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Abstract

Background: When some combinations of maternal and paternal alleles have a detrimental effect on offspring fitness,
females should be able to choose mates on the basis of their genetic compatibility. In numerous Hymenoptera, the sex of
an individual depends of the allelic combination at a specific locus (single-locus Complementary Sex Determination), and in
most of these species individuals that are homozygous at this sexual locus develop into diploid males with zero fitness.

Methods and Findings: In this paper, we tested the hypothesis of genetic incompatibility avoidance by investigating sib-
mating avoidance in the solitary wasp parasitoid, Venturia canescens. In the context of mate choice we show, for the first
time in a non-social hymenopteran species, that females can avoid mating with their brothers through kin recognition. In
‘‘no-choice’’ tests, the probability a female will mate with an unrelated male is twice as high as the chance of her mating
with her brothers. In contrast, in choice tests in small test arenas, no kin discrimination effect was observed. Further
experiments with male extracts demonstrate that chemical cues emanating from related males influence the acceptance
rate of unrelated males.

Conclusions: Our results are compatible with the genetic incompatibility hypothesis. They suggest that the female wasps
recognize sibs on the basis of a chemical signature carried or emitted by males possibly using a ‘‘self-referent phenotype
matching’’ mechanism.
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Introduction

Sexual selection theory predicts that females, being the sex that

generally invest more in offspring, would be selective when

choosing a male [1,2]. Female preferences have been selected for

mates providing the most material benefits (direct selection,

reviewed by [3]) or genetic benefits (indirect selection, reviewed by

[4]). In the latter case, preferred males carry genes which confer by

themselves a higher fitness, improving viability or attractiveness of

offspring (discussed and reviewed by [5–7]). Whether the main

genetic benefits are ‘‘good genes’’, ‘‘compatible genes’’ or ‘‘diverse

genes’’ is still debated [8]. Females may prefer males with genes

compatible with their own genotypes, rather than males with

‘‘good genes’’ [2,9,10]. In turn, they should avoid males with

‘‘incompatible genes’’, i.e. reject matings leading to allelic

combinations with a deleterious effect on offspring viability or

fertility (genetic incompatibility hypothesis [11,12]). Incest avoid-

ance can be regarded as a special case of genetic incompatibility

avoidance [9,13]. Indeed, while inbreeding depression comes to

some extent from an increase in the phenotypic expression of

deleterious recessive alleles, matings between relatives increase the

risk of homozygosity in offspring [14,15].

In the Hymenoptera, a group known for its ecological and

economic importance [16], the haplodiploid genetic system is

traditionally expected to prevent detrimental effects of low genetic

diversity such as inbreeding depression, because the genetic load

can be purged via haploid males [17]. However, sex in many of

the species depends on the allelic combination at a specific locus

[18–21]: the single-locus complementary sex determination,

henceforth referred to as sl-CSD which may lead to inbreeding

costs. Sl-CSD offers an excellent opportunity to test the genetic

incompatibility hypothesis by investigating mate choice for

complementary genotypes. In these haplodiploid organisms, the

sl-CSD locus determines gender, with heterozygous individuals

developing as females and haploids and homozygous diploids

developing as males [18–20]. Genetic incompatibility occurs in

diploid eggs homozygous at the sl-CSD locus which give rise to

diploid male phenotypes that are sterile in most of the species

studied so far, given they are viable at all (but see [22]). Hence,

matings resulting in an increased risk of homozygosity at the CSD

locus, such as matings between relatives, potentially have a high

cost and should be avoided. A female that mates with a male

carrying the same sex allele will waste half of her fertilized eggs

because these will develop into diploid males (matched mating
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[19]). When mating takes place between siblings (sibs), the risk of

matched mating, i.e., the alleles of the two partners match, is 50%.

An inter-sexual conflict could appear since, under the hypothesis

that males are not effectively sperm limited, they should mate

regardless of their relatedness with the females.

In this paper, we test the genetic incompatibility hypothesis by

investigating whether genetic compatibility occurs during mate

choice in a hymenopteran parasitoid wasp, Venturia canescens

(Gravenhorst) with sl-CSD [23]. We conducted a set of three

experiments to investigate sib-mating avoidance and the associated

behavioural mechanism of kin recognition in this species. In the

first one, to test whether matings occur with a higher probability

with non-relatives than with relatives, females were either exposed

to two sib males or two non-sib males. We predicted that matings

with non-relatives should occur with higher probability and should

occur faster after the encounter of the sexes. In a second

experiment, females were offered a choice between a sib and a

non-sib male; we expected that females should be able to avoid sib

matings and should prefer to mate with non-sib males. Finally a

third experiment aimed at investigating the mechanism of sib

recognition. Here, we exposed females to the odour of sib-males in

the presence of non-sib males. Given sib-mating avoidance is

based on volatile chemical signatures, we expected that female

mating propensity with non-sib males would decrease in the

presence of sib-odour.

Methods

Biological model
Under natural conditions, arrhenotokous Venturia canescens females

(i.e, with haplodiploid sex determination) parasitize pyralid moth

larvae developing in dried fruits such as figs, carobs, almonds, dates

or loquats [24]. This parasitoid is a solitary species and thus only a

single offspring completes its larval development and emerges from

each host irrespective of the number of eggs laid in it. Virgin V.

canescens females emit chemicals that in combination with host

kairomones attract males. In turn, males do not attract virgin

females at a distance [25]. Our knowledge of how mating partners

encounter each other under field conditions is largely incomplete as

a consequence of the small size of the species that renders

observations difficult. Courtship behaviours have been described

in van Santen & Schneider [26] and females do not choose the male

according to its size [27]. Like 80% of the studied parasitoid wasp

species [28], V. canescens females are monandrous and thus only mate

once in a lifetime [25]. Conversely, males can mate more than once

(E. Desouhant pers. obs.). Therefore mate choice in general, and

female avoidance of a sib in particular, should have a great adaptive

impact in this species because of the CSD.

Rearing facilities
Wasps were reared on Ephestia kuehniella (Lepidoptera: Pyralidae)

larvae maintained in wheat semolina medium. They were fed with

50% water-diluted honey. Insect cultures (culture boxes) were kept

under constant laboratory conditions (2461uC, 70610% Hr, DL

12:12). To ensure genetic diversity in the wasp cultures, strains

used in the first two experiments had been established from large

scale field sampling: parasitized hosts were collected from eight

sites (P1-P4 and P6-P9 in [29]) along a 20 km transect near

Valence, south-eastern France, on 17th July, 2nd and 23rd August

2005. Culture boxes contained a mixture of females from the

different sampling localities. Experiments 1 and 2 were conducted

between January and March 2006. The third experiment was

carried out in July 2008, with wasps from Nice, south-eastern

France. The culture was started also with a large number of

females (more than 50, E. Desouhant Com. Pers.) sampled during

three days (19, 25 and 28th August) in 2005.

Parasitoid families
In order to obtain individuals with different relatedness, families

of wasps were formed. For experiments 1 and 2 (see below), virgin

females from different culture boxes were individually isolated

during 24 h in plastic tube (70630 mm) immediately after

emergence. They were allowed to mate once with a male among

three non-sib males from another culture box to reduce the risks of

matched mating. For experiment 3, we slightly changed the

procedure to obtain mated females. Ten to 20 freshly emerged

females from different culture boxes were gathered in a plastic

container with males of various ages. The sex ratio in the container

was approximately 1 female for 6 males. A large majority of

females accept mating within the first ten minutes of contact with

males (see results of Experiment 1). Even if some females have

mated more than once [25], brothers are always similarly related

to their sisters as a consequence of haplodiploidy.

For all experiments, each female was isolated the day after

mating and allowed to oviposit on a patch of 30 third-instar host

larvae for 2 h. Host patches were set up, 7 days before

parasitisation, in plastic boxes (80650 mm) containing 15 g of

semolina. To increase sample size of brothers and sisters available

for experiments, five days after parasitisation, females were

provided with a new host patch under the same conditions. A

few days before offspring emergence, potentially parasitized host

pupae were placed individually in gelatine capsules (Ø

7.95623 mm). The capsules were checked daily and each newly

emerged wasp was transferred to a plastic tube (70630 mm) and

its family was recorded. This procedure assures that brothers and

sisters were separated before emergence and maintained without

contact with conspecifics until the experiments started. All the

females and males in the tubes were provided with a drop of 50%

water –diluted honey until 2 h before the tests.

Experiment 1: Mating motivation in presence of either
sibs or non sibs

Our aim was to investigate whether relatedness between mating

partners influenced frequency and latency of mate acceptance.

Each female tested was given the opportunity to choose a mate

among either two of her brothers or two unrelated males

(Relatedness treatment). The two males unrelated to the female

were brothers. The females were one day old. We offered two

males per female (1) to allow mate choice and to increase the

proportion of females accepting a male for mating [26] and (2) to

be able to compare results of experiments 1 and 2. Occurrence

and time spent before mating for each female were recorded

during 30 min. The two males were introduced together to the

plastic tube (70630 mm) containing the female. The males were

one or two-days-old (mean 1.5) and each experimental day the

same number of males of each age were randomly assigned to the

2 experimental Relatedness treatments. There was no effect of male

age on mating propensity (x2 = 1.49, df = 2, p = 0.48). Thirty-four

females were tested for each experimental combination during 11

days. Only one female, randomly chosen, from each of the 200

families formed was used in this experiment to avoid pseudo-

replication via a brood effect. In others words, the 68 females used

were all taken from different ‘families’.

Experiment 2: Mate choice between sib and non-sib
This experiment aimed at testing whether females avoid sib-

mating when they have the choice between a brother and an

Sib Avoidance
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unrelated male. This experiment was conducted on the same dates

as Experiment 1, with wasps of the same broods, under similar

experimental conditions, and recording the same variables. To

distinguish whether a female mated with her brother or the

unrelated male, we pierced the wing base of one male with a fine

insect pin (hole diameter ,0.5 mm on a wing measuring 15 mm)

at least 20 h before the beginning of the observation period. The

male with the pierced wing was randomly drawn between the two

males. After the end of the observation, the male that copulated

was identified by examining its wings using a binocular

microscope. All males and females used were one day old and

88 females were tested. Only one female per family was tested.

Experiment 3: Mechanism of sib recognition
The first two experiments produced apparently contradictory

results (see below) which could be due to the presence of sib

volatiles hindering the recognition of sib and non sib males in

Experiment 2. Females may not be able to distinguish between sib

and non-sib males in close proximity, if the cue of kin recognition

is a volatile chemical compound present throughout the entire

experimental vial. To test this hypothesis, we replaced the sib-male

that was present in experiment 2, with the chemical extract from a

sib male (treatment 1), a non-sib male (treatment 2) or pure solvent

(control treatment). Under our hypothesis, we expected that the

probability of mate acceptance with the non-sib male would be

higher in presence of non-sib extract than with sib extract. We also

expected that mating probabilities were similar between treatment

2 and control.

The chemical extracts from a sib male and a non-sib male were

prepared from males frozen at 220uC on the day of their

emergence (conserved less than 15 days). To make a male extract,

its entire body was crushed in 500 ml of pentane. The mixture was

centrifuged for 30 min at 3000 rpm; the supernatant liquid was

recovered and concentrated to approximately 100 ml using a

vacuum concentrator. The extracts were used less than 4 hours

after being prepared.

One-day-old virgin females of the different families were placed

with a non-sib male after being exposed for 15 min to the crude

extract from a sib male, a non-sib male or to pure solvent.

According to the experimental treatment, 40 ml of male extract or

pure solvent were deposited on a filter paper (1 cm2), which was

placed, after few seconds of solvent evaporation, together with the

test female in an Eppendorf micro test tube (1,5 ml). After 15 min

of exposure, giving the female ample time to perceive the male

extract, the tested female was transferred to a plastic tube (as in

experiments 1 and 2) with the remaining volume of extract (60 ml)

deposited on the filter paper. A non-sib male was immediately

introduced into the tube and the occurrence of mating was

recorded during a period of 30 min. Thirty two replicates per

experimental treatment were conducted (leading to 96 females

tested within 4 days). Females tested had been randomly taken

from 43 families (mean 6 SD of 2.261.4 females used per family)

and randomly assigned to the three treatments.

Data analysis
The influence of the Relatedness with males (sib or non sib) on the

proportions of matings in Experiment 1 and 2 was analysed with

chi-square tests. In experiment 1, the effect of Relatedness on the

probability of mate acceptance within the 30 min observation

period (i.e. the latency to mate) was assessed using a non-

parametric survival analysis (Log-rank test) allowing for right

censored data (i.e. when no mating was observed during the

observation period). Each observed mating was considered as an

event and the mating latency was the survival time.

Occurrences of matings in Experiment 3 were analyzed using a

mixed model (with binomial error and logit link function), with

Treatment (3 treatment levels) as an explanatory variable (fixed

effect) and family as a random effect to allow for the fact that more

than one female per family was tested in this experiment. Since

statistical treatment contrasts of interest were ‘‘non sib’’ vs. ‘‘sib’’

and ‘‘non sib’’ vs. ‘‘control’’, we present only results of Wald-tests

on the coefficients estimating the effect of the Treatment factor. The

variance of the random effect was insignificant (,1026) and fixed

effect estimates and SE did not change (R library lme4).

All data analyses were performed with statistical procedures in

R [30].

Results

Experiment 1: Mating motivation in presence of either
sibs or non sibs

Females accepted a mate with higher probability in the presence

of non-sibs. Seventy nine percent of females (27/34) mated when

they were in presence of non sib males. Only 41% (14/34) mated

when they were with sibs. Virgin females were significantly more

likely to mate with non-sib than sib males (Relatedness effect:

x2 = 8.84, df = 1, p = 0.003).

The probability of mating within the 30 minutes of observation

(i.e. the latency to mate) was significantly influenced by Relatedness.

It was higher in presence of non-sib than in presence of sib males

(log-rank test: x2 = 8.1, df = 1, p = 0.004). Most of the observed

matings occurred during the first 10 minutes of observation

(median (quartiles 25, 75%): 335 s (88, 882)).

Experiment 2: Mate choice between a sib and a non-sib
Among the 88 females offered a brother and an unrelated male,

52 did not mate. Thirty six accepted a mate during the observation

period (40.9%). The proportion of females mating with a sib (19/

36) was not significantly different from that of females mating with

a non-sib male (17/36, x2 = 0.11, df = 1, p = 0.74, Figure 1).

Female choice was not influenced by the hole in the wing used to

distinguish males (Fisher exact test, p = 0.736). The proportion of

Figure 1. Percentage of observation trials in which there was
either no mating, a mating between sibs, or a mating between
non-sibs (experiment 2). Each female had the choice between a
brother and an unrelated male. NS: non significant; * : p,0.05.
doi:10.1371/journal.pone.0013505.g001
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mate acceptance was not significantly different from the

proportion observed in the treatment with one-day-old females

exposed to brothers in the experiment 1 (x2 = 0.0318, df = 1,

p = 0.85).

Experiment 3: Mechanism of sib recognition
Matings with the non-sib male were less frequent when the pair

perceived the chemical extract of a sib male than in the presence

of a non-sib male extract (Treatment factor: x2 = 6.09, df = 2,

p = 0.048, ‘‘non sib’’ vs. ‘‘sib’’: Z = 2.332, p = 0.0197, Figure 2).

Being exposed to an extract of non-sib males had no effect on the

proportion of females accepting to mate with the non sib male

(‘‘control’’ vs. ‘‘non sib’’ extracts, Z = 0.758, p = 0.44).

Discussion

Our study shows for the first time that females of a solitary

parasitoid wasp species respond differentially to genetically related

conspecifics for mate choice. They avoid mating with their

brothers and prefer unrelated males as expected under the

‘‘genetic incompatibility hypothesis’’. The avoidance of sib-mating

limits the risks of matched mating for sl-CSD and therefore the

costs of genetic inbreeding. Our results also strongly suggest that

the mechanism of kin recognition relies on chemical compounds

carried or released by males.

The probability of mating in the arrhenotokous V. canescens

females is twice as high in the presence of two unrelated males as

in the presence of two of her brothers (experiment 1). This

indicates that this species exhibits kin recognition during mating

choice. Kin discrimination ability has been described in the

context of superparasitism (i.e. several broods in the same host) for

thelytokous V. canescens (i.e. females that do not mate and produce

only females from diploid unfertilized eggs). In these females the

probability of laying an egg in an already parasitized host depends

of the relatedness of the female with the progeny within the host

[31]. Kin recognition was also described in another non-social and

solitary wasps in a context of nest defence [32,33] V. canescens can

be added to the few insect species for which incest avoidance

through kin discrimination during mate choice has been reported:

the cricket Gryllus bimaculatus [34], the cockroach Blattella germanica

[35], and social insects such as bees [36], the ants Iridomyrmex

humilis and Plagiolepis pygmaea [37,38], and the termite Zootemopsis

nevadensis [39]. In the bumblebee Bombus terrestris (with CSD),

mating behaviour is also affected by relatedness of partners [40].

Incest avoidance in V. canescens is consistent with the model of

genetic complementarity, which assumes that females do not

always choose a male with intrinsically superior genes. They may

instead choose males with whom they have higher genetic

compatibility, i.e. the viability of offspring depends on the

interaction between the male and female genotypes [13]. Many

studies of genetic complementarity have focused on polyandrous

species where the potential for postcopulatory female choice exists

[41]. However, in monoandrous species one would expect that

some precopulatory indications of a male’s relatedness are used

during mate choice.

Our results suggest the nature of the cue used for kin

recognition. In contrast to the results of experiment 1, there is

no female preference for non-sib males when females are given the

choice between a sib and a non-sib male (experiment 2). Only 40%

of these females accepted to mate with unrelated males, which is

the similar percentage to that shown by females in the presence of

sibs in experiment 1. This apparent discrepancy between the two

experiments might be explained by the presence of chemical

volatiles from sib-males in the small mating arena preventing the

females from distinguishing between the two males in experiment

2. This hypothesis was supported by the results of experiment 3:

whilst the proportion of females accepting to mate with a non-sib

male does not differ when they are exposed to non-sib male

chemical cue or to the control (pure solvent), this proportion

decreases in presence of chemical cues from male siblings. This

suggests that sib recognition involves chemical compounds carried

or released by V. canescens males and that the perception of a

brother’s chemical compounds inhibits a female’s receptivity to

mate. It is noteworthy that our ability to detect kin discrimination

in V. canescens was influenced by the experimental design. Often,

preference or selectivity tests are performed either as choice or no-

choice test, but results from such tests may differ (e.g. [42]). Here,

kin discrimination was only visible under no-choice conditions and

appears to have been obscured by the effects of chemical cues from

sibs in the small arena choice test. The apparent lack of

consistency of our results across experiments indicates that further

experimentation will be necessary to detect the true nature of kin

recognition and discrimination.

In our experiment we used the whole extract of males

(experiment 3). This protocol prevents us from distinguishing

whether the chemical signature is carried on the surface of males

(cuticular hydrocarbons) and/or whether it is released by males

during courtship. The use of a chemical label is consistent with the

observation that in the superparasitism context the V. canescens

females use hydrocarbon profiles that are more variable between

non relatives than between sibs [31].

Chemical signatures, such as hydrocarbons for recognition [43–

45], are widespread and reliable labels, especially in insects

[46,47]. In the solitary parasitoid larvae, Aleochara bilineata (a non–

social coleopteran), sibs are recognised by use of a chemical cue,

present on plugs placed by larvae on the host during parasitization

[48]. The gregarious parasitoid (i.e. that lay eggs in clusters) Bracon

hebetor (with sl-CSD) uses the odour of the host in which brothers

and sisters develop for brood-mate avoidance. This is a reliable

cue to recognise sibs in gregarious parasitoids, as long as no

superparasitism occurs [49]. Since only one adult emerges from a

host in V. canescens, and because hosts are distributed across

Figure 2. Percentage of females accepting to mate with a non-
sib male according to their relatedness with the male extract
(N = 32/treatment; experiment 3). * : p,0.05.
doi:10.1371/journal.pone.0013505.g002
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different fruits that are generally clumped, females cannot use cues

related to a common host patch origin to discriminate between sib

and non-sib males. Cuticular hydrocarbons that vary with family

origin are used both in social context and incest avoidance in

urban cockroaches [45].

To be recognized, a label should be compared to a ‘‘template’’

representing kin [46,50,51]. The most frequent mechanisms of

recognition are: prior association or phenotype matching [52,53].

The mechanism of prior association assumes that individuals learn

the phenotypes of familiar conspecifics during their early

development, thus allowing them to discriminate later familiar

from non-familiar conspecifics [54]. In our study, the wasps did

not encounter any conspecifics before the test; hence we can

exclude this mechanism. Phenotype matching assumes that

individuals learn their own phenotypes (self referent phenotype

matching, [55–60]) or those of their familiar kin, thus allowing

them later to compare phenotypes of conspecifics to this learned

recognition template [61]. This mechanism assumes a positive

correlation between phenotypic and genotypic similarities. In our

experiments, the parasitoid larvae grew separately and adults were

isolated prior to mating, therefore an individual’s own phenotype

is the only reference that it can use. Consequently, it might be

suggested that V. canescens uses self-referent phenotype matching to

recognize and avoid sib-matings.

Our work relies on the hypothesis that females choose the males

they mate with. However, we cannot rule out that the males may

also be choosy (male mate choice, for a review in insects see [62])

and able to discriminate kin. This ability could provide an

alternative explanation for the discrepancy between the results of

the first two experiments. In the first experiment, the males are

brothers (and unrelated to the female). If males are capable of kin

discrimination, under a kin selection hypothesis, they would be less

aggressive toward a brother, and this could reduce the competition

for mates. In the second experiment a sib male is in competition

with a non sib and it might behave more aggressively preventing a

non kin male from mating with the female. Yet, we should still see

a difference between the mating propensities of kin and non-kin

males, since the former should avoid mating with the females

whereas the latter should try to mate. Thus, given the data, female

choice and the effect of the presence of kin chemical traces on

female mate choice seem to be the better explanation in V.

canescens.

Such kin recognition and avoidance behaviour is expected to

have been selected for in V. canescens as in other Hymenoptera

species with sl-CSD to avoid the costs of diploid male production

that results from a mating between siblings (see Introduction, but

see [63]). Avoidance of sib-mating is a mating bias acting indirectly

against genetic incompatibility [2,8,11]. In V. canescens inbred

crosses lead to viable diploid males [23]. Matings with diploid

males result in no viable diploid female offspring (X Fauvergue

Comm. Pers), as is the case in most species with sl-CSD where

diploid males produce sperm (but see for an exception [22,64,65]).

Of course, inbreeding avoidance in this species may also have been

selected for the reduction of deleterious recessive gene expression

in diploids and inbreeding depression.

Sl-CSD and sib-mating avoidance may also have severe

consequences for population dynamics. Using a modelling

approach, Zayed & Packer [66] predicted that the genetic load

of sl-CSD is high enough to drive panmictic populations into an

extinction vortex when they suffer from a size reduction (see also

[67], but see [68]). Results from two cage population experiments

with a small number of mated foundresses suggest the existence of

costs associated with the production of diploid V. canescens males.

After 5 months (approx. 8 generations), all cage populations went

to extinction because of all male-offspring production (I. Amat and

C. Bernstein, unpublished data). In the bumblebee B. terrestris, the

diploid males produced by matched mating suffer reduced fertility

[69] and reduces the survivorship of colonies in the field [70]. Such

consequences are likely exacerbated in species that mate only

once, as in V. canescens [25].

To conclude, inbreeding avoidance via kin recognition is

generally expected and reported in social species or in animals

living in groups [35,58,71,72], with very few reports for non-social

species [73]. As such demonstrating sib-mating avoidance in a

solitary wasp is a novel result. It suggests that even in non-social

species, the potential costs of matched matings may be strong

enough to favour mechanisms of sib-mating avoidance in the field.

Hymenoptera with sl-CSD represent suitable model systems to

study the genetic mechanisms (genetic diversity at the whole

organism level or at the CSD locus) underlying sib-mating

avoidance, its adaptive value and its consequences at the

population level.

Acknowledgments

We thank A. Heizmann and F. Debias for their technical assistance. We
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53. Villavicencio CP, Màrquez IN, Quispe R, Vàsquez RA (2009) Familiarity and

phenotypic similarity influence kin discrimination in the social rodent Octodon

degus. Animal Behaviour 78: 377–384.

54. Alexander RD (1990) Epigenetic rules and darwinian algorithms. The adaptive

study of learning and development. Ethology and Sociobiology 11: 241–303.

55. Mateo JM, Johnston RE (2000) Kin recognition and the ‘armpit effect’: evidence

for self-referent phenotype matching. Proceedings of the Royal Society B 267:

695–700.

56. Petrie M, Krupa A, Burke T (1999) Peacocks lek with relatives even in the

absence of social and environmental cues. Nature 401: 155–157.

57. Hauber ME, Sherman PW (2000) The armpit effect in hamster kin recognition.

Trends in Ecology & Evolution 15: 349–350.

58. Enigl M, Schausberger P (2004) Mate choice in the predaceous mite Phytoseiulus

persimilis: evidence of self-referent phenotype matching? Entomologia Experi-

mentalis et Applicata 112: 21–28.

59. Ivy T, Weddle CB, Sakaluk SK (2005) Females use self-referent cues to avoid

mating with previous mates. Proceedings of the Royal Society B 272:

2475–2478.

60. Lize A, Clement J, Cortesero AM, Poinsot D (2010) Kin recognition loss

following anesthesia in beetle larvae (Aleochara bilineata, Coleoptera, Staphylini-

dae). Animal Cognition 13: 189–194.

61. Holmes WG, Sherman PW (1982) The ontogeny of kin recognition in two

species of ground squirrels. American Naturalist 22: 491–517.

62. Bonduriansky R (2001) The evolution of male mate choice in insects: a synthesis

of ideas and evidence. Biological Reviews 76: 305–339.

63. Bourdais D, Hance T (2009) Lack of behavioural evidence for kin avoidance in

mate choice in a hymenopteran parasitoid (Hymenoptera: Braconidae).

Behavioural Processes 81: 92–94.

64. van Wilgenburg E, Driessen G, Beukeboom LW (2006) Single locus

complementary sex determination in Hymenoptera: an "unintelligent" design?

Frontiers in Zoology 3.

65. de Boer JG, Ode PJ, Vet LEM, Whitfield JB, Heimpel GE (2007) Diploid males

sire triploid daughters and sons in the parasitoid wasp Cotesia vestalis. Heredity 99:

288–294.

66. Zayed A, Packer L (2005) Complementary sex determination substantially

increases extinction proneness of haplodiploid populations. Proceedings of the

National Academy of Sciences of the USA 102: 10742–10746.

67. Hedrick PW, Gadau J, Page JRE (2006) Genetic sex determination and

extinction. Trends in Ecology & Evolution 21: 55–57.

68. Hein S, Poethke HJ, Dorn S (2009) What stops the ‘diploid male vortex’? A

simulation study for species with single locus complementary sex determination.

Ecological Modelling 220: 1663–1669.

69. Duchateau MJ, Marien J (1995) Sexual biology of haploid and diploid males in

the bumble bee Bombus terrestris. Insectes Sociaux 42: 255–266.

70. Whitehorn PR, Tinsley MC, Brown MJF, Darvill B, Goulson D (2009) Impacts

of inbreeding on bumblebee colony fitness under field conditions. BMC

Evolutionary Biology 9: 152.

71. Pusey A, Wolf M (1996) Inbreeding avoidance in animals. Trends in Ecology &

Evolution 11: 201–206.
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