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Abstract: Optical coherence tomography (OCT) and fundus autofluorescence (FAF) are important
imaging modalities for the assessment and prognosis of central serous chorioretinopathy (CSCR).
However, setting the findings from both into spatial and temporal contexts as desirable for disease
analysis remains a challenge due to both modalities being captured in different perspectives: sparse
three-dimensional (3D) cross sections for OCT and two-dimensional (2D) en face images for FAF. To
bridge this gap, we propose a visualisation pipeline capable of projecting OCT labels to en face image
modalities such as FAF. By mapping OCT B-scans onto the accompanying en face infrared (IR) image
and then registering the IR image onto the FAF image by a neural network, we can directly compare
OCT labels to other labels in the en face plane. We also present a U-Net inspired segmentation
model to predict segmentations in unlabeled OCTs. Evaluations show that both our networks
achieve high precision (0.853 Dice score and 0.913 Area under Curve). Furthermore, medical analysis
performed on exemplary, chronologically arranged CSCR progressions of 12 patients visualized with
our pipeline indicates that, on CSCR, two patterns emerge: subretinal fluid (SRF) in OCT preceding
hyperfluorescence (HF) in FAF and vice versa.

Keywords: CSCR; OCT; fundus; autofluorescence; multimodal; registration; segmentation; deep
learning; image analysis

1. Introduction

Central serous chorioretinopathy (CSCR) is an idiopathic chronic eye disease that
affects mostly younger patients (20–50) [1] and can lead to severe bilateral visual acuity (VA)
impairment. It is characterized by the accumulation of serous fluid at the posterior pole
of the fundus, resulting in circumscribed detachment of the neurosensory retina and/or
retinal pigment epithelium in the central retina (macula). It can be divided into acute CSCR,
which typically lasts less than 6 months and is often spontaneously resolving, and chronic
cases with multiple re-occurrences. This paper focuses on chronic CSCR, which often
creates long-term VA loss [1–3].

Until today, no standardized treatment exists due to a very variable and overall poor
outcome of all approaches. This creates a huge disease burden in the comparably young
and often working patients, who often cannot be treated effectively and lose their ability to
perform in their job, to drive a car or even to read. A better understanding of the disease,
different subvarieties and their respective response to different treatment modalities might
help to find more targeted and individualized therapies and could also help with individual
disease course prognosis.

Although the pathogenesis is not fully understood, there is probably a diffuse dysfunc-
tion of the retinal pigment epithelium (RPE), the choroid or both structures. It is believed
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that as a result of the disruption of the autoregulation of choroidal perfusion, hypermeabil-
ity of the choroid via a focal leak leads to RPE detachment. This RPE detachment then leads
to mechanical damage that, as a result of a discontinuity of the RPE, ultimately results in a
subretinal fluid accumulation with serous detachment of the neurosensory retina, which
creates the VA impairment. Over longer periods, it can also create irreversible structural
impairment and scarring [1].

Subretinal fluid (SRF) can be best and very precisely depicted in optical coherence
tomography (OCT). In order to depict RPE alterations, fundus autofluorescence (FAF) is the
most sensitive imaging method. While different biomarkers can be found in FAF patients,
the most distinct biomarker in chronic CSCR patients is diffuse hyperfluorescence (HF) [4].

In contrast to SRF imaging in OCT, which is a structural and quantitative measurement
of fluid accumulation and is very well understood, the underlying mechanisms that lead to
HF formation and the meaning of HF in CSCR patients is only little understood. Likewise,
the chronological relationship between these to biomarkers remains unclear: whether
HF is a biomarker of altered RPE that starts leaking and thus precedes SRF formation
and whether HF is caused by long-term SRF occurrence remain open questions.

One reason is that few comprehensive datasets of CSCR patients exist, given the drasti-
cally lower incidence (9.9/100,000 to 54.2/100,000 in men and 7.7/100,000 to 15.7/100,000 in
women) [5,6] compared with widespread diseases such as age-related macular degeneration
(AMD) (incidence 3500/100,000 over ages >50 years) [7]. Another reason, however, is that
it requires two distinct imaging methods (OCT and FAF), which in turn give two completely
different datasets (a 2D en face image in FAF and a 3D volume scan in OCT that are not
registered (compare Figure 1)). Methods for data registration in between these modalities
are not available in clinical practice and only little established in scientific literature.

Previous works have proposed several methods for the registration of FAF and other
en face imaging modalities [8–15]. Similarly, efforts have been made to visualize OCT
labels, e.g., by projecting them onto the accompanying en face infrared (IR) image, where
B-scan positions are marked by the OCT device [16,17] or a joint reference space [18]. In [19]
an en face image is created by reducing the OCT volume. Still, neither kind of approach
alone allows registration between OCT and FAF findings.

(a) Spatial relationship between OCT and FAF (b) Registered SRF and HF

Figure 1. Spatial relationship between SRF (green) in 3D OCT B-scans and HF (yellow) in 2D en face
FAF images (a), both of which are shown with roughly physically aligned orientations. Our approach
allows to precisely register segmentations from both and visualise their overlap (shown in blue), e.g.,
in FAF image space (b).

Previous work approaching OCT to en face fundus image registration relied on blood
vessel segmentation [20–26]. Recent work on OCT to en face fluorescein angiography (FAG)
registration used scanning laser ophthalmoscopy (SLO) as an intermediate image modality
but still required blood vessel segmentation [27,28]. Our proposed pipeline is similar in that
we also utilize an intermediate image modality for registration (IR in our case) but different
in that we do not require explicit blood vessel segmentation, which might be sensitive to
image quality [29] and structural damages due to progression of CSCR.
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For our work, we utilized data from the University Eye Clinic of Kiel, Germany,
a tertiary care center that is specialized on CSCR patients and has a unique large database
of over 300 long-term CSCR disease courses with a median follow-up of 2.5 years.

Given this database and modern image registration and computation algorithms, our
contribution is twofold: (1) We propose a visualisation pipeline capable of registering
OCT and FAF images and their labels with high accuracy. (2) To show the utility of our
pipeline, we conduct a pilot study regarding disease progression on 12 representative
CSCR cases. Using the registered labels from our pipeline, we can analyze the spatial
and temporal relationship between SRF and HF. Contrary to the common hypothesis that
SRF precedes HF [30,31], our first clinical interpretation of the results suggests that, in
regard to chronological order of the pathologies, two disease patterns can be identified:
SRF preceding HF and vice versa.

We are confident that our contributions lay most of the technical groundwork for a
large study to establish the chronological relationship between HF and SRF formation.
The findings from such a study could not only help in understanding these biomarkers and
their relevance but also might be used to categorize them into different CSCR subvarieties.

2. Materials and Method
2.1. Materials

All of our data were acquired with institutional review board approval from the
University Eye Clinic of Kiel, Germany. From an existing dataset of 326 patients with CSCR
from 2003 to 2020, patients were selected for a retrospective study with a reliable diagnosis
of chronically recurrent CSCR, at least three visits and a long term course of the disease
(minimum 2 years). The exclusion criteria were an uncertain diagnosis of CSCR and acute
forms of CSCR.

In this work, altogether, we used data from 21 of these 326 patients (see Table 1).
For these 21 patient, relevant data were collected over an average timespan of 5.5 years
(range from 0 to 11 years) with an average of 6.5 (range from 1 to 12) visits per patient and
eye. The main body of our data consists of 186 triples of OCT volumes, IR images and
FAF images. Triples were taken on the same date of the same eye. OCT volumes were
acquired with a Heidelberg Spectralis OCT device (super luminescence diode, average
wavelength 870 nm), Heidelberg, Germany, and contain 25 B-scans with Field of View
(FoV) 6× 6 mm (6 µm/px horizontal and 4 µm/px vertical resolution; distance between
B-scans 250 µm). FAF and IR images were both taken with a FoV of 30° and an average res-
olution of 11.3 µm/px. For all FAF images, expert annotations labeling HF were available.
For 162 OCT volumes, expert annotations labeling SRF were available. For the remaining
24 volumes, SRF labels can be predicted with our proposed segmentation network (see
Section 2.2.1).

Two components in our pipeline required further training data. Our segmentation
network was trained on additional annotated OCT volumes, for which no corresponding
FAF images were available. Our utilized registration network (see Section 2.2.4) was trained
on additional FAF, fluorescein angiography (FAG) and fundus images [8]. The subsets
of our data as used for training and different evaluations are given in Table 1. Details
regarding relevant metadata of those subsets are given in the according sections.
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Table 1. We used image data from 21 CSCR patients: seg. train and seg. eval depict patients whose
OCTs were used for training (Section 2.2.1) and evaluating (Section 3.1) the SRF segmentation network.
reg. train depicts patients, from which FAF, FAG and fundus images were used to train the registration
model in [8]. reg. eval depicts patients whose IR and FAF data were used for evaluating the same
registration model in our usecase (Section 3.2). SRF prediction depicts patients, for which at least part
of their SRF was predicted with our segmentation network during medical analysis. med. analysis lists
patients used in our medical analysis (Section 5.1). Please note that segmentation and registration are
independent of each other and that the medical analysis is separate from the technical evaluation.

Patient ID
Used in 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

seg. train . X X . . . X X X X X X . X X X X X X X X
seg. eval X . . X X X . . . . . . X . . . . . . . .
reg. train . X . X X . . . . . X X . . . . X . X . .
reg. eval . . X . . X X X X X . . . . X X . X . . .

SRF prediction . . . . . . X . X . . . . . . . . . . . .
med. analysis X X X X X X X X X X X X . . . . . . . . .

2.2. Technical Methods

Our visualisation pipeline as depicted in Figure 2 takes as input annotated B-scans
from an OCT, the corresponding IR image with the orthogonal position of each B-scan and
an FAF image from the same eye. The output is a projection of OCT segmentations onto the
FAF image, where label expansion in the gaps between the B-scans has been approximated
by shape filling. In cases where no SRF expert annotations for the OCTs are available
(compare Table 1), we used a segmentation network to predict SRF labels.

FAF
with annotations

registered IR 
and FAF labels

MedRegNet
Registration 

IR with OCT B-Scans

OCT B-Scans 

UNet
Segmentation 

Mapping

B-Scans with SRF labels

labeled IR

Shape Filling

interpolated labels IR 

Visualisation Pipeline

Figure 2. Our visualisation pipeline maps labels from OCT scans onto FAF images. On OCT B-scans
for which we have no expert annotations, we utilized an U-Net-like segmentation model to predict
SRF labels.

Our visualisation pipeline itself consists of the components: (1) the mapping function
for projecting segmentations from OCT B-scans onto the corresponding IR image, (2) the
shape filling algorithm to interpolate segmentations in the gaps between the B-scans, and
(3) the MedRegNet registration module [8] to register the IR image and its segmentations
onto the FAF image. Each component including the segmentation network is explained in
the following subsections. Implementations of all components are given in the Supplemen-
tary Materials.
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2.2.1. OCT Segmentation Network

The segmentation network for prediction of SRF labels in OCT B-scans was inspired by
the U-Net [32] and takes two inputs: the OCT B-scan to be segmented and the corresponding
segmentation of the retina as given by the OCT imaging device. The encoding part of the
network consists of four convolutional blocks followed by maximum pooling. Each block
is composed of two convolutional layers with filter size 3× 3, batch normalization and
ReLU activation. To allow for different processing of the different input modalities, we
do not pass B-scan and retina segmentation as a two-channel input but use two separate
convolutional blocks at the first level of the network [33]. The resulting feature maps are
concatenated after the first maximum pooling. The decoding branch mirrors the encoding
branch and is connected to the encoder via skip connections on all levels. Upsampling
is achieved with nearest neighbor interpolation. The output of the network after a final
Sigmoid layer is the segmentation of SRF and pigment epithelial detachment (PED).

The network was trained on a NVIDIA DGX A100 system using one GPU for 300 epochs on
137 OCT images from 16 CSCR patients in our dataset (compare Table 1) with Adam optimiza-
tion [34] and a constant learning rate of 1× 10−4. As loss function, we used a generalized Dice
loss [35] that compares predicted labels to manual annotations of SRF and PED.

2.2.2. OCT to IR Mapping

In the first step, we mapped the labels from the B-scans onto the IR image. Given a B-
scan of size WOCT × HOCT , we denoted the corresponding segmentation mask of the same
size as LOCT ∈ {0, 1}WOCT×HOCT . From this, we constructed a vector lOCT = [l1, . . . , lWOCT ] ∈
{0, 1}WOCT , where for 1 ≤ i ≤WOCT , the entry li is 1 if in column i of LOCT at least one pixel
has value 1 and 0 else (see Figure 3a).

LOCT

lOCT

OCTW

(a) SRF Segmentation in OCT B-scan

(b) Labeled B-scans in
IR image

(c) Shape Filling in
IR image

(d) morphological
operations (not used)

Figure 3. Segmentation masks throughout the different steps in our pipeline. We projected segmenta-
tions in the OCT B-scans (a) onto the IR image (b). To close the gaps between the B-scans, we used
shape interpolation (c), which yielded better results than morphological dilation and closing (d).
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From metadata, we know the position and width W of each B-scan in the IR image;
hence, we stretch or shrink lOCT to size W by nearest-neighbor interpolation before aligning
the resulting vector with the B-scan position in the IR image. Doing this for all B-scans
yields segmentation masks as in Figure 3b.

2.2.3. Shape Filling

From Figure 3b, the gaps in the IR image between the labeled B-scans become apparent.
Szeskin et al. [16] used morphological dilation and closing operations with experimentally
determined parameters for closing the gaps. We found that this approach does not work
well in our case, where OCT slices only number 25 of them compared with the 40–80 in [16]
(compare Figure 3d). Instead, we used a shape-based interpolation method, as in [36],
though simplified for use in 2D.

In the IR image each labeled B-scan is a binary label vector l = [l1, l2, . . . , lW ] ∈ {0, 1}W

with W entries, where 1 denotes the presence and 0 is the absence of the label at this pixel.
From l, we retrieved a binary contour vector c = [c1, . . . , cW ] ∈ {0, 1}W , where

ci =

{
1, if li = 1 and (li−1 = 0 or li+1 = 0)
0, else

(1)

for 1 ≤ i ≤W. From c, we can calculate a distance vector d = [d1, . . . , dW ] ∈ ZW , where

di =

{
mincj∈c,cj=1 |i− j| if li = 1

−mincj∈c,cj=1 |i− j|, else
(2)

denotes the distance to the closest contour pixel in that B-scan. This distance is positive
for label pixels and negative for non-label pixels. Between adjacent B-scans, those distance
vectors d1, d2 are then linearly interpolated, such that a pixel at relative distance 0 < f < 1
between them is assigned value d1,2

i ( f ) = f · d1
i + (1 − f ) · d2

i . Finally, pixels with an
interpolated distance > 0 are assigned as belonging to the label. The resulting segmentation
in the IR images is shown in Figure 3c.

2.2.4. IR to FAF Registration

To project the interpolated labels onto the FAF image, we need to register the IR
image with the FAF image. For this, we used the feature-based multimodal MedRegNet
descriptor module [8], as depicted in Figure 4. MedRegNet utilizes established point-
detector algorithms such as SIFT [37] to detect interest points in both images. Rectangular
64× 64 px patches are extracted around each interest points. These patches serve as input
to MedRegNet’s lightweight convolutional neural network (CNN), which outputs for each
patch a l2-normalized descriptor vector dsc ∈ [−1, 1]128.

Similar descriptors were then matched using Lowes ratio test [37], where we only kept
those descriptors dsc in the first image with ||dsc−dsc1||2

||dsc−dsc2||2
< µ. Here, dsc1, dsc2 were the first

and second closest descriptors to dsc in the second image, respectively. From the remaining
matches, we recovered a homography transformation from the first to the second images
with RANSAC [38].

For our usecase, we utilized the multi- and monomodally pre-trained MedRegNet
models of [8] without further training. We referred to the latter as MedRegNetmono. The mul-
timodal MedRegNet as detailed in [8] was trained with SIFT points on the three image
modalities FAF, fluorescein angiography (FAG) and fundus. MedRegNetmono was trained
with SIFT points on the public fundus images of [39,40]. Both sets of training were per-
formed on a NVIDIA Titan Xp GPU and an Intel Core i7-4790K CPU with 4.00 GHz.
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Descriptor CNN 

CLAHE +
SIFT

Patch
extraction

input FAF FAF with k
interest points 

 k patches 
64×64 px

1×128 

 k descriptor vectors 

Figure 4. The steps inside the MedRegNet descriptor module [8]. Image contrast was improved with
CLAHE [41]. Processing is identical for IR images.

3. Technical Results
3.1. Segmentation Network

We evaluated the OCT segmentation network on 53 test images of 5 patients (compare
Table 1) using the established [42] Dice score DCS = 2TP

2TP+FP+FN [43,44], where TP, FP and
FN denote the true positive, false positive and false negative segmented pixels, respec-
tively. For SRF segmentation, the network achieves a mean Dice score of 0.853 on B-scans
containing SRF in the manual ground truth and outputs false positives in only 16 out of 958
B-scans containing no SRF. The SRF detection rate is 97.0% (385 out of 397 SRF-containing
B-scans correctly detected). Probably due to imbalanced training data, the detection rate of
PED is inferior at 43.9%, resulting in a mean Dice score of only 0.255. False positives are
again seldom, with 23 out of 1232 B-scans containing erroneously predicted PED. For the
visualisation pipeline, we only used the very reliable SRF segmentations.

Furthermore, projection accuracy in our pipeline depends not on correct segmentation
in the OCT volume itself but rather on correct segmentation in regard to the en face plane.
Hence, to prove the suitability of the SRF segmentations for our visualisation pipeline,
we projected ground-truth and predicted segmentation onto the en face plane. Pixels in
the projection image were assigned a value of one if at least one voxel was segmented in
the corresponding A-scan and zero otherwise. The Dice score of the projection images
(compare Figure 5) was then calculated and averaged over all available examinations. We
achieved a projected Diceproj score of 0.897, which highlights the reliability of the SRF
segmentations in the en face plane.

Dice: 0.970 Diceproj: 0.972 Dice: 0.881 Diceproj: 0.965

Figure 5. Two predictions and correspondingscores from the OCT evaluation set.
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3.2. Registration Network

Following the procedures and the registration error (RE) metric in [45], we evaluated
the registration performance for each image-pair by utilizing a set of annotated 10 control-
point pairs, denoting the same points in both images (see Figure 6). Given a proposed
transformation H between the images, we projected control points from the first image onto
the second image and calculated the RE as the mean euclidean distance of all control-point
pairs. An image pair was considered successfully registered if enough points were matched
to reconstruct some H and if, for that H, RE does not exceed a threshold. As in [45], we
determined the percentage of successfully registered images for thresholds between 0 and
25 px and reported the resulting Area under Curve (AuC).

Regarding the evaluation data, since our IR and FAF images stem from the same pool
of data as the FAF, FAG and fundus images used to train MedRegNet, we made sure to
only include images from patients outside MedRegNet’s train dataset. With this, we show
the registration performance on 34 same-date IR↔FAF image pairs from nine patients
containing left and right eyes (compare Table 1). For each patient, if available, the images
were chosen from the first and last date to cover different stages in CSCR progression.

(a) IR and FAF pair (high overlap) (b) IR and FAF pair (low overlap)

Figure 6. Two annotated IR↔FAF image pairs as encountered in our dataset. (a) An example with
high spatial overlap and (b) and example with little spatial overlap. The green squares denote the
10 control-point pairs in each image pair used for evaluation (images are best viewed zoomed in).

To show that IR↔FAF registration is no trivial task, we also present the registration
performance of the common interest pointer detector and descriptor algorithms SIFT [37],
ORB [46], KAZE [47] and AKAZE [48] as well as scores for not carrying out any registration
at all. For each method, we chose the 0.5 < µ < 1 with the respective highest AuC to avoid
selection bias. The results are given in Table 2 and Figure 7.

Evidently, both versions of MedRegNet, despite never having seen IR images during
training (and MedRegNetmono not having seen FAF images either) perform best with over
0.90 and 0.91 AuC. MedRegNet is able to register all but one image pair with RE < 3 px,
while MedRegNetmono is able to register all images with RE < 5 px. From the baselines, only
KAZE performs with some accuracy, reaching 0.76 AuC, though it too fails to successfully
register multiple image pairs even for the largest error threshold.

Table 2. Registration results. MRN is MedRegNet. TP matches are the average number of correctly
matched interest points, i.e., point pairs that after registration have an euclidean distance <5 px.
The number in brackets shows the percentage of all matched points, which are TP. AuC is the Area
under Curve for the plots shown in Figure 7.

Method TP Matches AuC

MRN 1715 (34%) 0.902
MRNmono 606 (13%) 0.913

SIFT 55 (1%) 0.434
ORB 29 (0.3%) 0.034

KAZE 205 (8%) 0.760
AKAZE 60 (3%) 0.438

No registration - 0.288
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Figure 7. Percentage of successfully registered images for different registration error (RE) thresholds.

4. Technical Discussion

Regarding the technical implementation, we considered each of our single components
to be of high precision: our network for SRF segmentation in OCT scans reaches a Dice score
of 0.853. This score is similar to comparable state-of-the-art architectures predicting SRF
for CSCR (0.910 [49]) or more general for macular edema (0.845 [50], 0.75 [51], 0.958 [52]).
Our projected en face Dice score as relevant for our usecase is still higher with 0.897. While
the shape filling algorithm cannot be evaluated quantitatively due to the lack of dense SRF
annotations in the en face plane, visual inspections show the resulting shapes to appear
more natural than previous approaches using morphological operations [16].

Both MedRegNet registration networks on our multimodal data outperform estab-
lished off-the-shelf detector/descriptor algorithms (0.913 AuC and 0.902 vs. 0.760 AuC for
KAZE [47]). Though MedRegNetmono performs slightly better than MedRegNet, it might
be less robust in low overlap images due to lower TP matches. The good performance of
MedRegNetmono despite never having seen IR or FAF images in training might be explained
by (1) blood vessels appearing darker than the surrounding tissue in IR and FAF images
similar to the fundus images that MedRegNetmono was trained on and (2) the brightness
and contrast augmentation during training.

It is also worth mentioning that, while some of the aforementioned single components
in our pipeline are specialized for their respective modalities, the general layout of our
pipeline is applicable for registration between sparse 3D cross-section and en face images
as long as a spatial alignment from the cross-sectional scans to some en face modality (e.g.,
IR [16,17], SLO [27,28], reduced OCT volume [19]) can be established.

5. Medical Analysis

Our medical analysis was conducted in the context of the often-cited hypothesis that
FAF changes depict chronic damage induced by SRF presence, i.e., that SRF formation
always precedes HF development [30,31]. However, this has not conclusively been proven.
Since chronic RPE alterations are thought to play an important role in disease pathophysi-
ology, it could also be hypothesized that FAF changes precede SRF formation. Therefore,
we wanted to challenge hypotheses on the chronological order.
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5.1. Visualisation Method

One important distinction between both pathologies lies in their temporal consistency.
While HF, once appearing, is generally observed to stay, SRF fluctuates heavily over time.
This introduces temporal complexity to the analysis: a straightforward comparison of SRF
and HF on the same date does not suffice, as SRF that could have influenced HF progression
might no longer be visible at the current date—that is, if it has been captured at all, which
due to intervals in the patient visits is not guaranteed.

To account for the temporal component in our analysis, we chose the following method:
Instead of only visualizing labels from the same date, we chronologically accumulated
segmentations over time (see Figure 8). Hence, in our visualisation for a certain date, we
labeled every pixel that had ever been occupied by either pathology up to this date. We ac-
complished this by regarding the initial FAF and IR image as anchors. Every following FAF
and IR image together with their segmentation masks was first registered with MedRegNet
onto their respective anchor, after which we used the projection of our visualisation pipeline
to combine both into a single image. For each pixel where HF and SRF biomarkers overlap,
we analyzed if SRF was present first, HF was present first, or the chronological order could
not be established because both biomarkers were either present at baseline or appeared in
the same follow-up on previously unoccupied space.

. . . 

Date 1 Date 2 Last Date

registered
SRF labels 

accumulated
registered
SRF labels 

. . . 

Figure 8. The process of generating accumulated SRF labels (bottom row) from single SRF labels
(top row) over multiple dates. In the accumulated SRF labels, each pixel that at some point up to the
current date had been observed as being occupied by SRF is colored in green. The process is identical
for HF labels.

To analyze the chronological relationship between SRF in OCT scans and to diffuse
HF in FAF images, we chose representative cases of chronic CSCR from our dataset where
SRF and HF were both present and at least one entity was progressing. The result is an
exemplary subset with 17 eyes of 12 patients (compare Table 1). Patients in this subset have
a mean age of 49.8 years (range from 39 to 66 years) and 83.3% were male (10 of 12 patients).
The mean disease course captured in our clinic was 5.25 years (range from 2 to 10 years)
with an average of 7 visits (range from 3 to 12 visits, OCT and FAF performed in all visits).

6. Medical Discussion

Using our visualisation pipeline and the aforementioned accumulated visualisation
from Section 5.1 on our subset of 12 patients and 17 eyes, we analyzed the chronology
between SRF and HF. Indeed, two different patterns of disease course can be found in our
pilot study: patients in which SRF seems to precede HF formation (pattern A) and vice versa
(pattern B). We attributed all patients to either group; three eyes where no decisive order
could be found were excluded. Table 3 shows these findings for the last follow-up point of
all analyzed patients.
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From the data in this table, we proposed the possibility of two CSCR disease distinct
patterns and noted the following: HF development in an area of the retina which at the current
or a previous time was only occupied by SRF (pattern A) gives a strong indication that SRF
does indeed precede the development of HF. The inverted implication in cases where HF
precedes SRF (pattern B), however, is not generally applicable, since in this area, SRF could
have occurred and already been resolved in a time span when no picture was taken.

Table 3. Temporal analysis of the relationship of SRF and HF progression. VA is visual acuity
development measured in logMAR, meaning a smaller value is a higher VA. According visualisations
are given in Figures A1–A3.

Patient ID
and Eye

Follow Up
Time

(Years)

Area of
HF/SRF
Overlap

Area Where
SRF

Precedes

Area Where
HF

Precedes

Area Where
Chronology Is

Unknown

Last VA
(logMAR)

Pattern A: SRF Precedes

5 L 3.3 68k px 67% 0% 33% 0.1
6 R 2.3 30k px 100% 0% 0% 0.6
8 L 2.5 11k px 98% 0% 2% 0
9 L 6.4 74k px 40% 1% 59% 0

11 R 6.4 39k px 100% 0% 0% 0

Pattern B: HF Precedes

1 R 2.6 105k px 50% 41% 9% 0.4
3 R 7.6 0.4k px 1% 46% 53% −0.1
4 L 6.0 74k px 37% 63% 0% 0.2
7 L 2.7 16k px 5% 71% 24% 0.1
9 R 6.4 76k px 28% 52% 20% 0.9
10 L 9.7 20k px 24% 74% 1% 0.4
10 R 9.7 81k px 6% 73% 21% 0.2
11 L 6.4 15k px 14% 82% 4% 0.2
12 L 7.5 31k px 1% 72% 27% 0.2

Excluded: No chronological order

1 L 2.6 85k px 4% 19% 77% 0.2
2 L 7.9 132k px 20% 44% 36% 0.8
5 R 3.3 55k px 11% 21% 68% 1.5

Whereas pattern A has previously been hypothesized [30,31], confirming pattern B in
addition could be of high clinical relevance: From Table 3 patients with pattern A seem to take a
prognostically more favorable course with regard to visual acuity (VA) development (measured
in logMAR, meaning smaller value is higher VA). The mean VA for pattern A was 0.13 (median
0; range from 0 to 0.6) and 0.28 for pattern B (median 0.22; range from−0.1 to 0.89). Exemplary
visualisations of representative disease courses can be found in Figures A1–A3.

Due to the clinical relevance of confirming (1) the existence especially of pattern B in
chronic CSCR and if so (2) differences in VA development between the patterns, an applica-
tion of our visualisation pipeline for larger datasets is planned. Furthermore, prospective
studies could significantly enhance the data quality. In addition, with prospective studies
and frequent OCT follow-up, the probability of a missing SRF occurrence would shrink.

For the moment, our pilot study confirms that using accumulated pathologies from
SRF and HF segmentations registered with our pipeline is a useful tool in monitoring and
evaluating CSCR disease progression. To the best of our knowledge, we are the first to set
into context spatial and temporal development of SRF and HF in this way.

We also direct attention to the potential of automated CSCR pattern detection: While
the presented grouping into the two patterns was performed by medical experts using
both the visualisations and the area percentages presented in Table 3, it currently appears
that for most courses comparing area percentages could suffice. Especially in the patients
with pattern A, there seem to be no areas where HF precedes (0 to 1%, the 1% possibly
due to segmentation errors), which allows for easy automated detection. We believe that
our approach could be valuable in supporting clinicians by automatically pointing out
recognized disease patterns.
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7. Limitations

We identified the following technical limitation: while our automated segmentation
of SRF in OCT scans reaches high Dice scores, we currently do not possess a mechanism
to automatically segment HF in FAF images. If we did, our visualisation pipeline could
operate completely on raw OCT and FAF data, i.e., on the image data as it is already
acquired in current medical practice anyway. Hence, the possibility would arise to utilize
our pipeline even during the appointment in which these images are taken.

The lack of an available HF segmentation algorithm can be explained by a limited
amount of available annotated FAF data. As such, only few previous works have ap-
proached leakage segmentation in FAF images [53–55].

Regarding the limitations of our medical analysis, we note that our presented results
are a pilot analysis on a small dataset (17 eyes from 12 chronic CSCR patients). Furthermore,
the study was performed retrospectively with no fixed follow-up dates. Therefore, we
observe long gaps between visits with no imaging in between. Hence, while we propose
the possibility of different disease patterns, larger follow-up studies are required to confirm
our propositions and to allow for statistically significant observations.

Furthermore, SRF and HF annotations are currently performed only by one expert.
In the future, annotations from multiple experts would be desirable to analyze inter-
observer reliability.

8. Conclusions

Our visualisation pipeline is capable of precise and robust projections of optical
coherence tomography (OCT) segmentations onto en face retinal image modalities. This
closes a gap in the medical image analysis of eye diseases and allows for joint assessment
of pathologies from many different sources.

As an exemplary use of our pipeline, we analyzed the highly relevant relationship
between subretinal fluids development (SRF) and diffuse hyperfluorescence (HF) progres-
sion in 17 eyes of 12 patients diagnosed with central serous chorioretinopathy. The results
showed that, in most cases, one of two patterns could be observed: SRF preceding HF
or vice versa. A large study on this topic is desirable. For such a study as well as in
general clinical applications, our visualisation pipeline promises to be a valuable tool in
analyzing spatial and temporal relationships between pathologies from OCTs and retinal
imaging modalities.

Supplementary Materials: The code of our pipeline components can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics12081780/s1.
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Appendix A

This appendix shows, in Figures A1–A3, exemplary visualisations of representative
disease courses.

First Date 

Date 2/5 (+651 days)

Date 3/5 (+750 days)

Date 5/5 (+1226 days)

(a) Patient 5 (left eye)

First Date 

Date 3/8 (+261 days)

Date 4/8 (+357 days)

Date 8/8 (+826 days)

(b) Patient 6 (right eye)

First Date 

Date 2/8 (+63 days)

Date 3/8 (+119 days)

Date 8/8 (+576 days)

(c) Patient 9 (left eye)

Figure A1. Accumulated areas of SRF (green), diffuse HF (yellow) and overlap (blue) for three eyes
from pattern A, where SRF precedes HF. The background image is the FAF image for the given date
registered to fit the FoV of the FAF image from the first date. The bright area shows the accumulated
FoV from the OCT B-scans, i.e., outside of it no green or blue label can appear.
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First Date 

Date 2/5 (+126 days)

Date 3/5 (+252 days)

Date 5/5 (+994 days)

(a) Patient 7 (left eye)

First Date 

Date 3/7 (+394 days)

Date 4/7 (+996 days)

Date 7/7 (+3549 days)

(b) Patient 10 (left eye)

First Date 

Date 2/4 (+93 days)

Date 3/4 (+244 days)

Date 4/4 (+2333 days)

(c) Patient 11 (left eye)

Figure A2. Shown here are progressions from pattern B, where HF precedes SRF.
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First Date 

Date 2/7 (+119 days)

Date 3/7 (+1751 days)

Date 4/7 (+1841 days)

Date 5/7 (+2205 days)

Date 6/7 (+2275 days)

Date 7/7 (+2527 days)

(a) Patient 2 (left eye)

First Date 

Date 2/5 (+651 days)

Date 3/5 (+750 days)

Date 5/5 (+1226 days)

(b) Patient 5 (right eye)

Figure A3. Shown here are progression from the excluded group, where no chronology can be
established.
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