sugar binding Cyanovirin-N CVNH
1FRO64 lactoylglutathione lyase activity, zinc ion binding, lyase  

activity, metal ion binding
Glyoxalase/Bleomycin  
resistance protein/ 
Dihydroxybiphenyl  
dioxygenase

Glyoxalase

1DDT65 transferase activity, transferase activity, transferring glycosyl 
groups, NAD+-diphthamide ADP-ribosyltransferase activity

Common fold of  
diphtheria  
toxin/transcription  
factors/cytochrome f 

Diphtheria_R,  
Diphtheria_T,  
Diphtheria_C

1LSS66 catalytic activity, binding, cation transmembrane transporter  
activity, potassium ion binding

NAD(P)-binding  
Rossmann-fold  
domains

TrkA_N

Figure 1. Structures of three different proteins involved in 3D domain swapping (PDB IDs: 1A64,57 1OQF,58 1K6W59). Hinge region is colored in red and 
swapped segment is in coffee brown.
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oligomers that are not reported to be involved in 
domain swapping. The negative dataset was gener-
ated after excluding the SCOP folds reported in the 
positive dataset. To add diversity to the negative 
dataset, members from a single SCOP fold was 
represented only once in the negative dataset. The 
redundant entries were removed by considering 
their sequence identity. Sequences extracted from 
structures that have .70% sequence identity were 
removed using the CD-HIT program.27 We retained 
213 domain swap sequences for the positive data-
set. Equal number of negative data was obtained 
from the Protein Data Bank. The training dataset 
was constructed using 150 domain swapping and 
150 non-domain swapping sequences. Remaining 
63 domain swap sequences and 63 non-domain 
swapping sequences were employed for testing. 
Schematic representation of data curation steps, 
followed to generate positive and negative data, 
are given in Figure 2. 

Features
The SVM model is generated using a combination 
of features derived from sequence, structure and 
physico-chemical properties. Initially, each sequence 
is represented by a set of 66 features. Further, a set 
of features that contribute to the prediction model 
is identified using the feature-selection approach 
explained in ‘Feature selection’ section. The features 
sets used in the prediction can be classified into three 
groups as sequence-derived, structure-derived and 
physico-chemical features.

Sequence features
Sequence features are derived exclusively from 
sequence of proteins in the positive and negative 
datasets. The frequencies of 20 amino acids were cal-
culated from the total number of each amino acid in a 
given sequence divided by protein length as explained 
previously in Pugalenthi and coworkers.28 In addi-
tion, the amino acids are grouped into hydrophobic, 

Literature search, curation and Integrative
database searches

(PubMed, PDB, PQS, PDBSum)

Curated structural entries with 3D domain
swapping are provided in 3DSwap Database

Extract chains involved in swapping

Assign SCOP fold to individual chains

Convert sequence in to 66 Features

Positive Dataset

Extract chains reported in PDB file excluding
small segments and nucleic acids

Oligomeric structures from PDB which is not
reported to involve in 3D Swapping

Search and obtain dimer and higher oligomers from
PDB excluding proteins reported to involve in

domain swapping and excluding SCOP folds reported
in Positive dataset

Assign SCOP fold to individual chains

Convert sequence in to 66 Features

Negative Dataset

Figure 2. Schematic representation of data curation steps.
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hydrophilic and neutral amino acids (see Pugalenthi 
and coworkers29) and the frequency was obtained for 
each sequence in the datasets.

Structure-derived features
Structure-derived features refer to a set of features 
derived from the PDB coordinates of the positive and 
negative datasets. Structure-based features such as 
solvent accessibility, secondary structures, hydrogen 
bonds and residue compactness were computed from 
the individual protein structures using JOY package.30 
Basic structure-based features used in the prediction 
model are overall composition of helix, overall compo-
sition of strand and overall composition of coil. Along 
with the generic structure-based features, we have also 
used ‘structure-derived fusion-features’ like hydrogen 
bonds in helix, hydrogen bonds in strand, and hydro-
gen bonds in coil where the frequency of hydrogen 
bonds in a given structure is coupled with secondary 
structure of residues that mediate the hydrogen bonds. 
The frequency of solvent inaccessible residues in the 
secondary structure classes like helix, strand and coil 
was also computed. Another set of structure-derived 
fusion-features includes the number of cysteine resi-
dues in helix, the number of cysteine residues in strand 
and the number of cysteine residues in coil regions. 
Hydrogen bonds were calculated using HBOND 
routine available from the JOY package. Secondary 
structure information was inferred using the SSTRUC 
program available from the JOY package. Solvent 
accessibility was calculated using the routine avail-
able in the PSA routine in JOY package to compute 
the Ooi number. Composition of secondary structural 
elements and frequency of hydrogen bonds mediated 
by residues in secondary structural elements were cal-
culated using custom Perl scripts.

Physicochemical features
We obtained 18 physico-chemical properties from 
AAINDEX31 and its derivative UMBC AAINDEX 
database.32 The computed physico-chemical proper-
ties include molecular weight, hydrophobicity, hydro-
philicity, refractivity, average accessible surface area, 
flexibility, melting point, side chain volume, side 
chain hydrophobicity, polarity, heat capacity, iso-
electric points and normalized frequency of α-helix, 
β-sheet and coil. Physico-chemical features were 
derived from the protein sequence of proteins from 

positive and negative datasets using custom Perl 
scripts.

Support vector machine
SVM, rigorously based on Vapnik’s statistical learning 
theory33,34 possesses excellent generalization capabil-
ity. Due to its excellent generalization capabilities, it 
is widely used in bioinformatics applications.28,29,35–37 
When used as a binary classifier, an SVM will 
construct a hyperplane, which acts as the decision 
surface between the two classes. This is achieved by 
maximizing the margin of separation between the 
hyperplane and those points nearest in each class. 
Details of the formulation and solution methodology 
of SVM for binary classification task can be found 
elsewhere.34 We provide here only final form of the 
decision function and the type of kernel function 
employed in our study.

Let xi Є RN, i = 1, 2 …, N be input feature vec-
tors and yi Є {+1, −1} be its corresponding class 
label, where, N be the total number of proteins in 
training database. To assign a class label for a query 
sequence x, the trained SVM model applies the fol-
lowing function form:

	 f x y K x x bi i i j
i

m
( ) ( , )=

=
∑ α +

1
	 (1)

In this equation, where, m is the number of support 
vectors, a subset of training dataset, m , N having 
non-zero positive values of the Lagrange multipliers, 
αi which are obtained by solving a quadratic optimi-
zation problem and b is the bias term. We have con-
ducted our study with Radial Basis Function (RBF) 
kernel function defined by Equation 2.

	 K x x
x x

( ) .,i j
i jexp=
( )






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−
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σ
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2
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K (xi,xj) represents Radial Basis Function (RBF) 
kernel. Parameter σ in Equation (2) decides the width 
of the Radial Basis Function kernel function.33,34 
Simulations were performed using LIBSVM version 
2.81 (C.C. Chang, 2001). SVM training was carried 
out by optimization of the value of regularization 
parameter and the value of RBF kernel parameter. 
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5 fold cross validation experiment was carried out to 
evaluate performance of SVM model.

Feature selection
To identify the important features that distinguish 
positive and negative classes, we used Information 
Gain algorithm with the ranker method for the fea-
ture selection. This method was implemented using 
Weka 3.5.38 The information gain for each feature 
was calculated and the features were ranked accord-
ing to this measure.

Prediction assessment
The prediction system is evaluated using sensi-
tivity, specificity, accuracy, positive prediction 
value (PPV), negative prediction value (NPV) and 
Mathew’s Correlation Coefficient (MCC). These 
measurements are expressed in terms of true posi-
tive (TP), false negative (FN), true negative (TN), 
and false positive (FP). The measurements are 
defined as follows:

	 Accuracy (TP TN
TP FP TN FN

 = +
+
)

( )+ +
	 (3)

	 Sensitivity TP
TP FN

 = 
+

	 (4)

	 Specificity TN
TN FP

 = 
+

	 (5)

	 PPV TP
TP FP

 = 
+

	 (6)

	 NPV TN
TN FN

 = 
+

	 (7)

	
MCC X

TPTN FPFN
TN FN TP FN TN FP TP FP

( )
( )

( )( )( )( )

 
= −

+ + + +
	 (8)

The MCC ranges from −1 # MCC # 1. A value 
of MCC  =  1  indicates the best possible prediction 
while MCC = −1 indicates the worst possible predic-
tion (or anti-correlation). Finally, MCC = 0 would be 
expected for a random prediction scheme (Matthews, 
1975). Five-fold cross-validation method is also used 
to evaluate the performance of the model with respect 

to different sub-sets of the data. Results of the pre-
diction assessment using five-fold cross validation on 
training dataset (Table 2) and independent validation 
dataset (Table 3) are provided.

Results and Discussion
We have developed a new SVM model to differen-
tiate structures in swapped conformation from nor-
mal oligomers or normal structures. The model was 
trained on a training dataset containing 150 proteins 
from the positive dataset and 150 proteins from the 
negative dataset. The performance of the model was 
evaluated using the five-fold cross-validation method. 
As shown in Table 2, overall prediction accuracy of 
76.33% was obtained by five-fold cross validation. 
In order to identify the prominent features, feature 
selection (information gain with ranker method) was 
performed on this dataset. We selected five feature 
subsets by decreasing the number of features and the 
performance of each feature subset was evaluated 
using five-fold cross-validation. As seen in Table 2, 
feature selection generally does not deteriorate the 
classification performance much until the number 
of features decreases to 10. Using 10 features, our 
model obtained 71.67% accuracy that is comparable 
to accuracy obtained using all features. Similar per-
formance was observed using 25 and 50 feature sub-
sets. This result suggests that our feature reduction 
approach selected useful features by eliminating the 
uncorrelated and noisy features. In order to exam-
ine the performance of the newly developed model, 
we tested our training model on the test dataset con-
sisting of 63 proteins from the positive dataset and 
63 proteins from the negative dataset. As shown in 
Table 3, our model achieved 73.81% accuracy with 
73.02% sensitivity and 74.60% specificity using all 
features and 76.19% accuracy with 73.02% sensi-
tivity and 79.37% sensitivity using 50 features. We 

Table 2. Performance evaluation on training data (150 pro-
teins from positive dataset and 150 proteins from negative 
dataset).

Feature subset 5 fold cross validation (%)
10 features 71.67
25 features 75.33
50 features 76.33
All features (66) 76.33
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investigated the influence of the feature reduction by 
plotting Receiver Operating Characteristic (ROC) 
curves (Fig. 3) derived from the sensitivity (true posi-
tive rate) and specificity (false positive rate) values 
for the classifiers using all the features and the 10 best 
performing features (Table 4), respectively.

The list of top 10 features clearly indicates that 
features with higher classification strength are a mix 
of sequence, structural and physicochemical derived 
features. This feature distribution in both sequence 
and structural classes also asserts that swapping 
can be detected from combination of features from 
sequence and structural information. The 10 best 
performing features emerged from the feature selec-
tion using information gain algorithm offers interest-
ing leads into the mechanism that mediate domain 
swapping. As no generic sequence or structure based 
common pattern is reported to be a hallmark of struc-
tures with domain swap mechanism, the set of top 
10 features could be considered further for detailed 

analysis. A generic sequence or structure analysis 
approach could have likely missed the identification 
of these features, but the combination of features and 
machine learning based approach used in the current 
work enables the identification of the specific patterns 
between the positive and the negative datasets. Top 10 
features (Table 4) identified by the feature selection 
method can be classified into three categories based 
on the mode of feature derivation. Top 10 features 
include four sequence-derived features (frequency of 
neutral amino acids, valine, tyrosine and tryptophan), 
one physico-chemical feature derived from sequence 
(refractivity), one structure-derived feature (composi-
tion of coil) and four structure- derived fusion-features 
(solvent inaccessible residues in coil, frequency of 
residues that form hydrogen bond to main chain CO 
in helix, number of cysteine residues in strand and 
number of cysteine residues in helix).

Our current prediction model has its limitations 
due to smaller sample size of the positive dataset. 
Depending upon the availability of more crystal struc-
tures with swapped conformation, the method could 
be improved by re-training the model using larger 

Table 3. Test with independent validation dataset (63 proteins from positive dataset and 63 proteins from negative dataset).

Feature subset Sensitivity  
(%)

Specificity  
(%)

MCC Accuracy  
(%)

PPV  
(%)

NPV  
(%)

10 features 69.84 66.67 0.37 68.25 67.69 68.85
25 features 73.02 65.08 0.38 69.05 67.65 70.69
50 features 73.02 79.37 0.52 76.19 77.97 74.63
All features (66) 73.02 74.60 0.48 73.81 74.19 73.44

Abbreviations: MCC, Matthews Correlation Coefficient; PPV, Positive prediction value; NPV, Negative prediction value; AROC, Asymptotic receiver 
operating characteristic.
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Figure 3. ROC curves plotted utilizing the fractions of true positives and 
false positives values derived using top 10 features and all features.

Table 4. List of top 10 selected features.

No Features
1 Solvent inaccessible residues in coil
2 Frequency of residues (that form hydrogen  

bond to main chain CO) in helix
3 Number of cysteines in strand
4 Physico chemical properties (Refractivity)
5 Number of cysteines in helix
6 Frequency of neutral amino acids (THSQ)
7 Frequency of valine
8 Frequency of tyrosine
9 Frequency of tryptophan
10 Composition of coil
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datasets. Due to unavailability of other methods or 
classifiers for the prediction of swapping events from 
sequence or structure data, the current method is not 
compared with any of the existing methods. To show 
the results of the prediction model, a set of example 
input PDB files and their respective results obtained 
using the current prediction model is provided in 
Table 5.

Conclusion
Domain swapping mechanism is essential for the for-
mation of higher protein oligomers from their mono-
mer, protein misfolding, protein aggregation etc. 
Several experimental39–49 and computational stud-
ies50–56 are performed to understand various aspects 
of domain swapping. We have attempted to pre-
dict the phenomenon of domain swapping from the 
sequence and structure-derived features of a protein 
using machine-learning approach based on support 
vector machines. Identification of common sequence 
or structure-based features from the structures that 
show this phenomenon is a challenging task. We 
developed SVM-based classifier to predict domain 
swapping event using sequence and structure-de-
rived features. This method obtained 76.33% accu-
racy from training and 73.81% accuracy from testing. 
This method could be extremely useful for the iden-
tification of domain swap phenomenon from protein 
structure data based on features derived from pro-
tein sequence data and structural co-ordinates. The 
set of features identified using our feature-selection 
method is providing new insights to understand a 
common pattern behind domain swapping and need 
to be explored further. The method can be improved 
by considering exclusive sequence based features, so 

that a classifier could be designed which can perform 
prediction using (3Dswap-pred—prediction of 3D 
domain swapping from protein sequence, unpub-
lished data). Such a method could be applied at the 
whole genome level to scan and identify putative 
proteins showing domain swapping.
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